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Discontinuous Galerkin methods for the Multi-dimensional
Vlasov-Poisson problem

Blanca Ayuso de Dios · José A. Carrillo ·
Chi-Wang Shu

Abstract We introduce and analyze two new semi-discrete numerical methods for the

multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a

discontinuous Galerkin approximation to the Vlasov equation together with a mixed

finite element method for the Poisson problem. We show optimal error estimates in the

case of smooth compactly supported initial data. We propose a scheme that preserves

the total energy of the system.

Mathematics Subject Classification: 65N30, 65M60, 65M12, 65M15, 82D10.

1 Introduction

The Vlasov-Poisson (VP) system is a classical model in collisionless kinetic theory. It is

a mean-field limit description of a large ensemble of interacting particles by electrostatic

or gravitational forces. While most of the results in this work are equally valid in both

cases under smoothness assumptions of the solutions, we focus our presentation on the

plasma physics case.

In kinetic theory, the evolution of the particle number density or mass dens-

ity f(x,v, t) in phase space, i.e. position and velocity (x,v) at time t > 0 is given

by the Vlasov equation

∂f

∂t
+ v · ∇xf −∇xΦ · ∇vf = 0, (x,v, t) ∈ Ωx × Rd × [0, T ], (1)
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Bellaterra, Spain
(carrillo@mat.uab.es).

Chi-Wang Shu
Division of Applied Mathematics, Brown University, Providence RI 16802, USA
(shu@dam.brown.edu).



2

considered with periodic boundary conditions in the d-dimensional torus Ωx = [0, 1]d

with d = 2, 3. In order to describe charged particles motion in plasmas, we need to

compute the force field from the macroscopic density of particles

ρ(x, t) =

Z
Rd

f(x,v, t) dv. (2)

While in a more accurate model, magnetic effects and Maxwell’s equation for the force

fields should be considered, we assume that they are negligible and compute the force

field from the Poisson equation,

−∆Φ = ρ(x, t)− 1, (x, t) ∈ Ωx × [0, T ], (3)

where E(x, t) = ∇xΦ is the electrostatic field per unit mass, up to a sign, acting on

particles. Here, we set all physical constants appearing in the equations to one for

simplicity. Its solution allows to compute the electric potential Φ(x, t) due to both

the self-consistent part coming from the macroscopic density ρ(x, t) and a uniform

background ion density normalized to one. In plasma applications the system has to

be globally neutral, meaning that the total charge of the system is zero,Z
Ωx

ρ(x, t) dx =

Z
Ωx

Z
Rd
f(x,v, t) dv dx = 1. (4)

This is a compatibility condition imposed by the periodicity of the boundary conditions.

We refer to the surveys [30,10,26] for good account on the state of the art in the

mathematical analysis and properties of the solutions of the Cauchy problem for the

Vlasov-Poisson system. Global classical solutions were constructed in [9] for the system

(1)–(3) with periodic in space boundary conditions and with compactly supported in

velocity C2(Ωx × Rd)-initial data. Since the solutions are shown to remain compactly

supported in velocity if initially so, we will assume without loss of generality that there

exists L > 0 such that v ∈ Ωv = [−L,L]d and that

supp(x,v)(f(·, t)) ⊂ Ωx × (−L,L)d

for all 0 ≤ t ≤ T for a given fixed T > 0. The VP system is a infinite dimensional

hamiltonian which has infinitely many conserved quantities, in particular all Lp-norms,

1 ≤ p ≤ ∞ of the distribution function and the total (kinetic + potential) energy are

preserved in time.

Due to the large number of physical applications and technological implications

of the behavior of plasmas, the numerical simulation of the VP system has attracted

lots of attention in the last decades since kinetic descriptions are more accurate. Due

to the high dimensionality of the system, most of the first attempts were based on

particle-like or stochastic methods. Nowadays, there is a strong interest in the design

and understanding of accurate deterministic solvers. We will not further discuss about

the previous work in numerical methods for the Vlasov-Poisson system and refer the

interested author to the introduction of our companion paper [6] or the technical re-

port [7] in the one dimensional case.

This work is the natural extension of [6] where we have proposed and analyzed a

wide family of Discontinuous Galerkin schemes for the one-dimensional Vlasov-Poisson

system. In this paper we pursue our study with the construction and analysis of nu-

merical schemes to the multi-dimensional case, d = 2, 3.
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Following [6], we construct two eulerian schemes, based on the coupling of a DG

approximation for the Vlasov equation (1) and mixed finite element approximation for

the Poisson problem. In particular we consider the Raviart-Thomas mixed approxim-

ation and the Local Discontinuous Galerkin (LDG) method. As we noted in [6] most

works in the literature, consider schemes either in primal formulation to approximate

the Poisson problem, or direct discretization of the closed form solution of the electro-

static field E. This last approach cannot be carried in two or more dimensions. Also

since it is the electrostatic field E (and not Φ) defines the transport in v in (1), we

think that a mixed method is more appropriate.

We present the L2-error analysis of the proposed methods, in the case of smooth

compactly supported solutions. We show optimal error estimates for both the distribu-

tion function and the Electrostatic field in the L2-norm. To avoid the loss of half order,

typical of classical error analyses of hyperbolic problems, we introduce some special

projections, inspired mainly in [33], that exploit the structure of the mesh and extend

to higher dimension the ones introduced in [6].

It is worth noticing that, although it is a non-linear problem, our error analysis does

not require any a-priori assumption on the approximation to the distribution function

or the electrostatic field, as it usually happens in the analysis of numerical methods for

non-linear problems. As a consequence the error bounds proved are not asymptotic;

i.e., hold for any h < 1. We deal with the non-linearity, by proving L∞ bounds on

the approximate electrostatic field. We wish to mention that the proof of this result

(for both the LDG and Raviart-Thomas mixed methods) it is of independent interest.

Although there is a large amount of work in the literature, devoted to the L∞ and

pointwise error analysis for the approximation of a “linear” Poisson problem (see [28]

and [19]), the case where the forcing term in the Poisson problem depends itself of

the solution, has not been treated before to the best of our knowledge, for mixed and

DG approximations. Our analysis follow the ideas of [38,37], where the authors deal

with the conforming approximation of a “general” Poisson problem taking into account

the outside influence of the forcing term. However since [38,37] deals with standard

conforming approximation, many of the results and arguments used by the authors

in these works cannot be straightforwardly adapted, specially for the LDG method.

For the case of the Raviart-Thomas approximation, the seminal work [28] can be more

easily adapted to cover the present situation.

One of the motivations for using DG approximation for the Vlasov equation, is that

it allows by construction the conservation of mass. In this paper, we also introduce a

DG-LDG method for Vlasov-Poisson that preserves the total energy of the system,

extending to higher dimensions, the scheme proposed in [6].

We would like to emphasize that to the best of our knowledge, this is the first work

providing the error analysis for an eulerian scheme to approximate the Vlasov-Poisson

system in dimension d = 2, 3.

The outline of the paper is as follows. In §2 we present the basic notations we need

for the description and analysis of the numerical methods. We also revise some well

known results that will be used in the paper. In §3 we introduce our numerical meth-

ods for approximating the Vlasov-Poisson system and show Stability of the proposed

schemes. The error analysis is carried out in §4. The issue of energy conservation is

discussed in §5. The paper is completed with two Appendixes: Appendix A contains

the proofs of the error estimates for the electrostatic field; and in Appendix B are

included the proofs of some auxiliary results required by our convergence analysis.
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2 Preliminaries and Basic Notation

In this section we review the basic notation for the discrete setting and the definition

of the finite element spaces. We close the section by reviewing some standard tools of

FE methods that will be used in the paper.

Throughout the paper, we use the standard notation for Sobolev spaces [2]. For a

bounded domain B ⊂ R2, we denote by Hm(B) the L2-Sobolev space of order m ≥ 0

and by ‖ · ‖m,B and | · |m,B the usual Sobolev norm and seminorm, respectively. For

m = 0, we write L2(B) instead of H0(B). We shall denote by Hm(B)/R the quotient

space consisting of equivalence classes of elements of Hm(B) differing by constants;

for m = 0 it is denoted by L2(B)/R. We shall indicate by L2
0(B) the space of L2(B)

functions having zero average over B. This notation will also be used for periodic

Sobolev spaces without any other explicit reference to periodicity to avoid cumbersome

notations.

2.1 Domain Partitioning and Finite Element Spaces

Let T x
hx

and T v
hv

be two families of cartesian partitions of Ωx and Ωv, respectively,

formed by rectangles for d = 2 and cubes for d = 3. Let {Th} be defined as the cartesian

product of these two partitions: Th := T x
hx
× T v

hv
; i.e.,

Th := {R = Tx × T v : Tx ∈ T x
hx

T v ∈ T v
hv
}.

The mesh sizes h, hx and hv relative to the partitions are defined as usual

0 < hx = max
T x∈T x

hx

diam(Tx), 0 < hv = max
T v∈T v

hv

diam(T v), h = max (hx, hv).

We denote by Ex and Ev the set of all edges of the partitions T x
hx

and T v
hv

, respectively

and we set E = Ex × Ev. The set of interior and boundary edges of the partition T x
hx

(resp. T v
hv

) are denoted by E0
x (resp. E0

v) and E∂
x (resp. E∂

v ), so that Ex = E0
x ∪ E∂

x

(resp. Ev = E0
v ∪ E∂

v ).

Trace operators: Observe that due to the structure of the transport equation (1), for

each R = Tx × T v ∈ Th with Tx ∈ T x
hx

and T v ∈ T v
hv

and for each ϕ ∈ H1(Tx × T v)

we only need to define the traces of φ at ∂Tx × T v and Tx × ∂T v. Hence, for setting

the notation, it is enough to consider a general element T in either T x
hx

or T v
hv

. By n−|∂T

we designate the outward normal to the element T and we denote by ϕ− the interior

trace of ϕ|T on ∂T and ϕ+ refers to the outer trace on ∂T of ϕ|T . That is,

ϕ±T (x, ·) = lim
ε→0

ϕT (x± εn−, ·) ∀x ∈ ∂T. (5)

We next define the trace operators, but to avoid complications with fixing some priv-

ileged direction we follow [5]. Let T− and T+ be two neighboring elements in either T x
hx

or T v
hv

, and let n− and n+ be their outward normal unit vectors, and let ϕ± and τ±

be the restriction of ϕ and τ to T±. Following [5] we set:

{ϕ} =
1

2
(ϕ− + ϕ+), [[ϕ ]] = ϕ−n− + ϕ+n+ on e ∈ E0

r , r = x or v, (6)

{τ} =
1

2
(τ− + τ+), [[ τ ]] = τ− · n− + τ+ · n+ on e ∈ E0

r , r = x or v. (7)
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We also introduce a weighted average, for both scalar- and vector-valued functions, as

follows. With each internal edge e, shared by elements T+ and T−, we associate two

real nonnegative numbers δ and 1− δ, and we define

{τ}δ := δτ+ + (1− δ)τ− on internal edges. (8)

For e ∈ E∂
r (with r = x or v), we set

[[ϕ ]] = ϕn, {ϕ} = ϕ, {τ} = τ .

Notice that when referring to elements rather than edges, according to (5), ϕ− can be

seen as the inner trace relative to T− (i.e., ϕ−
T−

) and also as the outer trace relative

to T+ (i.e., ϕ+
T+). Similarly, n− denotes the outward normal to T− and also the inner

normal to T+. Both notations will be used interchangeable.

Denoting by
R
Er

=
P

e∈Er

R
e, we shall make extensive use of the following identity

(see [4])

X
T∈T r

Z
∂T r

τ · nϕdsr =

Z
Er

{τ} · [[ϕ ]] dsr +

Z
E0

r

[[ τ ]]{ϕ} dsr r = x,v. (9)

Next, for k ≥ 0, we define the discontinuous finite element spaces V k
h , Zk

h and Σk
h,

Zk
h :=

n
ϕ ∈ L2(Ω) : ϕ|R ∈ Qk(Tx)×Qk(T v), ∀R = Tx × T v ∈ Th

o
,

Xk
h =

n
ψ ∈ L2(Ωx) : ψ|T x ∈ Qk(Tx), ∀Tx ∈ T x

hx

o
,

V k
h =

n
ψ ∈ L2(Ωv) : ψ|T v ∈ Qk(T v), ∀Tx ∈ T x

hx

o
,

Ξk
h =

n
τ ∈ (L2(Ωx))d : τ |T x ∈ (Qk(Tx))d ∀Tx ∈ T x

hx

o
,

where Qk(T ) (resp. (Qk(T )d) is the space of scalar (resp. vectorial) polynomials of

degree at most k in each variable.

We also set Qk
h = Xk

h ∩ L
2
0(Ωx). We finally introduce the Raviart-Thomas finite

element space:

Σk
h =

n
τ ∈ H(div;Ωx) : τ |T x ∈ RT

k(Tx) ∀Tx ∈ T x
hx

o
where

H(div;Ωx) = {τ ∈ (L2(Ωx))d with div(τ ) ∈ L2(Ωx) and τ · n∂Ω periodic on ∂Ω}

and RT k(Tx) := Qk(Tx)d + x · Qk(Tx) (see [15] for further details). We shall denote

by ‖ · ‖H(div;Ωx) the H(div;Ωx)-norm defined by

‖τ‖2H(div;Ωx) := ‖τ‖20 + ‖div(τ )‖20 ∀ τ ∈ H(div;Ωx).
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2.2 Technical Tools

We start by defining the following seminorm and norms that will be used in our analysis:

|ϕ|21,h =
X
R∈Th

|ϕ|21,R ‖ϕ‖2m,Th
:=

X
R∈Th

‖ϕ‖2m,R ∀ϕ ∈ Hm(Th), m ≥ 0

‖ϕ‖0,∞,Th
= sup
R∈Th

‖ϕ‖0,∞,R ‖ϕ‖p
Lp(Th)

:=
X
R∈Th

‖ϕ‖p
Lp(R)

∀ϕ ∈ Lp(Th),

for all 1 ≤ p <∞. We also introduce the following norms over the skeleton of the finite

element partition,

‖ϕ‖20,Ex
:=

X
e∈Ex

Z
e
|ϕ|2 dsx dv, ‖ϕ‖20,Ev

=
X
e∈Ev

Z
e
|ϕ|2 dsv dx.

Then, we define ‖ϕ‖20,Eh
= ‖ϕ‖20,Ex

+ ‖ϕ‖20,Ev
.

Projection operators: Let k ≥ 0 and let Ph : L2(Ω) −→ Zk
h be the standard 2d-

L2-projection. We denote by Px : L2(Ω) −→ Xk
h and Pv : L2(Ω) −→ V k

h the standard

d-dimensional L2-projections onto the spaces Xk
h and V k

h , respectively, and we note

that Ph can be written as

Ph = Px ⊗ Pv.

The projection Ph satisfies (see [20] and [3])

‖w−Ph(w)‖0,Th
+ h1/2‖w−Ph(w)‖0,Eh

≤ Chk+1‖w‖k+1,Ω ∀w ∈ Hk+1(Ω), (10)

with C depending only on the shape regularity of the triangulation and the polynomial

degree. By definition, Ph is stable in L2 and it can be further shown to be stable in all

Lp-norms (see [22] for details);

‖Ph(w)‖Lp(Th) ≤ C‖w‖Lp(Ω) ∀w ∈ Lp(Ω) 1 ≤ p ≤ ∞. (11)

We will also need approximation properties in the supremum-norm (see [20]);

‖w − Ph(w)‖0,∞,Th
≤ Chk+1‖w‖k+1,∞,Ω ∀w ∈W k+1,∞(Ω). (12)

We wish to stress that the projections Px and Pv also satisfy properties (11) and (12).

Furthermore, we will also use

‖w − Pr(w)‖0,Th
≤ Chk+1‖w‖k+1,Ω ∀w ∈ Hk+1(Ω), r = x or v. (13)

Raviart Thomas projection: For k ≥ 0 we denote by Rk
h the local interpolation

operator which satisfies the following commuting diagram:

H(div;Ωx)
div−−−−−→ L2

0(Ωx)

Rk
h

??y ??y bP k
h

Σk
h

div−−−−−→ Qk
h

where bP k
h refers to the standard L2-projection operator onto Qk

h. The above commuting

diagram express that div(Σk
h) = Qk

h and

divRk
h(τ ) = bP k

h (divτ ) ∀ τ ∈ H(div;Ωx). (14)
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In particular (14) holds for all τ ∈ H1(Ωx)d. Optimal Lp-approximation properties,

with 2 ≤ p ≤ ∞ can be shown for this operator (see [15, Section III.3], [15,27] for

details):

‖τ −Rk
h(τ )‖Lp(Ωx) + ‖div(τ −Rk

h(τ ))‖Lp(Ωx) ≤ Chk+1‖τ‖W k+1,p(Ωx)

∀ τ ∈W k+1,p(Ωx)d. (15)

We notice here that all the approximation and stability results stated here for the

standard L2-projection, hold true also for the L2-projection onto Qk
h; i.e., bP k

h .

3 Numerical Methods and Stability

In this section we describe the numerical methods we propose for approximating the

Vlasov-Poisson system (1)–(3) and prove Stability for the proposed schemes. Following

the work initiated in [6], the proposed numerical schemes are based on the coupling

of a simple DG discretization of the Vlasov equation and some suitable finite element

approximation, possibly discontinuous, to the Poisson problem.

Thanks to the special hamiltonian structure of the Vlasov equation (1): v is inde-

pendent of x and E is independent of v; for all methods the DG approximation for

the electron distribution function is done exactly in the same way. Therefore we first

present the DG method for the transport equation (1), postponing the description of

the approximation to the Poisson problem (3) to the last part of the section.

While describing the numerical schemes, we will also state a number of approxim-

ation results. The proofs of most of them, except for the stability and particle conser-

vation, are postponed till Appendix A.

3.1 Discontinuous Galerkin approximation for the Vlasov equation

Throughout this section, we denote by Eh ∈ eΣ the FE approximation to the elec-

trostatic field to be specified later on. We consider DG approximation for the Vlasov

equation coupled with a finite element approximation to the Poisson problem. The DG

approximation to (1) reads: Find (Eh, fh) ∈ C1([0, T ]; eΣ ×Zk
h) such thatX

R∈Th

Bh,R(Eh; fh, ϕh) = 0 ∀φh ∈ Zk
h , (16)

where ∀R = Tx × T v ∈ Th,

Bh,R(Eh; fh, ϕh) =

Z
R

∂fh

∂t
ϕh dv dx−

Z
R
fhv ·∇xϕh dv dx+

Z
R
fhEh ·∇vϕh dv dx

+

Z
T v

Z
∂T x

̂(v · nfh)ϕh dsx dv −
Z

T x

Z
∂T v

̂(Eh · nfh)ϕh dsv dx ∀ϕh ∈ Zk
h .

Above, we have used n to denote both n−|∂T x
and n−|∂T v

in the first and second boundary

integrals respectively. To ease the presentation, this slight abuse in the notation will
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be used throughout the paper, since it will be usually clear to which normal we are

referring. The numerical fluxes ̂(v · n−fh) and ̂(Eh · n−fh) are defined as:

̂v · n−fh|∂T x =

8>><>>:
v · n−(fh)−|T x

if v · n−|∂T x
> 0,

v · n−(fh)+|T x
if v · n−|∂T x

< 0,

{v · n−fh} if v · n−|∂T x
= 0,

̂Eh · n−fh|∂T v =

8>><>>:
Eh · n−(fh)+|T v

if Eh · n−|∂T v
> 0,

Eh · n−(fh)−|T v
if Eh · n−|∂T v

< 0,

{Eh · n−fh} if Eh · n−|∂T v
= 0,

(17)

on interior edges, i.e., for all ∂Tx ∩ ∂Ωx = ∅ and ∂T v ∩ ∂Ωv = ∅. On boundary

edges we impose the periodicity for v̂ · nfh and compactness for ̂Eh · nfh. Notice that

the (upwind) fluxes defined in (17) are consistent and conservative. Now, taking into

account the definition of the weighted average (8) and that of the standard trace

operators (6) and (7) and the fact that for each fixed e, n− = −n+, the upwind

numerical fluxes (17) can be re-written in terms of the weighted average (see [16,8] for

details). More precisely, we have8>><>>:
v̂ · nfh = {vfh}α · n :=

„
{vfh}+

|v · n|
2

[[ fh ]]

«
· n on E0

x,

̂Eh · nfh = {Ehfh}β · n :=

„
{Ehfh} −

|Eh · n|
2

[[ fh ]]

«
n on E0

v ,

(18)

with α = 1
2 (1 ± sign(v · n±)) and β = 1

2 (1 ∓ sign(Eh · n±)). Using then, formula (9)

together with the conservativity property of the numerical fluxes, the DG scheme reads

0 =
X
R∈Th

Bh,R(Eh; fh, ϕh)

=
X
R∈Th

Z
RR

∂fh

∂t
ϕh dv dx−

Z
Ω
fhv · ∇h

xϕh dv dx +

Z
Ω
fhEh · ∇h

vϕh dv dx

+

Z
T v

Z
Ex

{vfh}α · [[ϕh ]] dsx dv −
Z

T x

Z
Ev

{Ehfh}β · [[ϕh ]] dsv dx ∀ϕh ∈ Zk
h ,

(19)

where ∇h
xϕh and ∇h

vϕh are the functions whose restriction to each element R ∈ Th

are equal to ∇xϕh and ∇vϕh , respectively.

The discrete density, ρh is defined by

ρh =
X

T v∈T v
hv

Z
T v

fh dv ∈ Xk
h . (20)

The following lemma guarantees the particle conservation for the above scheme.

Lemma 1 (Particle or Mass Conservation) Let k ≥ 0 and let fh ∈ C1([0, T ];Zk
h)

be the DG aproximation to f , satisfying (16). Then,X
R∈Th

Z
R
fh(t) dx dv =

X
R∈Th

Z
R
fh(0) dx dv =

X
R∈Th

Z
R
f0 = 1 ∀ t.
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Proof The proof follows essentially the same lines as the proof of [6, Lemma 3.1], by

fixing some arbitrary R = R1 and taking in (16) a test function ϕ, such that ϕh = 1

in R1 and ϕh = 0 elsewhere.

We next show L2-stability for the numerical method (16), which follows from the

selection of the numerical fluxes:

Proposition 1 (L2-stability) Let fh ∈ Zk
h be the approximation of problem (1)–(3),

solution of (16) with the numerical fluxes defined as in (17). Then

‖fh(t)‖0,Th
≤ ‖fh(0)‖0,Th

∀ t ∈ [0, T ].

Proof The proof follows essentially the same steps as for the case d = 1. By setting

ϕh = fh in (16), integrating the volume terms that result and using (9) one easily gets

0 =
X
R∈Th

Bh,R(Eh; fh, fh)

=
1

2

X
R∈Th

„
d

dt

Z
R
f2
h dv dx−

Z
T v

Z
Ex

v · [[ f2
h ]] dsx dv +

Z
T x

Z
Ev

Eh · [[ f2
h ]] dsv dx

«

+
X

T v∈T v
hv

Z
T v

Z
Ex

{vfh}α · [[ fh ]] dsx dv −
X

T x∈T x
hx

Z
T x

Z
Ev

{Ehfh}β · [[ fh ]] dsv dx.

Now, from the definition of the trace operators (6) it follows that [[ f2
h ]] = 2{fh}[[ fh ]] on

e ∈ E0
h. Substituting the above identity together with the definition of the numerical

fluxes given in (18), and using the periodic boundary conditions in x and compact

support in v, we have that

0 =
1

2

d

dt

Z
Ω
f2
h dv dx

+
X

T v∈T v
hv

Z
T v

Z
E0

x

|v · n|
2

[[ fh ]]2 dsx dv +
X

T x∈T x
hx

Z
T x

Z
E0

v

|Eh · n|
2

[[ fh ]]2 dsv dx.

Integration in time of the above equation, from 0 to t concludes the proof.

We close this section stating an elementary approximation result that will be re-

quired in our analysis. Its proof is given in Appendix A.

Lemma 2 Let k ≥ 0 and f and fh be the continuous and approximate solutions to the

Vlasov-Poisson problem. Let ρ and ρh be the continuous and discrete densities defined

in (2) and (23). Then,

‖ρ− ρh‖0,T x
hx
≤ C[meas(Ωv)]1/2‖f − fh‖0,Th

≤ CLd/2‖f − fh‖0,Th
. (21)

Furthermore, if ρ ∈W 3/2,d(Ωx) and f ∈ C1([0, T ];Hk+1(Ω)) we have,

‖ρ− ρh‖−1,∞,T x
hx
≤ Ch3/2‖ρ‖W 3/2,d(Ωx)

+ CLd/2h1−d/2(Chk+1‖f‖k+1,Ω + ‖fh − Ph(f)‖0,Th
). (22)
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3.2 Mixed Finite Element Approximation to the Poisson problem

We next consider the approximation to the discrete Poisson problem, which can be

rewritten as the following first order system:

E = ∇xΦ in Ωx, −divx(E) = ρh − 1 in Ωx, ρh =
X

T v∈T v
hv

Z
T v

fh dv, (23)

with periodic boundary conditions for E and Φ. Notice that in view of Lemma 1 and

by taking Φ ∈ L2
0(Ωx), we guarantee that the above problem is well posed. The weak

formulation of the above problem reads: Find (E, Φ) ∈ H(div;Ωx)× L2
0(Ω) such thatZ

Ωx

E · τ dx =

Z
Ωx

∇xΦ · τ dx = 0 ∀ τ ∈ H(div;Ωx),

−
Z

Ωx

divx(E)q dx =

Z
Ωx

(ρh − 1)q dx ∀ q ∈ L2
0(Ω).

Unlike for the 1D case, where direct integration of the Poisson equation provides a

conforming finite element approximation to the electrostatic potential (see [6]), for

higher dimensions we only consider mixed finite element approximation to the discrete

Poisson problem with either Raviart-Thomas or DG elements. Throughout this sec-

tion, we focus on the detailed description of the methods we consider, stating also the

approximation results that will be needed in our subsequent error analysis. However,

the proofs of all these results are postponed to §A. We next describe each of these

approaches in detail.

3.2.1 Raviart-Thomas mixed finite element approximation

The approximation reads: find (Eh, Φh) ∈ Σr
h ×Qr

h satisfyingZ
Ωx

Eh · τ dx +

Z
Ωx

Φhdivx(τ ) dx = 0 ∀ τ ∈ Σk
h,

−
Z

Ωx

divx(Eh)q dx =

Z
Ωx

(ρh − 1)q dx ∀ q ∈ Qk
h.

(24)

The following lemma provides error estimates in the above norm for the approximate

electrostatic field. Its proof is given in Appendix A.

Lemma 3 Let k ≥ 0 and let (Eh, Φh) ∈ C0([0, T ]; Σk
h×X

k
h) be the RTk approximation

to the Poisson problem (23). Assume Φ ∈ C0([0, T ];Hk+2(Ωx)). Then, the following

estimates hold for all t ∈ [0, T ]:

‖E(t)−Eh(t)‖H(div;Ωx) ≤ Chk+1‖Φ(t)‖k+2,Ωx
+ CLd/2‖f(t)− fh(t)‖0,Th

. (25)

For our error analysis, we also need an estimate for the L∞-error of the electrostatic

field. This is given in next result, whose proof can be found in Appendix A.

Lemma 4 Let k ≥ 0 and let (Eh, Φh) ∈ C0([0, T ]; Σk
h×X

k
h) be the RTk approximation

to the Poisson problem (23). Then, the following estimate hold for all t ∈ [0, T ]:

‖E(t)−Eh(t)‖0,∞,Ωx
≤ C‖E−Rk

h(E)‖1,∞,Ωx
+ C| log(h)|‖ρ− ρh‖−1,∞,Ωx

. (26)
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Remark 1 We could have considered also Brezzi-Douglas-Marini BDM [13,14] or Brezzi-

Douglas-Fortin-Marini BDFM [12] finite elements for the approximation of the Poisson

problem. We wish to stress that all the results shown in this paper for the Raviart-

Thomas -DG method for Vlasov-Poisson remain valid if the RTk approximation for

the Poisson problem is replaced by a BDMk+1 or BDFMk+1 approximation. See also

[15] for further details on the approximation with these elements.

3.2.2 Discontinuous Galerkin approximation

For r ≥ 1 the method reads: find (Eh, Φh) ∈ Ξr
h ×Qr

h such thatZ
T x

Eh · τ dx +

Z
T x

Φhdivx(τ ) dx−
Z

∂T x

cΦhτ · n dsx = 0 ∀ τ ∈ Ξr
h (27)Z

T x

Eh · ∇xq dx−
Z

∂T x

qcEh · n dsx =

Z
T x

(ρh − 1)q dx ∀ q ∈ Qr
h. (28)

On interior edges, the numerical fluxes are defined as( cEh = {Eh} −C12[[Eh ]]− C11[[Φh ]],cΦh = {Φh}+ C12 · [[Φh ]]− C22[[Eh ]],
(29)

and on boundary edges we impose the periodicity for both cEh and cΦh. As for the

case d = 1 , the parameters C11,C12 and C22 could be taken in several ways to try

to achieve different levels of accuracy. However, all superconvergence results for the

Hybridized DG (in d ≥ 2) are for partitions made of simplices (and the proof of these

results rely strongly on that). As for the minimal dissipation MD-DG method (see [21]

for details) one can expect at most, an improvement of half an order in the error

estimate for ‖E − Eh‖0,T x
hx

for d = 2 (for a Poisson problem with dirichlet boundary

conditions). Therefore, throughout this section we will not further distinguish between

the possible choices (since no improvement on the final rate of convergence could be

achieved) and we set r = k+1. One might stick to the classical LDG method for which

C22 = 0 and C11 = ch−1 with c a strictly positive constant. See [5].

Substituting the definition of the numerical fluxes (29) into (27)–(28) and summing

over all elements of T x
hx

we arrive at the mixed problem:(
a(Eh, τ ) + b(τ , Φh) = 0 ∀ τ ∈ Ξr

h,

−b(Eh, q) + c(Φh, q) =
R
Ωx

(ρh − 1)q dx ∀ q ∈ Qr
h,

(30)

where

a(Eh, τ ) =

Z
Ωx

Eh · τ dx,

b(τ , Φh) =

Z
Ωx

Φh∇h
x · τ dx−

Z
E0

x

({Φh}+ C12 · [[Φh ]])[[ τ ]] dsx −
Z
E∂

x

Φhτ · n dsx,

c(Φh, q) =

Z
Ex

C11[[Φh ]] · [[ q ]] dsx.

Note that integration by parts of the volume term in b(τ , Φh) together with (9) gives

b(τ , Φh) = −
Z

Ωx

∇h
xΦh ·τ dx+

Z
E0

x

[[Φh ]] ·({τ}−C12[[ τ ]]) dsx +

Z
E∂

x

Φhτ ·n dsx. (31)
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We define the semi-norm

|(τ , q)|2A := ‖τ‖20,Ih
+ ‖C1/2

11 [[ q ]]‖20,Ex
.

Next result provides the error estimates in the above norm for the approximation

(Eh, Φh):

Lemma 5 Let r ≥ 1 and let (Eh, Φh) ∈ C0([0, T ]; Ξr
h×Q

r
h) be the LDG approximation

to the Poisson problem solution of (27)–(28). Assume (E, Φ) ∈ C0([0, T ];Hr+1(Ωx)×
Hr+2(Ωx)). Then, the following estimates hold for all t ∈ [0, T ]:

|(E(t)−Eh(t), Φ(t)− Φh(t))|A ≤ Chs‖Φ(t)‖r+2,Ωx
+ CLd/2‖f(t)− fh(t)‖0,Th

. (32)

Finally we state a result that gives the L∞-error estimate for the LDG approxim-

ation to (3) that will be required by our analysis. The proof is given in Appendix A.

Lemma 6 Let r ≥ 1 and let (Eh, Φh) ∈ C0([0, T ]; Ξr
h×Q

r
h) be the LDG approximation

to the Poisson problem solution of (27)–(28). Then, the following estimate hold for all

t ∈ [0, T ]:

‖E−Eh‖0,∞ ≤ C| log(h)|r̄
“
‖E− Px(E)‖0,∞,Ωx

+ h−1‖Φ− Px(Φ)‖0,∞,Ωx

”
+ C| log(h)|‖ρ− ρh‖−1,∞,T x

hx
, (33)

where r̄ = 1 if r = 1 and r̄ = 0 for r > 1.

4 Main Results and Error Analysis

In this section, we now carry out the error analysis for the proposed DG approximations

for the Vlasov-Poisson system. We first state and discuss our main results, and, then,

we display the main ideas of our error analysis.

4.1 Main Results

The main result of this section is the following theorem:

Theorem 1 Let Ω = Ωx × Ωv = [0, 1]d × [−L,L]d ⊂ R2d, d = 2, 3. Let k ≥ 1 and

let f ∈ C1([0, T ];Hk+2(Ω) ∩W 1,∞(Ω)) be the compactly supported solution at time

t ∈ [0, T ] of the Vlasov-Poisson problem (1)–(3) and let E ∈ C0([0, T ];Hk+1(Ωx)d ∩
W 1,∞(Ωx)d) with d = 2 or 3 be the associated electrostatic potential. Then,

(a). RTk-DG method if ((Eh, Φh), fh) ∈ C0([0, T ]; (Σk
h × Qk

h)) × C1([0, T ];Zk
h) is

the RTk-DG approximation solution of (19)–(24), the following estimates hold

‖f(t)− fh(t)‖0,Ω ≤ Cah
k+1 ∀ t ∈ [0, T ],

where Ca depends on the final time T , the polynomial degree k, the shape regularity

of the partition and depends also on f through the norms

Ca = Ca(‖f(t)‖k+2,Ω , ‖ft(t)‖k+1,Ω , ‖f‖1,∞,Ω , ‖Φ‖k+2,Ωx
, ‖E‖1,∞,Ωx

).
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(b). DG-DG method let r = k + 1 and let ((Eh, Φh), fh) ∈ C0([0, T ]; Ξr
h × Qr

h) ×
C1([0, T ];Zk

h) be the DG-DG approximation solution of (19)–(27)-(28). If Φ ∈
C0([0, T ];Hk+3(Ωx), then

‖f(t)− fh(t)‖0,Ω ≤ Cbh
k+1 ∀ t ∈ [0, T ],

where Cb depends on the final time T , the polynomial degree k, the shape regularity

of the partition and depends also on f (and therefore on f0) through the norms

Cb = Cb(‖f(t)‖k+2,Ω , ‖ft(t)‖k+1,Ω , ‖f‖1,∞,Ω , ‖Φ‖k+2,Ωx
,

‖E‖1,∞,Ωx
, ‖Φ‖2,∞,Ωx

).

We now briefly discuss the above result.

– Unlike what usually happens with the analysis of nonlinear problems, the error

estimates given in Theorem 1 are not asymptotic; i.e., they can be guaranteed for

any h < 1. The above theorem is shown without using any a priori assumption

made on the discrete solution (Eh, fh) (as it usually happens in the error analysis

of non-linear problems). We cope with the nonlinearity by proving an L∞-bound

of the approximate electrostatic field and using the assumed regularity of E.

– The optimal rate of convergence for the full DG approximation, requires to approx-

imate the Poisson problem using polynomials one degree higher than the ones used

for approximating the distribution function. We also note that DG-LDG requires

further regularity for the continuous electrostatic field than RTk-DG.

– The available existence results for the Vlasov-Poisson system with periodic bound-

ary conditions [9] show the existence of classical solutions, i.e., solutions in Cm(Ω)

spaces for all t ≥ 0, for initial data in Cm(Ω). Note that Cm-regularity of solutions

together with the compact support in velocity imply the regularity assumptions on

f and Φ.

As a direct consequence of the previous theorem, we have the following result:

Corollary 1 In the same hypothesis of Theorem 1, let k ≥ 1. Then:

(a). RTk-DG method if ((Eh, Φh), fh) ∈ C0([0, T ]; (Σk
h × Qk

h)) × C1([0, T ];Zk
h) is

the RTk-DG approximation solution of (19)–(24), the following estimates hold

‖E(t)−Eh(t)‖H(div;Ωx) ≤ Chk+1‖Φ(t)‖k+2,Ωx
+ Cah

k+1 ∀ t ∈ [0, T ],

where Ca is the constant in Theorem 1.

(b). DG-DG method let r = k + 1 and let ((Eh, Φh), fh) ∈ C0([0, T ]; Ξr
h × Qr

h) ×
C1([0, T ];Zk

h) be the DG-DG approximation solution of (19)–(27)–(28). If Φ ∈
C0([0, T ];Hk+3(Ωx), then

|(E(t)−Eh(t), Φ(t)−Φh(t))|A ≤ Chk+1‖Φ(t)‖k+2,Ωx
+ Cbh

k+1 ∀ t∈ [0, T ],

where Cb is the same constant as in Theorem 1.

The proof of the above corollary follows straightforwardly by substituting the error

estimates for the distribution function given in Theorem 1 into the approximation

results of Lemmas 3 and 5, stated in §3.

The rest of the section is devoted to prove Theorem 1. We start by deriving the

error equation and introducing some special projection operators that will be used in

our analysis. We then show some auxiliary lemmas and finally, at the very end of the

section, we give the proof of the theorem.
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4.2 Error Equation and Special Projection Operators

Notice that the solution (E, f) to (1)–(3) satisfies the variational formulation:

0 =
X

R∈Th

Z
R

∂f

∂t
ϕh dv dx−

Z
R
fv · ∇xϕh dv dx +

Z
R
fE · ∇vϕh dv dx

+
X

T v∈T v
hv

Z
T v

Z
Ex

{vf}·[[ϕh ]] dsx dv−
X

T x∈T x
hx

Z
T x

Z
Ev

{Ef}·[[ϕh ]] dsv dx ∀ϕh ∈ Zk
h

where we have allowed for a discontinuous test function. Then substracting (19) from

above equation we have,

a(f − fh, ϕh) +N (E; f, ϕh)−Nh(Eh; fh, ϕh) = 0 ∀ϕh ∈ Zh, (34)

where a(·, ·) gathers the linear terms

a(fh, ϕh)=

Z
Ω

(fh)tϕh dx dv−
Z

Ω
fhv·∇h

xϕh dx dv+
X

T v∈T v
hv

Z
T v

Z
Ex

{vfh}α[[ϕ ]] dsx dv

and Nh(Eh; ·, ·) (resp. N (E; ·, ·)) carries the nonlinear part;

Nh(Eh; fh, ϕh) =

Z
Ω
fhEh · ∇h

vϕh dv dx−
X

T x∈T x
hx

Z
T x

Z
Ev

{Ehfh}β [[ϕh ]] dsv dx

N (E; f, ϕh) =

Z
Ω
fE · ∇h

vϕh dv dx−
X

T x∈T x
hx

Z
T x

Z
Ev

{Ef}[[ϕh ]] dsv dx.

We next introduce some special projection operators that will play a crucial role in our

error analysis. These projections extend those considered in [6] to the multidimensional

case. (See Remark 2 for further comments on the motivation and origin of the projec-

tions.) Their definition is based on the use of the one-dimensional projection operators

used in [39], that we recall next. Assume Ih = {Ii}i is FE partition of the unit interval

and let denote by Sk
h the discontinuous finite element space of degree k associated to

that partition. Let π± : H1/2+ε(I) −→ Sk
h be the projection operators defined by:Z

Ii

“
π±(w)− w

”
qh dx = 0, ∀ qh ∈ Pk−1

h (Ii), ∀ i, (35)

together with the matching conditions;

π+(w(x+
i−1/2)) = w(x+

i−1/2); π−(w(x−i+1/2)) = w(x−i+1/2). (36)

Notice that more regularity than L2(I) is required for defining these projections. The

following error estimates can be easily shown for all these projections:

‖w − π±(w)‖0,Ii
≤ Chk+1|w|k+1,Ii

∀w ∈ Hk+1(Ii),

where C is a constant depending only on the shape-regularity of the mesh and the

polynomial degree [20,39].
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We denote by Πh : C0(Ω) −→ Zk
h the projection operator defined as follows: Let

R = Tx×T v be an arbitrary element of Th and let w ∈ C0(R). The restriction of Πh(w)

to R is defined by:

Πh(w) =

(
( eΠx ⊗ eΠv)(w) if sign(E · n) = constant

( eΠx ⊗ ePv)(w) if sign(E · n) 6= constant,
(37)

where eΠx : C0(Ωx) −→ Xk
h and eΠv : C0(Ωv) −→ V k

h are the projection operators:

eΠx(w) =

8<:Π−
x (w) if v · n−|∂T x

> 0,

Π+
x (w) if v · n−|∂T x

< 0,
eΠv(w) =

8<:Π+
v (w) if E · n−|∂T v

> 0,

Π−
v (w) if E · n−|∂T v

< 0,

(38)

and Π±
s with s = x or v are defined as the tensor product of the one-dimensional

projections π± given in (35)–(36):

Π±
s = π±s,1×π

±
s,2 for d = 2, Π±

s = π±s,1×π
±
s,2⊗π

±
s,3 for d = 3, s = x or v.

(39)

In the above definition, the subscript i in π±x,i and π±v,i refers to the fact that projection

is along the i-th direction (component) in the x and v “spaces”, respectively.

To complete the definition of the projection Πh we need to provide the definition ofePv : L2(Ωv) −→ V k
h , which accounts for the cases where E · n−|∂T v

changes sign across

any single (2d − 1)-element e ⊂ Tx × ∂T v. From the structure of the partition such

condition amounts to have at least one of the components of E vanishing within the

element R (and so in Tx). For simplicity, we give the detailed definition in the case d = 2

(the case d = 3 is similar but taking into account more cases). Let E = [E1, E2]
t, then

ePv(w) =

8><>:
[Pv,1 ⊗ π̃v,2](w) if sign(E1) 6= constant & sign(E2) = constant

[π̃v,1 ⊗ Pv,2](w) if sign(E1) = constant & sign(E2) 6= constant

[Pv,1 ⊗ Pv,2](w) if sign(E1) 6= constant & sign(E2) 6= constant.

(40)

Here, Pv,i, i = 1, 2 stands for the standard one-dimensional projection along the vi dir-

ection. With a small abuse in the notation we have denoted by π̃v,j = π±v,j , j = 1, 2

where the + and − signs refer to whether E · n = ±Ej is positive or negative. Note

that this is consistent with the definition of eΠv given in (38).

Observe that conditions (37)–(38)–(39)–(40) together with (35)–(36), define the

projection Πh(w) uniquely for any given w ∈ C0(Ω). This projection, Πh, is nothing

but the extension to higher dimension 2d, d = 2, 3 of the projection used in [6]. See

Remarks 3 and 2 for further comments.

Remark 2 The definition of Πh is inspired in those introduced in the two dimensional

case, for a linear transport equation in [33] and for a Poisson problem in [21]. In fact,

in [33], the authors display the error analysis by using an “(interpolation) operator”

that in each element (a rectangle or square), reproduces the value of the interpolated

function at the Gauss-Radau nodes. To the best of our knowledge, this idea was first

coded in terms of projection operators in [21]. Notice that the property of collocation

at one boundary end of π± given in (36) is just reflecting the fact that of using Gauss-

Radau nodes for the interpolation operator. This is indeed the essential feature required

in the proof of Lemma 12 (given in Appendix B), which allows for proving optimal

approximation properties for K1 and K2 (defined in (45)–(46)–(47)), and in turn will

allow for achieving optimal rate of convergence.



16

Next lemma, although elementary, provides the basic approximation properties we

need in our analysis.

Lemma 7 Let w ∈ Hs+2(R), s ≥ 0 and let Πh be the projection operator defined

through (37)–(38). Then,

‖w −Πh(w)‖0,R ≤ Chmin (s+2,k+1)‖w‖s+1,R,

‖w −Πh(w)‖0,e ≤ Chmin (s+ 3
2 ,k+ 1

2 )‖w‖s+1,R, ∀ e ⊂ ∂Tx × T v, e ⊂ Tx × ∂T v.
(41)

Proof From the definition (37) we distinguish two cases. If R = Tx × T v is an element

where E(x) · n does not change sign inside e ⊂ Tx × ∂T v, the proof is the same as

[18, Lemma 3.2]. If on the contrary, Tx is such that ∃x∗ ∈ Tx for which E(x∗) ·n = 0

at Tx × ∂T v, we have Πh(w) = eΠx ⊗ ePv(w). But still, since Πh is a polynomial

preserving and linear operator, estimates (41) follow also in this case from Bramble-

Hilbert lemma, trace Theorem and standard scaling arguments. Details are omitted

for the sake of conciseness.

Summing estimates (41) from Lemma 7, over elements of the partition Th, we have

‖w −Πh(w)‖0,Th
+ h−1/2‖w −Πh(w)‖0,Ex×T v

hv
+ h−1/2‖w −Πh(w)‖0,T x

hx
×Ev

≤ Chk+1‖w‖k+1,Ω . (42)

Next, we write

f − fh = [Πh(f)− fh]− [Πh(f)− f ] = ωh − ωe. (43)

Taking now as test function ϕh = ωh ∈ Zk
h , the error equation (34) becomes

a(ωh − ωe, ωh) +N (E; f, ωh)−Nh(Eh; fh, ω
h) = 0. (44)

Finally, we define

K1(v, f, ωh) =
X
R∈Th

K1
R(v, f, ωh), K2(Eh, f, ω

h) =
X
R∈Th

K2
R(Eh, f, ω

h) (45)

where

K1
R(v, f, ωh) =

Z
R
ωev · ∇xω

h dx dv −
Z

T v

Z
∂T x

̂(v · nωe)ωh dv dsx, (46)

K2
R(Eh, f, ω

h) =

Z
R
ωeEh · ∇vω

h dx dv −
Z

T x

Z
∂T v

̂(Eh · nωe)ωh dx dsv. (47)

The next two lemmas provide some estimates for the two expressions defined in (45).

The proof of these two results are the extension to the higher dimensional case of [6,

Lemma 4.5] and [6, Lemma 4.6], respectively. Their proofs are given in Appendix B.

Lemma 8 Let Th = T x
hx

× T v
hv

be the tensor product of two cartesian meshes T x
hx

and T v
hv

of Ωx and Ωv, respectively. Let k ≥ 1 and let f ∈ C0([0, T ];W 1,∞(Ω) ×
Hk+2(Ω)) be the distribution function solution of (1)–(3). Let fh ∈ Zk

h be its approx-

imation satisfying (16) and let K1 be defined as in (45)–(46). Assume that the partition

Th is constructed so that none of the components of v vanish inside any element. Then,

the following estimate hold

|K1(v, f, ωh)| ≤ Chk+1(‖f‖k+1,Ω + CL‖f‖k+2,Ω)‖ωh‖0,Th
. (48)
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Lemma 9 Let Th be a cartesian mesh of Ω, k ≥ 1 and let (Eh, fh) ∈ eΣh × Zk
h

be the solution to (19) with either eΣh = Σr
h or eΣh = Ξr

h, r ≥ 1. Let (E, f) ∈
C0([0, T ];W 1,∞(Ω)×Hk+2(Ω)) and let K2 be defined as in (45)–(47). Then, the fol-

lowing estimate holds

|K2(Eh, f, ω
h)| ≤ Chk‖E−Eh‖0,∞,T x

hx
‖f‖k+1,Ω‖ωh‖0,Th

+ Chk+1(‖f‖k+2,Ω‖E‖0,∞,Ωx
+ ‖f‖k+1,Ω |E|1,∞,Ωx

)‖ωh‖0,Th
.

(49)

Remark 3 We wish to note that, as it happens for d = 1 [6], the definition (37) of Πh

is done in terms of E (and v), while the definition of the numerical fluxes is done in

terms of Eh (and v). This is due to the non-linearity of the problem and it is inspired

in the ideas used in [40]. By defining Πh in terms of E rather than Eh and using the

regularity of the solution, one can estimate optimally the expression K2 without any

further assumption on the mesh partition Th.

4.3 Auxiliary Results

We next give two auxiliary results that will be required for our subsequent analysis.

Lemma 10 Let f ∈ C0(Ω) and let fh ∈ Zk
h with k ≥ 0. Then, the following equality

holds true,

a(f − fh, ω
h) =

X
R∈Th

Z
R

(ωh
t − ωe

t )ωh dx dv

+
X

T v∈T v
hv

Z
T v

Z
Ex

|v · n|
2

[[ωh ]]2 dsx dv +K1(v, f, ωh).

Proof Noting that

a(f − fh, ω
h) = a(ωh, ωh)− a(ωe, ωh).

The first term is readily estimated arguing as in the proof of Proposition 1

a(ωh, ωh) =
X
R∈Th

Z
R
ωh

t ω
h dx dv +

X
T v∈T v

hv

Z
T v

Z
E0

x

|v · n|
2

[[ωh ]]2dsxdv.

For the second term, using the continuity of f and the consistency of the numerical

fluxes (17) and recalling the definition (45), we easily get

a(ωe, ωh) =
X
R∈Th

Z
R
ωe

tω
h dx dv −

Z
Ω
ωev · ∇h

xω
h dx dv

+
X

T v∈T v
hv

Z
T v

Z
Ex

{vωe}α · [[ωh ]] dsx dv

=
X
R∈Th

Z
R
ωe

tω
h dx dv −K1(v, f, ωh),

which concludes the proof.
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The other auxiliary lemma deals with the error coming from the nonlinear term:

Lemma 11 Let E ∈ C0(Ωx), f ∈ C0(Ω) and fh ∈ Zk
h with k ≥ 0. Then, the following

identity holds true,

N (E; f ;ωh)−Nh(Eh; fh, ω
h) =

X
T x∈T x

hx

Z
T x

Z
E0

v

|Eh · n|
2

[[ωh ]]2 dsv dx

−
Z

Ω
[E−Eh] · ∇h

vf ω
h dv dx−K2(Eh, f, ω

h).

Proof Subtracting the discrete and continuous nonlinear terms, using the continuity of

E and f , the consistency of the numerical flux Êhfh together with (9), we find

N (E; f ;ωh)−Nh(Eh; fh, ω
h) =

Z
Ω

[fE− fhEh] · ∇h
vω

h dv dx

−
X

T x∈T x
hx

Z
T x

Z
Ev

{Ef −Ehfh}β · [[ωh ]] dsv dx = T1 + T2 + T3, (50)

where in the last step we have decomposed the integrand of the volume part as

Ef −Ehfh = (E−Eh)f + Eh(f − fh), (51)

so that,

T1 =

Z
Ω
f [E−Eh] · ∇h

vω
h dv dx,

T2 =

Z
Ω

[f − fh]Eh · ∇h
vω

h dv dx,

T3 =
X

T x∈T x
hx

Z
T x

Z
E0

v

{Ehfh −Ef}β · [[ωh ]] dsv dx.

Integrating by parts T1 and using the continuity of f together with (9) and the fact

that neither E nor Eh depend on v, we have

T1 = −
Z

Ω
[E−Eh]·∇h

vfω
h dv dx+

X
T x∈T x

hx

Z
T x

Z
Ev

{E−Eh}·[[ωh ]]f dsv dx = T1a+T1b.

(52)

We next deal with T2. From the splitting (43), direct integration and (9), we get

T2 =
1

2

Z
Ω

Eh · ∇h
v (ωh)2 dv dx−

Z
Ω
ωeEh · ∇h

vω
h dv dx

=
1

2

X
T x∈T x

hx

Z
T x

Z
Ev

{Eh} · [[ (ωh)2 ]] dsv dx−
Z

Ω
ωeEh · ∇h

vω
h dv dx = T2a + T2b.

(53)

We finally deal with the boundary terms collected in T3. Reasoning as in (51) and

using the continuity of f together with the consistency of the numerical flux Êhfh, we

find

T3 =
X

T x∈T x
hx

Z
T x

Z
Ev

h
{(Eh −E)f} · [[ωh ]]−{Ehω

h}β · [[ωh ]]+{Ehω
e}β · [[ωh ]]

i
dsv dx

= T3a + T3b + T3c.
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The first term above, T3a, cancels with T1b in (52). Arguing as in Proposition 1, the

sum of the second term above T3b and T2a (53) gives

T3b + T2a =
X

T x∈T x
hx

Z
T x

Z
Ev

|Eh · n|
2

[[ωh ]]2 dsv dx.

Finally, recalling the definition (46) we have

T2b + T3c = −K2(Eh, f, ω
h),

and so substituting in (50) the above results together with T1a the proof is completed.

We have now all ingredients to carry out the proof of Theorem 1.

4.4 Proof of Theorem 1

Proof Substituting in the error equation (44) the expressions from Lemmas 10 and 11

and using standard triangle inequality, we find

d

dt
‖ωh‖20,Th

+
1

2
‖|v · n|1/2[[ωh ]]‖2Ex×T v

hv
+

1

2
‖|Eh · n|1/2[[ωh ]]‖2T x

hx
×Ev

=
X
R∈Th

Z
R
ωe

tω
h dx dv+

Z
Ω

[E−Eh] · ∇vfω
h dv dx−K1(v, f, ωh) +K2(Eh, f, ω

h)

= I1 + I2 −K1 +K2 ≤ |I1|+ |I2|+ |K1|+ |K2|.
(54)

The first and third term are independent of the approximation to the electrostatic field

Eh and therefore are estimated in the same way for both cases (a) and (b).

For the first term, Cauchy-Schwarz and the arithmetic-geometric inequality to-

gether with the approximation estimate (42) give

|I1| ≤ Ch2k+2‖ft‖2k+1,Ω + C‖ωh‖20,Th
. (55)

Third term is estimated by means of estimate (48) from Lemma 8 and the arithmetic-

geometric inequality,

|K1| ≤ Ch2k+2(‖f‖k+1,Ω + CL‖f‖k+2,Ω)2 + C‖ωh‖20,Th
. (56)

Next we estimate the second and fourth terms in (54), which depend on the approx-

imation to the electrostatic field. We first deal with the RTk-DG method (case (a)).

Hölder inequality, the arithmetic-geometric inequality and estimate (25) from Lemma

3 together with the approximation estimate (42), give for the second term

|I2| ≤ C‖E−Eh‖20,Ωx
‖∇vf‖0,∞,Ω + C‖∇vf‖0,∞,Ω‖ωh‖20,Th

≤ Ch2k+2‖f‖1,∞,Ω

h
(‖E(t)‖k+1,Ωx

+ ‖Φ‖k+2,Ωx
)2 + C‖f‖2k+1,Ω

i
+ 2C‖f‖1,∞,Ω‖ωh‖20,Th

.

(57)

To deal with the last term, we observe that the bound (49) in Lemma 9

|K2| ≤ Chk‖E−Eh‖0,∞,T x
hx
‖f‖k+1,Ω‖ωh‖0,Th

+Chk+1‖f‖k+2,Ω‖E‖1,∞,Ωx
‖ωh‖0,Th

,

(58)
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requires an L∞-bound on the error E−Eh. This is obtained by combining estimate (26)

from Lemma 4 with the bound (22) from Lemma 2 and the approximation property

(15) for p = ∞,

‖E−Eh‖0,∞,Ωx
≤ Ch‖E‖1,∞,Ωx

+ Ch3/2| log(h)|‖ρ‖W 3/2,d(Ωx)

+ CLd/2h1−d/2| log(h)|(Chk+1‖f‖k+1,Ω + ‖fh − Ph(f)‖0,Th
).

(59)

Notice now that since Ph is polynomial preserving, Ph[ eΠ(f)] = eΠ(f) and so using also

that it is stable in L2, we have

‖fh − Ph(f)‖0,Th
≤ ‖fh − eΠ(f)‖0,Th

+ ‖ eΠ(f)− Ph(f)‖0,Th

≤ ‖fh − eΠ(f)‖0,Th
+ C‖ eΠ(f)− f‖0,Th

.
(60)

Substituting the above estimate into (59) and using the approximation prop-

erty (42), we find

‖E−Eh‖0,∞,Ωx
≤ Ch|E|1,∞,Ωx

+ Ch3/2| log(h)| ‖ρ‖W 3/2,d(Ωx)

+ Chk+2−d/2| log(h)|‖f‖k+1,Ω + Ch1−d/2| log(h)|‖ωh‖0,Th
).

Plugging now the above result in estimate (58) and using the arithmetic-geometric

inequality we finally get for the last term in (54),

|K2|≤ Chk+1
“
‖f‖k+2,Ω‖E‖1,∞,Ωx

+‖f‖k+1,Ω

h
|E|1,∞,Ωx

+ Ch1/2| log(h)| ‖ρ‖W 3/2,d(Ωx)

i”
‖ωh‖0,Th

+Ch2k+2−d/2| log(h)|‖f‖2k+1,Ω‖ω
h‖0,Th

+Chk+1−d/2| log(h)|‖f‖k+1,Ω‖ωh‖20,Th

≤ Ch2k+2‖f‖2k+2,Ω‖E‖
2
1,∞,Ωx

+ Ch4k+4−d| log(h)|2‖f‖4k+1,Ω

+C‖ωh‖20,Th
+(Ch|log(h)|2‖ρ‖W 3/2,d(Ωx)+Ch

k+1−d/2|log(h)|‖f‖k+1,Ω)‖ωh‖20,Th
.

Observe that since k ≥ 1 the coefficient of the term ‖ωh‖20,Th
is uniformly bounded for

all h < 1; i.e., ∃ a constant c1 > 0 independent of h such that

C‖ωh‖20,Th
+ (Ch| log(h)|2‖ρ‖W 3/2,d(Ωx)

+ Chk+1−d/2| log(h)|‖f‖k+1,Ω)‖ωh‖20,Th
≤ c1‖ωh‖20,Th

.

Hence,

|K2| ≤ Ch2k+2
“
‖f‖2k+2,Ω‖E‖

2
1,∞,Ωx

+ Ld/2‖f‖2k+1,Ω

”
+ c1‖ωh‖20,Th

,

where we have already discarded the higher order terms. Now, substituting into (54)

the above estimate together with (55), (57) and (56), we obtain

d

dt
‖ωh‖20,Th

+
1

2
‖|v · n−|1/2[[ωh ]]‖2E0

x×T v
hv

+
1

2
‖|Eh · n−|1/2[[ωh ]]‖2T x

hx
×E0

v

≤ Ch2k+2
h
‖f‖2k+2,Ω(‖E‖21,∞ + CLd/2) + ‖ft‖2k+1,Ω

+ ‖f‖1,∞,Ω(‖E(t)‖k+1,Ωx
+ ‖Φ‖k+2,Ωx

)2
i

+ (c1 + 2C‖f‖1,∞,Ω + C)‖ωh‖20,Th
.
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Integrating in time the above inequality together with a standard application of Gron-

wall’s inequality ([32]) gives the error estimate,

‖ωh(t)‖20,Th
≤ C2

ah
2k+2,

where Ca is now independent of h and fh and depends on t and on the solution (E, f)

through its norm. This proves part (a) of the theorem.

To prove part (b) of the theorem, we only need to modify slightly the estimates

for I2 and K2 which involve the approximation of the electrostatic field. The term I2
is estimated similarly but using (32) from Lemma 5 (with r = k + 1) to estimate the

error ‖E−Eh‖0,T x
hx

. Thus,

|I2| ≤ Ch2k+2‖f‖1,∞,Ω

h
‖|(E(t), Φ)‖|2k+2,Ωx

+ C‖f‖2k+1,Ω

i
+ 2C‖f‖1,∞,Ω‖ωh‖20,Th

.

To estimate K2, we only need to modify the estimate for ‖E − Eh‖0,∞,Ωx
used to

bound K2 given in (58). Using now (33) from Lemma 6 (with r = k+ 1) together with

estimate (22) from Lemma 2 and the approximation properties (12), we get

‖E−Eh‖0,∞ ≤ C
“
‖E− Px(E)‖0,∞,Ωx

+ h−1‖Φ− Px(Φ)‖0,∞,Ωx

”
+ Ch3/2| log(h)|‖ρ‖W 3/2,d(Ωx)

+ Ch1−d/2| log(h)|(C‖f − Ph(f)‖0,Th
+ ‖fh − Ph(f)‖0,Th

),

and so making use of (60) and the approximation properties (12), we get

‖E−Eh‖0,∞,T x
hx
≤ Ch(‖E‖1,∞,Ωx

+ ‖Φ‖2,∞,Ωx
) + Ch3/2| log(h)|‖ρ‖W 3/2,d(Ωx)

+ Ch1−d/2| log(h)|(Chk+1‖f‖k+1,Ω + ‖ωh‖0,Th
),

which except for the norm in the first term is the same bound we had for the RTk ap-

proximation in case (a). Hence, the proof of part (b) can be completed proceeding

exactly as before and therefore the details are omitted.

5 Energy Conservation

We now discuss how well the proposed schemes for approximating the Vlasov-Poisson

system preserve the total energy. We show, following [6] that by appropriately tuning

the coefficients of the LDG approximation of the Poisson problem, the total discrete

energy is indeed conserved for the resulting LDG-DG method for the Vlasov-Poisson

system. As a matter of fact, we can show such result under a technical restriction on

the polynomial degree, namely k ≥ 2.

We wish to observe that the resulting method requires the solution of 2d (instead of

one) d-dimensional Poisson problems. Although this might be considered as a drawback

of the method, it should be noted that the solution of the Poisson problem is the low

dimensional part (and so less computational expensive) of the whole computation.

This is given in next result.
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Proposition 2 (Energy conservation) Let r = k ≥ 2 and let ((Eh, Φ), fh) ∈
C1([0, T ]; (Ξk

h × Xk
h) × Zk

h) be the LDG(v)-DG approximation of the Vlasov-Poisson

problem (1)–(3), solution of (19)–(30), with the numerical fluxes (17) for the approx-

imate density. Let the numerical fluxes for the LDG approximation to (30) be given

by: (
( cEh) = {Eh}+

sign(v·n)
2 [[Eh ]]n− C11[[Φh ]],

(cΦh) = {Φh} −
sign(v·n)

2 [[Φh ]] · n,
(61)

where C11 > 0 at all edges/faces. Then, the following identity holds true

1

2

d

dt

0@ X
R∈Th

Z
R
fh(t)|v|2 dx dv + ‖Eh(t)‖20,T x

hx
+

‚‚‚C1/2
11 [[Φh(t) ]]

‚‚‚2

0,Ex

1A = 0. (62)

Proof The proof is very similar to that given in [6, Section 5] for the case d = 1. We

however give it here for the sake of completeness.

First step:

In this first step, since f ∈ Zk
h is a scalar function, we set τ = vf ∈ Ξk

h in (27)

and we integrate over all the elements of the partition T v
hvZ

Ωv

Z
T x

E · vf dx dv +

Z
Ωv

Z
T x

Φdivx(vf) dx dv −
Z

Ωv

Z
∂T x

bΦfv · n dsx dv = 0,

and integrating by parts again and summing over all elements in T x
hx

, we getZ
Ω

v · ∇h
x(Φ)f dx dv =

X
R∈Th

Z
R

E · vf dx dv

+
X

T x∈T x
hx

Z
Ωv

Z
∂T x

Φfv · n dsx dv

−
X

T x∈T x
hx

Z
Ωv

Z
∂T x

bΦfv · n dsx dv.
(63)

Next, we set ϕh = Φ ∈ Xk
h ⊂ Zk

h in (19) (Φ as a polynomial in Zk
h is constant in v)

0 =
X
R∈Th

Z
R

∂f

∂t
Φ dv dx−

Z
Ω
fv · ∇h

xΦdv dx +

Z
Ω
fE · ∇h

vΦdv dx

+
X

T v∈T v
hv

Z
T v

Z
Ex

{vf}α · [[Φ ]] dsx dv −
X

T x∈T x
hx

Z
T x

Z
Ev

{Ef}β · [[Φ ]] dsv dx.

Observe that the third and the last terms vanish; since (Φ) does not depend on v, not

only ∇h
vΦ = 0 but also [[Φ ]] = 0 (Φ is constant on v), and the terms from the boundary

of Ωv cancel due to the compact boundary conditions. Hence,

0 =
X
R∈Th

Z
R

∂f

∂t
Φ dv dx−

Z
Ω
fv · ∇h

xΦdv dx +
X

T v∈T v
hv

Z
T v

Z
Ex

{vf}α · [[Φ ]] dsx dv.
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Then, combing the result with (63) and using the periodic boundary conditions in x,

we haveX
R∈Th

Z
R

∂f

∂t
Φ dv dx =

X
R∈Th

Z
R

E · vf dx dv +

Z
T v

Z
E0

x

{Φ}[[vf ]] dsx dv

+
X

T v∈T v
hv

Z
T v

Z
Ex

h
[[Φ ]]{vf} − {vf}α · [[Φ ]]− bΦ[[vf ]]

i
dsx dv.

(64)

Second step:

Now, we differentiate with respect to time the first order system (23) and consider

its DG approximation. The second equation (28) reads,Z
T x

Et∇xq dx−
Z

∂T x

cEtq · n dsx =

Z
T x

ρt q dx ∀ q ∈ V r
h ,

where the definition for cEt corresponds to that chosen for bE but with (E,Φ) replaced

by (Et, Φt). By setting p = Φ in the above equation and replacing ρt by its definition,

we have Z
T x

Et∇xΦdx−
Z

∂T x

cEtΦ · n dsx =
X

T v∈T v
hv

Z
T x

Z
T v

ft Φdv dx. (65)

Now, taking z = Et in (27) and integrating by parts the volume term on the right

hand side of that equation, we findZ
T x

E ·Et dx−
Z

T x

∇x(Φ)Et dx +

Z
∂T x

ΦEt · n dsx −
Z

∂T x

bΦEt · n dsx = 0.

Then, combining (65) with the above equation and summing over all elements of T x
hx

and using (9) together with the periodicity of the boundary conditions for the Poisson

problem, we getZ
Ωx

E ·Et dx =

Z
Ω
ft Φdv dx

+

Z
Ex

“cEt[[Φ ]] + bΦ[[Et ]]− [[Φ ]]{Et}
”
dsx −

Z
Eo

x

{Φ}[[Et ]] dsx.

(66)

Third step:

We now proceed as in the proof for the continuous case and we take ϕ =
|v|2
2

in (19),

0 =
X
R∈Th

Z
R

∂f

∂t

|v|2

2
dv dx−

Z
Ω
fv · ∇h

x

„
|v|2

2

«
dv dx +

Z
Ω
fE · ∇h

v

„
|v|2

2

«
dv dx

+
1

2

X
T v∈T v

hv

Z
T v

Z
Ex

{vf}α · [[ |v|2 ]] dsx dv−
1

2

X
T v∈T v

hv

Z
T x

Z
Ev

{Ehf}β · [[
|v|2

2
]] dsv dx.
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The second and fourth terms vanish since v is independent of x and last term. Then,

using the consistency of the numerical fluxes ̂(v · nf) and Ê · nf (see (18)), the bound-

ary terms telescope and no boundary term is left due to the periodic and compact

boundary conditions. Hence, we simply get

0 =
X
R∈Th

Z
R

∂f

∂t

|v|2

2
dv dx +

Z
Ω

E · vf dv dx. (67)

Next, we use equation (64) to substitute the last term in (67),

0 =
X
R∈Th

Z
R

∂f

∂t

|v|2

2
dv dx +

X
R∈Th

Z
R

∂f

∂t
Φ dv dx−

X
T v∈T v

hv

Z
T v

Z
Eo

x

{Φ}[[vf ]] dsx dv

+
X

T v∈T v
hv

Z
T v

Z
Ex

h
{vf}α · [[Φ ]] + bΦ[[vf ]]− [[Φ ]]{vf}

i
dsx dv.

Finally, we substitute the second volume term above by means of (66),

0 =
X
R∈Th

Z
R

∂f

∂t

|v|2

2
dv dx +

Z
Ωx

E ·Et dx−
X

T v∈T v
hv

Z
T v

Z
Eo

x

[[Φ ]]{vf} dsx dv

+
X

T v∈T v
hv

Z
T v

Z
Ex

h
{vf}α · [[Φ ]] + bΦ[[vf ]]− {Φ}[[vf ]]

i
dsx dv

+

Z
Ex

“
[[Φ ]]{Et} − cEt[[Φ ]]− bΦ[[Et ]]

”
dsx +

Z
Eo

x

{Φ}[[Et ]] dsx.

(68)

Then, for each e ∈ Ex, we define

ΘH
e =

(
[[Φ ]]{Et} − cEt[[Φ ]]− bΦ[[Et ]] + {Φ}[[Et ]] on e ∈ Eo

x

[[Φ ]]{Et} − cEt[[Φ ]]− bΦ[[Et ]] on e ∈ E∂
x

ΘF
e =

(
{vf}α · [[Φ ]] + bΦ[[vf ]]− {Φ}[[vf ]]− [[Φ ]]{vf} on e ∈ Eo

x

{vf}α · [[Φ ]] + bΦ[[vf ]]− [[Φ ]]{vf} on e ∈ E∂
x

so that (68) can be rewritten as

1

2

∂

∂t

0@ X
R∈Th

Z
R
f |v|2 dv dx +

Z
Ωx

|E|2 dx

1A +
X

T v∈T v
hv

X
e∈Ex

Z
T v

Z
e
ΘF

e dsx dv

+
X
e∈Ex

Z
e
ΘH

e dsx = 0.

(69)

Thus, we only need to show that ΘH
e and ΘF

e are either zero or the time derivative of

a non-negative function for all e ∈ Ex.

Next, for e ∈ E0
x, using the definition of the numerical fluxes (61) for the LDG ap-

proximation together with the fact that (E, Φ) is C1 in time, we find

ΘH
e = [[Φ ]]{Et} − cEt[[Φ ]]− bΦ[[Et ]] + {Φ}[[Et ]] = c11[[Φt ]] · [[Φ ]] =

1

2

∂

∂t

“
c11|[[Φ ]]|2

”
∀ e ∈ E0

x.
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Similarly, for e ∈ E∂
x taking into account the definition at boundary edges/faces, we

have ΘH
e = c11[[Φt ]] · [[Φ ]] on e ∈ E∂

x . Hence, arguing as before and putting together

the result with the above identity we arrive at

ΘH
e = c11[[Φt ]] · [[Φ ]] =

1

2

∂

∂t

“
c11|[[Φ ]]|2

”
∀ e ∈ Ex. (70)

We next deal with ΘF
e . Notice that for e ∈ E∂

x it is easy to see, using the definition of

the numerical fluxes cvf and bΦ at ∂Ωx, that ΘF
e ≡ 0 for all e ∈ E∂

x .

Now, for e ∈ Eo
x, from the definition of the numerical fluxes cvf and bΦ given in (18)

and (61), respectively we find for ΘF
e ,

ΘF
e = {vf}α · [[Φ ]] + bΦ[[vf ]]− {Φ}[[vf ]]− [[Φ ]] · {vf}

=
|v · n|

2
[[ f ]] · [[Φ ]]−C12 · [[Φ ]][[vf ]]

=
|v · n|

2
[[ f ]] · [[Φ ]]− sign(v · n)

2
n · [[Φ ]]v · [[ f ]]

=
1

2
[[ f ]] · [[Φ ]] (|v · n| − |v · n|) = 0 e ∈ E0

x,

and so substituting the above result together with (70) into (69) we reach (62).

For other DG-DG schemes, inequalities similar to those given in [7,6] can be proved.

A Error Analysis for the approximation of the electrostatic field

This appendix is devoted to show the results stated in §3 related to the approximation of the
Electrostatic field. We start by showing the auxiliary result, Lemma 2, which bounds the error
in the density in terms of the error in the distribution function. Then we prove the energy
norm estimates for the RTk and LDG approximation, given in Lemmas 3 and 5, respectively.
The L∞-bounds for both methods are given at the end of the appendix.

A.1 Proof of Lemma 2

The proof of estimate (21) follows straightforwardly from the definitions (2) and (20) of ρ and
ρh, respectively, and Hölder inequality.

To show (22), we first prove that

‖ρ− ρh‖−1,∞,T x
hx

≤ C‖ρ− ρh‖Ld(T x
hx

). (71)

Note that from the mass conservation given in (4) and Lemma 1 for ρ and ρh, respectively, it fol-
lows that [ρ − ρh] is orthogonal to the global constants. Hence, denoting by
< q >Ωx= (1/|Ωx|)

R
Ωx

q dx the average of a function q, Hölder inequality together with

Poincare-Friederich’s inequality [17, Theorem 4.1] (which shows the Sobolev’s imbedding

W 1,1(Ωx) ⊂ Lq∗ (Ωx) with q∗ = d/(d− 1) for DG functions, see also [2, Lemma 5.10] for the
continuous counterpart) gives,

‖ρ−ρh‖−1,∞,T x
hx

= sup
q∈W

1,1
h

(T x
hx

)

˛̨̨̨Z
Ωx

(ρ− ρh)q dx

˛̨̨̨
‖q‖

W
1,1
h

(T x
hx

)

= sup
q∈W

1,1
h

(T x
hx

)

˛̨̨̨Z
Ωx

(ρ− ρh)[q − 〈q〉] dx
˛̨̨̨

‖q‖
W

1,1
h

(T x
hx

)

≤ sup
q∈W

1,1
h

(T x
hx

)

‖ρ−ρh‖Ld(T x
hx

)‖q−〈q〉‖Ld/d−1(T x
hx

)

‖q‖
W

1,1
h

(T x
hx

)

≤C‖ρ− ρh‖Ld(T x
hx

).
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To conclude we only need to bound the error in the Ld-norm. Triangle inequality together
with the Ld-stability of the L2-projection (11) and inverse inequality, gives

‖ρ− ρh‖Ld(T x
hx

) ≤ ‖ρ− Px(ρ)‖Ld(T x
hx

) + ‖Px(ρ)− ρh‖Ld(T x
hx

)

≤ Ch3/2|ρ|W3/2,d(Ωx) + Ch
−d( 1

2−
1
d )

x ‖Px(ρ)− ρh‖0,T x
hx

.
(72)

Next, taking into account the definition of the continuous and discrete density, using that the
projection Px is independent of v and Hölder inequality, we find

‖Px(ρ)− ρh‖0,T x
hx

=
X

T x∈T x
hx

Z
T x

˛̨̨̨
˛̨̨ X
T v∈T v

hv

Z
T v

[Px(f)− fh] dv

˛̨̨̨
˛̨̨ dx

≤ C[meas(Ωv)]1/2‖Px(f)− fh‖0,Th

≤ CLd/2(‖Px(f)− Ph(f)‖0,Th
+ ‖Ph(f)− fh‖0,Th

),

(73)

where in the last step we have added and susbtracted Ph(f) and used triangle inequality. Now,
using the L2-stability of the Px-projection together with the approximation property (13) we
have for the first term above

‖Px(f)− Ph(f)‖0,Th
= ‖[Px ⊗ Iv](f)− [Px ⊗ Pv](f)‖0,Th

= ‖Px [f − Pv(f)] ‖0,Th

≤ C‖f − Pv(f)‖0,Th
≤ Chk+1

v ‖f‖k+1,Th
.

Substituting this estimate in (73) and the result in (72) we get (71), which implies (22) and
the proof is complete.

A.2 Proof of Lemma 3

To simplify the notation we drop the dependence on the t variable. From [15, II. Proposition
2.16 ] it follows that

‖E−Eh‖H(div;Ωx) +‖Φ−Φh‖0,Ωx ≤ C( inf
τ∈Σk

h

‖E−τ‖H(div;Ωx) + inf
q∈Qk

h

‖Φ− q‖0,T x
hx

+M3h),

(74)
where M3h is the consistency error:

M3h := sup
q∈Qk

h

˛̨̨̨Z
Ωx

(ρ− ρh)q dx

˛̨̨̨
‖q‖0,T x

hx

.

The first two terms in (74) are readily estimated from the standard approximation properties
of Raviart-Thomas elements; estimates (15) and the approximation of the L2

0-projection (10),

inf
τ∈Σk

h

‖E− τ‖H(div;Ωx) + inf
q∈Qk

h

‖Φ− q‖0,T x
hx

≤ Chk+1(‖E(t)‖k+1,Ωx + ‖Φ‖k+2,Ωx ).

Using Cauchy-Schwarz inequality, together with estimate (21) from Lemma 2 we find

M3h ≤ C‖ρ− ρh‖0,T x
hx

≤ CLd/2‖f − fh‖0,Th
,

and the proof of the estimate in the H(div; Ωx)-norm is complete.
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A.3 Proof of Lemma 5

We start by noticing that if we denote by (eE, eΦ) the solution of the discrete Poisson problem
(23), triangle inequality gives

|(E−Eh, Φ− Φh)|A ≤ |(E− eE, Φ− eΦ)|A + |(eE−Eh, eΦ− Φh)|A. (75)

The last term above is estimated proceeding exactly as in [18] (where the dirichlet problem
is treated) and the same error estimate can be shown (for the case of interest, C11 of order
O(1/h) and C22 either zero or of order O(1)):

|(eE−Eh, eΦ− Φh)|A ≤ Chr‖|(eE, eΦ)‖|r+1. (76)

We omit the details for the sake of conciseness. The first term in (75) is estimated by us-
ing standard regularity theorems for the Poisson problem [29] together with the Poincare-
Friederichs inequality for discrete functions in Qr

h (see [11]) and estimate (21) from Lemma
2

|(E− eE, Φ− eΦ)|A = ‖E− eE‖0,T x
hx

≤ C‖ρ− ρh‖−1,T x
hx

= sup
qh∈Qr

h

R
T x

hx

(ρ− ρh)qh dx

‖qh‖1,Th

≤ CCp‖ρ− ρh‖0,T x
hx

≤ CLd/2‖f − fh‖0,Th
.

Hence, substituting this estimate together with (76) into (75) concludes the proof.

A.4 L∞-error estimates for the approximation to the electrostatic field

We next show the error estimates in the L∞-norm for the approximate electrostatic field with
RTk and the LDG methods. For both methods, there are already available in the literature,
L∞ and pointwise error analysis for the approximation of a linear Poisson problem (see [28]
and [19]). Here, we will mainly modify the proof of those results in order to account for the
nonlinearity of the Poisson problem (3). For that purpose, we argue similarly as in [38,37],
where the authors prove L∞ error estimates for the conforming approximation of a “general”
Poisson problem taking into account the outside influence of the forcing term in the Poisson
problem. However since [38,37] deals with standard conforming approximation, some of the
results and arguments used by the authors in these works cannot be straightforwardly adapted,
in particular for the LDG approximation. We wish to stress that we are not concerned here
with providing pointwise and localized error estimates. Our main goal is to show Lemmas 4
and 6 which in turn give the L∞-error estimates required by our analysis.

We next recall a result that will be used in the proof of both lemmas.

Let ϕ ∈ H(div, Ωx) be such that ∇·ϕ ∈ L2
0(Ω). Let g ∈ H1(Ωx)∩L2

0(Ωx) be the solution
of the problem

−∆g = ∇ · ϕ in Ωx, (77)

with g and ∇g subject to periodic boundary conditions on ∂Ωx We shall need the following a
priori estimates in Lp(Ω)-based norms for problem (77),

‖g‖W1,p(Ωx) ≤
C

p− 1
‖∇ ·ϕ‖W−1,p(Ωx) ≤

C

p− 1
‖ϕ‖Lp(Ωx) , 1 < p ≤ 2. (78)

The above estimate can be shown from the a-priori Lp-estimates for problem (77) (see for
instance [29]) but tracing the constants through the proof of those results to get a precise
dependence on p of the leading constant in estimate (78). We also mention that for general
polyhedral domains and dirichlet or neuman b.c., the range of p is more restricted (see [25,24]
and also [23] for related work).
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A.4.1 L∞-error estimates for the RTk approximation to the electrostatic field

We now show Lemma 4. We wish to stress, that the proof of this lemma follows essentially
from [28, Lemma 4.1]. In [28], the authors give a general abstract framework which provides
optimal L∞(Ωx)- error estimates for the mixed finite element approximation of a linear Poisson
problem with Dirichlet boundary conditions. They use Nitsche’s method of weighted Sobolev-
norms [36] (see also [34] and [35]), in which the key idea is that by using weighted norms one
can still work in L2 rather than in L∞ and in particular, can still use duality arguments. In
fact, the essential ingredient in their analysis is a duality argument combined with an a-priori
estimate in certain weighted norm. Their result is rather general, since it covers Raviart-
Thomas-Nedelec mixed methods and also Brezzi-Douglas-Marini and Brezzi-Douglas-Fortin-
Marini mixed approximations. Moreover, it is valid for any space dimension d ≥ 2, and holds
for partitions made of simplices or rectangulars.

In our case, in order to account for the nonlinearity on the right hand side of the Poisson
problem, we only need to modify a single step in the proof of [28, Lemma 4.1] Hence, here we
will only sketch the differences and the step that needs to be modified and we refer the reader
to [28] for further details. We wish to stress that although the authors deal with the Dirichlet
problem, all the error estimates proved in [28] carry over for the periodic Poisson problem.

We recall now some notation that will be required for using their results. The weight
function σ is defined by

σ(x) := (|x− x0|2 + θ2)1/2, x,x0 ∈ Ωx (79)

where | · | denotes here the Euclidean distance in Rd and θ = C∗h with a constant C∗ ≥ 1 to
be specified later on. The weight satisfies the non-oscillation property [36]:

max
x∈T x

σ(x) ≤ C min
x∈T x

σ(x) , ∀T x ∈ T x
hx

.

For α ∈ R, we defined the following weighted Sobolev norm:

‖u‖2σα :=

Z
Ωx

σα|u|2 dx, ∀u ∈ L2(Ωx), α ∈ R. (80)

The following relations can be established between the weighted and L∞-norms

‖u‖σ−α ≤ C‖u‖0,∞,Ωx

(
θ(d−α)/2 α > d,

| log θ|1/2 α = d,
u ∈ L∞(Ωx) (81)

‖χ‖0,∞,Ωx ≤ C
“
θα/hd

”1/2
‖χ‖σ−α α ∈ R χ ∈ Σk

h or χ ∈ Qk
h. (82)

We have now all ingredients to show Lemma 4:

Proof of Lemma 4 Let Rk
h : H(div; Ωx) −→ Σk

h be the Raviart-Thomas projection as
defined §2. Triangle inequality gives,

‖E−Eh‖0,∞,Ωx ≤ ‖E−Rk
h(E)‖0,∞,Ωx + ‖Rk

h(E)−Eh‖0,∞,Ωx .

Hence, we only need to estimate the last term above on right hand side. We shall show

‖Rk
h(E)−Eh‖0,∞,Ωx ≤ C‖E−Rk

h(E)‖0,∞,Ωx + C| log(h)|‖ρ− ρh‖−1,∞,T x
hx

, (83)

and so, substituting this estimate above and using standard approximation properties, the
proof of the Lemma will be complete. Thus, it is enough to prove (83).

To show (83) arguing as in [28, Lemma 4.1], it turns out we only need to modify one step
in the proof of [28, Lemma 4.1]; the bound for the V -term. In such step the authors were using
the Galerkin orthogonality property of div(E−Eh) being orthogonal to Qk

h, which due to the

nonlinearity in Poisson is obviously not true in the present case. Since Rk
h(E)−Eh ∈ Σk

h, from
(82) one has:

‖Rk
h(E)−Eh‖0,∞,Ωx ≤ C(θ(d+α)/hd)1/2‖Rk

h(E)−Eh‖σ−(d+α) 0 < α < 2. (84)
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Following [28, Lemma 4.1] it can be shown that

‖Rk
h(E)−Eh‖2σ−(d+α) ≤ C(h/θ)‖Rk

h(E)−Eh‖2σ−(d+α) +C‖Rk
h(E)−E‖2

σ−(d+α) + |V |, (85)

where the V -term reads (after integration by parts)

V = −
Z

Ωx

(E−Eh)∇u dx =

Z
Ωx

div(E−Eh)u dx, (86)

where u is the solution of the dual problem:

Find u ∈ H1(Ωx) ∩ L2
0(Ωx) : −∆u = divRk

h(ψ), (87)

with periodic boundary conditions (for u and for ∇u). In the above dual problem, ψ is defined
as

ψ = σ−(α+n)
`
R0

h(E)−Eh

´
.

Notice that in view of (14) the above problem is well posed. To estimate the term in (86), we
first observe that divEh ∈ Qk

h and div(E−Eh) = [1− ρ− (1− ρh)] = [ρh − ρ]. Hence, we can
rewrite the term V as

V =

Z
Ωx

div(E−Eh)u dx =

Z
Ωx

[ρh − ρ]u dx.

Using now Hölder inequality together with Poincare-Firederichs inequality we find,

|V | ≤ ‖ρ− ρh‖−1,∞,Th
‖u‖W1,1(Ωx)/R. (88)

We now estimate the term ‖u‖W1,1(Ωx). Sobolev’s imbeddings together with the a-priori es-

timate (78) for problem (87) give

‖u‖W1,1(Ωx) ≤ C‖u‖W1,p(Ωx) ≤
C

(p− 1)
‖divΠk

hψ‖W−1,p(Ωx) ≤
C

(p− 1)
‖Πk

hψ‖Lp(Ωx)

≤
C

(p− 1)
h
−d

“
1
2−

1
p

”
‖Πk

hψ‖0,Ωx ≤
C

(p− 1)
hd/2h

−d
“
1− 1

p

”
‖ψ‖0,Ωx

≤
C

(p− 1)
h
−d

“
1− 1

p

”
hd/2‖Πk

h(E)−Eh‖σ−2(α+d) ,

where we have also used inverse inequality, the L2-stability of the Raviart-Thomas projection
together with the definition of ψ. Taking now p = 1 + 1/(log(1/h)) and using the fact that

h−d| log(h)|−1
= O(1), we finally have

‖u‖W1,1(Ωx) ≤ Chd/2| log(h)|‖Πk
h(E)−Eh‖σ−2(α+d) .

Now, from the relations between the weighted norms and the L∞-norms (82) and (81) it follows
that

‖u‖W1,1(Ωx) ≤ Chd/2| log(h)|‖Πk
h(E)−Eh‖σ−2(α+d)

≤ C| log(h)|hd/2θ−d/2−α‖Πk
h(E)−Eh‖0,∞,Ωx .

Substituting the above estimate into (88) we have

|V | ≤ C| log(h)| (h/θ)d/2 θ−α‖ρ− ρh‖−1,∞,Th
‖Πk

h(E)−Eh‖0,∞,Ωx .

Inserting this estimate into (85) and choosing C∗ = θ/h large enough to absorb into the left
hand side the terms ‖Rk

h(E)−Eh‖2σ−(d+α) we get,

‖Rk
h(E)−Eh‖2σ−(d+α)≤ C‖Rk

h(E)−E‖2
σ−(d+α)

+ C| log(h)| (h/θ)d/2 θ−α‖ρ− ρh‖−1,∞,Th
‖Πk

h(E)−Eh‖0,∞,Ωx .
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Using now (81) and (84) to transform the above norms into L∞-norms together with the
definition of θ, we finally get

‖Rk
h(E)−Eh‖20,∞,Ωx

≤ C(θ/h)d‖Rk
h(E)−E‖20,∞,Ωx

+ C(θ(d+α)/hd)| log(h)| (h/θ)d/2 θ−α‖ρ− ρh‖−1,∞,Th
‖Πk

h(E)−Eh‖0,∞,Ωx

≤ C‖Rk
h(E)−E‖20,∞,Ωx

+ (C∗)d/2| log(h)|‖ρ− ρh‖−1,∞,Th
‖Πk

h(E)−Eh‖0,∞,Ωx .

Recalling that C∗ ≥ 1 is a constant, the above estimate readily implies the assertion of the
lemma and the proof is concluded.

A.4.2 L∞-error estimates for the LDG approximation to the electrostatic field

In [19] the author carries out the pointwise error analysis for the LDG method, with a different
approach to that used in [28]. He follows the technique introduced in [38,37], in which instead
of using global weighted L2 error estimates, one has to use local L2 error estimates along with
dyadic decompositions of the domain Ωx. This strategy relies on sharp pointwise bounds for
high-order derivatives of the Green’s function. These types of the Green’s function estimates are
well known for smooth domains, but do not hold for general convex polyhedral domains1 We
wish to note that since we consider periodic boundary conditions, the issue of a-priori estimates
reduces to the classical interior a-priori estimates (no special treatment of the boundary is
required).

The proof of Lemma 6 follows by modifying one step in the proof of [19, Theorem 4.1] in
order to account for the nonlinearity of the Poisson problem (3). But, unlike it happened with
Lemma 4, the modification is much more involved and we have to prove some other results
that were not provided in [19] by the author. As mentioned before, we argue similarly as in
[38,37], but the fact that we deal with mixed formulation and discontinuous finite elements
precludes from a straightforward application of those results.

Prior to show Lemma 6, we introduce some notation that will allow us to use the results
already proved in [19]. We wish to stress that although in that work the author deals with
the Dirichlet problem, all the error estimates proved in [19] carry over for the periodic Poisson
problem.

For each fixed point z ∈ Ωx, real number s and arbitrary x ∈ Rd consider the weight
function

σs
z,h(x) :=

„
h

|z − x|+ h

«s

x, z ∈ Ωx, −∞ < s < ∞. (89)

We consider the following norm notation introduced in [19]

‖τ‖Lp(D),z,s = ‖σs
z,hτ‖Lp(D),

‖τ‖a,1,D,z,s = ‖τ‖L1(D),z,s +
X

e∈E0
h

Z
e∩D

hσs
z,h|[[ τ ]]| dsx,

|q|c,1,D,z,s =
X

e∈Eh

Z
e∩D

σs
z,h|[[ q ]]| dsx.

(90)

Following [37] we note that if s > 0 and |z − x| = O(h) then σs
z,h(x) = O(1) while σs

z,h(x) =

O(hs) when |z − x| = O(1). Obviously for s = 0 we recover the norms without weights. Also

we note that the denominator in (89) could be replaced by (|z−x|2 +h2)1/2 without affecting
the results. Notice however, that positive powers of this weight correspond to negative powers
of the weight function defined in (79).

We also define following [17]

|q‖
W

1,1
h

(D)
= ‖q‖L1(D) +

X
T x∈T x

hx

‖∇q‖L1(T x∩D) +
X

e∈Eh

Z
e∩D

|[[ q ]]| dsx.

1 Recently, in [31], the authors have shown Hölder type estimates for the first order deriv-
atives and the second order mixed derivatives of the Green’s function, which allows to provide
pointwise and L∞-estimates in general polygonal domains.
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We shall

Proof of Lemma 6. Observe that substracting (30) from the mixed formulation of the
continuous Poisson problem 3, we have the error equations(

a(E−Eh, τ ) + b(τ , Φ− Φh) = 0 ∀ τ ∈ Ξr
h,

−b(E−Eh, q) + c(Φ− Φh, q) = F (q) ∀ q ∈ Qr
h,

(91)

where F (q) =
R

Ωx
(ρ− ρh)q dx ∀ q ∈ Qr

h.

Let now Tz ∈ T x
hx

be such that z ∈ T̄z and let δz ∈ C∞(Ωx)d be a regularization of the

Dirac mass satisfying the following properties:

supp(δz) ⊂ T̄z , Eh(z) =

Z
Ωx

Eh · δz dx, ‖δz‖Lp(Ωx) ≤ Ch
−d

“
1− 1

p

”
1 ≤ p ≤ ∞. (92)

Using triangle inequality and (92), we have

|(E−Eh)(z)| ≤ ‖E− Ph(E)‖L∞(Ωx),z,s +

˛̨̨̨Z
Ωx

δz(E−Eh) dx

˛̨̨̨
.

Next, we introduce the regularized Green’s function. Let g̃z ∈ H1
per(Ωx) ∩ L2

0(Ωx) be the
solution of

−∆g̃z = ∇ · (δz)− c0, c0 :=

Z
Ωx

∇ · (δz) dx, (93)

and let eGz := ∇g̃z + δz so that −∇ · eGz = −c0. The problem is completed by imposing

periodic boundary conditions for both g̃z and eGz .

Let now ( eGz,h, g̃z,h) be the DG approximation to ( eGz , g̃z) that satisfies

a( eGz − eGz,h, τ ) + b(τ , g̃z − g̃z,h) = 0 ∀ τ ∈ Ξr
h,

−b( eGz − eGz,h, q) + c(g̃z − g̃z,h, q) = 0 ∀ q ∈ Qr
h.

(94)

From [19, Lemma 4.1] and [19, Lemma 4.2], respectively, we have the estimates:

‖∇(g̃z−Px(g̃z))‖L1(Ω),z,−s+h‖∇ · ( eGz − Ph( eGz))‖L1(Ωx),z,−s ≤ C| log(h)|r̄, (95)

‖g̃z − g̃z,h‖c,1,Ω,z,−s + ‖ eGz − eGz,h‖L1(Ω),z,−s ≤ C| log(h)|r̄, (96)

where r̄ = 0 for 0 ≤ s < r − 1 and r̄ = 1 for s = r − 1.
Next, observe that the solution ( eGz , g̃z) satisfies

a( eGz , τ ) + b(τ , g̃z) =

Z
Ωx

δzτ dx ∀ τ ∈ H(div; Ωx),

−b( eGz , q) + c(g̃z , q) = 0 ∀ q ∈ L2
0(Ωx).

(97)

Observe that in the last equation above we have used that since c0 is constant (c0, q) = 0 for
all q ∈ L2

0(Ω).

By setting now (τ , q) = (E − Eh, Φ − Φh) in (97) and (τ , q) = ( eGz,h, g̃z,h) in (91) and
combining both equations we getZ

Ωx

(E−Eh)δzdx = a( eGz ,E−Eh) + b(E−Eh, g̃z)

= a( eGz − eGz,h,E−Eh) + b(E−Eh, g̃z − g̃z,h)

− b( eGz − eGz,h, Φ− Φh) + c(Φ− Φh, g̃z − g̃z,h) + F (g̃z,h)

= a( eGz − eGz,h,E− Ph(E)) + b(E− Ph(E), g̃z − g̃z,h)

+ b( eGz − eGz,h,Ph(Φ)− Φ) + c(Φ− Ph(Φ), g̃z − g̃z,h) + F (g̃z,h)

= I1 + I2 + I3 + I4 + F (g̃z,h)

(98)
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where in the last step we have used the Galerkin orthogonality given in (94). Then, the first
four terms are estimated exactly as in [19, Theorem 4.1];

I1 ≤ ‖ eGz − eGz,h‖L1(Ωx),z,−s‖E− Ph(E)‖L∞(Ωx),z,s

I2 ≤ h−1‖Φ− Ph(Φ)‖L∞(Ωx),z,s‖g̃z − g̃z,h‖c,1,Ωx,z,−s

I3 ≤ ‖E− Ph(E)‖L∞(Ωx),z,s

“
‖g̃z − g̃z,h‖c,1,Ωx,z,−s + ‖∇(g̃z − Ph(g̃z)‖L1(Ωx),z,−s

”
,

I4 ≤ Ch−1‖Φ− Ph(Φ)‖L∞(Ωx),z,s

×
“
‖ eGz − eGz,h‖a,1,s,z + h‖∇ · ( eGz − Ph( eGz))‖L1(Ωx),z,−s

”
,

which in view of (95) and (96) give

I1 + I2 + I3 + I4 ≤ C| log(h)|r̄
`
‖E− Ph(E)‖L∞(Ωx),z,s + h−1‖Φ− Ph(Φ)‖L∞(Ωx),z,s

´
.

The passage from the localized estimate to an L∞-estimate can then be achieved by choosing
z ∈ Ωx such that |(E−Eh)(z)| = ‖E−Eh‖0,∞,Ωx and setting s = 0.

Therefore, we only need to estimate the last term in (98). Triangle inequality and Hölder
inequality give

|F (g̃z,h)| ≤ |F (g̃z − g̃z,h)|+ |F (g̃z)|
≤ ‖F‖W−1,∞(T x

hx
)‖g̃z − g̃z,h‖W

1,1
h

(T x
hx

)
+ ‖F‖W−1,∞(Ωx)‖g̃z‖W1,1(Ωx).

(99)

Hence, to conclude we need to bound the above terms involving the generalized green function
g̃z . Last term in (99) can be estimated arguing as in [38, Lemma 2.2] (or [37, proof of Lemma
1.8]). Sobolev’s imbeddings together with the a-priori estimate (78) for problem (93) and the
bound (92) give for 1 < p ≤ 2

‖g̃z‖W1,1(Ωx) ≤ C‖g̃z‖W1,p(Ωx) ≤
C

p− 1
‖δz‖Lp(Tz) ≤

C

p− 1
h
−d(1− 1

p
) ≤ C| log(h)|, (100)

where in last step we have taken p = 1 + 1/(log(1/h)) and used the fact that h−d| log(h)|−1
=

O(1).
Now we estimate the first term in (99). Let Eg = g̃z − g̃z,h and let Tg = ∇h

x(g̃z − g̃z,h).
From the definition in (90), we have

‖g̃z − g̃z,h‖W
1,1
h

(T x
hx

)
= ‖Eg‖L1(Ωx) +

X
T x∈T x

hx

‖Tg‖L1(T x) +
X

e∈Ex

Z
e
|[[ Eg ]]| dsx. (101)

Last term above is estimated by setting s = 0 in the estimate (96). We next estimate the
second term above. We first recall that for each T x ∈ T x

hx

‖Tg̃‖L1(T x) = sup
τ∈C∞0 (T x)

‖τ‖L∞(T x)=1

„Z
T x

Tg̃ · τ dx

«
=

„Z
T x

Tg̃ · τ ε
T dx

«
− ε ε > 0,

for some τ ε
T ∈ C∞0 (T x) with ‖τε‖0,∞,T x = 1. Let τ ε :=

P
T τ

ε
T ∈ C∞0 (Ω), be the function

such that τ ε|T x = τ ε
T . Hence, summation over all the elements in T x

hx
gives,X

T x∈T x
hx

‖Tg̃‖L1(T x) +
X

T x∈T x
hx

ε =
X

T x∈T x
hx

„Z
T x

∇x(g̃z − g̃z,h) · τ ε
T x dx

«

=

Z
Ωx

∇h
x(g̃z − g̃z,h) · τ ε dx.

Notice also that summing and substracting Px(τε) (with Px denoting the standard local L2-
projection) we haveX
T x∈T x

hx

‖Tg̃‖L1(T x) +
X

T x∈T x
hx

ε =

Z
Ωx

Tg̃ · Px(τ ε) dx +

Z
Ωx

Tg̃ · [τ ε −Px(τ ε)] dx = S1 + S2.

(102)
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We now estimate each of the above terms. For the first one, using the definition (31) of
the bilinear form b(·, ·) together with the first error equation in (94), we haveZ

Ω
Tg̃ · Px(τ ε) dx = b(Px(τ ε), Eg)

+

Z
E0

x

[[ Eg ]] · ({Px(τ ε)}−C12[[Px(τ ε) ]]) dsx+

Z
E∂

x

EgPx(τ ε) · n dsx

= −a( eGz − eGz,h,Px(τ ε))

+

Z
E0

x

[[ Eg ]] · ({Px(τ ε)}−C12[[Px(τ ε) ]]) dsx+

Z
E∂

x

EgPx(τ ε) · n dsx.

Hence, arguing as in [19, Proof of Theorem 3.1], Hölder inequality, the definitions of the norms
(90) together with estimate (96) from [19, Lemma 4.2] with s = 0 give

|S1| ≤ ‖Px(τ ε)‖0,∞,T x
hx

(‖ eGz − eGz,h‖L1(Ω) + ‖g̃z − g̃z,h‖c,1,Ω) ≤ C| log(h)|r̄‖τ ε‖0,∞,T x
hx

,

(103)
where in the last step we have also used the L∞-stability of the L2-projection. In the above
estimate, r̄ = 1 for r = 1 and r̄ = 0 for r > 1. We now estimate the second term in (102).
From the definition of the standard L2-projection, we have

X
T x∈T x

hx

Z
T x

(∇g̃z −∇g̃z,h) · [τ ε
T x − Px(τ ε

T x )] dx

=
X

T x∈T x
hx

Z
T x

∇(g̃z − Px(g̃z)) · [τ ε
T x − Px(τ ε

T x )] dx.

Hence, Hölder inequality, estimate (95) from [19, Lemma 4.1] with s = 0 and the L∞-stability
of the L2-projection yield to

|S2| ≤ ‖∇(g̃z − Px(g̃z))‖L1(Th)‖τ
ε − Px(τ ε)‖0,∞,T x

hx
≤ C| log(h)|r̄‖τ ε‖0,∞,T x

hx
,

where as before r̄ = 1 for r = 1 and r̄ = 0 for r > 1. Thus, substituting the above estimate
together with (103) in (102) we have,X

T x∈T x
hx

‖Tg̃‖L1(T x) +
X

T x∈T x
hx

ε ≤ 2C| log(h)|r̄‖τ ε‖0,∞,T x
hx

= 2C| log(h)|r̄,

and now letting ε ↓ 0 we finally getX
T x∈T x

hx

‖∇(g̃z − g̃z,h)‖L1(T x) ≤ 2C| log(h)|r̄. (104)

Hence, to conclude we need to provide a bound for ‖g̃z − g̃z,h‖L1(Ωx). Using the fact that Ωx

is convex and both g̃z and g̃z,h are functions with zero average over Ωx, triangle inequality

together with the L1-Poincaré-Friederichs inequality for W 1,p(Ωx) functions [1] and the L1-
Poincaré-Friederichs inequality for DG functions [17], we have

‖g̃z − g̃z,h‖L1(Ωx) ≤ ‖g̃z‖L1(Ωx) + ‖g̃z,h‖L1(Ωx)

≤
diam(Ωx)

2
‖∇g̃z‖L1(Ωx) + C

“
‖∇g̃z,h‖L1(Ωx) + ‖g̃z,h‖c,1,Ωx

”
≤ C| log(h)|+ C| log(h)|r̄ ≤ C| log(h)|,

where in the last step we have also used the bounds (100) together with (104) and (96).
Therefore substituting the above estimate together with the bounds (104) and (96) into

(101), we finally get
‖g̃z − g̃z,h‖W

1,1
h

(Th)
≤ C| log(h)|,

which together with (100), (99) and the definition of the functional F concludes the proof of
the lemma.
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B Proofs of Lemmas 8 and 9

In this appendix we provide the proofs of Lemmas 8 and Lemma 9 from §4. To ease the
presentation (and simplify the notations), we give detailed proofs for the case d = 2, since the
differences and difficulties compared to d = 1 are already present in that case. The case d = 3
is treated analogously and therefore it is omitted.

We start by introducing some further notation that will be used in the proofs. Note that
for any R = T x × T v ∈ Th, both T x and T v are d-rectangles and so the outward unit normal
n at ∂T x × T v (resp. at T x × ∂T v) is a simple coordinate vector in the x-plane (resp. in
the v-plane); (1, 0, 0, 0) or (0, 1, 0, 0) (resp. (0, 0, 1, 0) or (0, 0, 0, 1)). Then, according to our
notation we use n− = n∂T x to denote the outward unit normal to T x and we denote the inner
and outer traces with respect to ∂T x × T v , by ϕ− and ϕ+, respectively. With a small abuse
on the notation, we also designate by n− = n∂T v and ϕ− and ϕ+ will also designate the inner
and outer traces with respect to T x × ∂T v . Let ∂T x = e±1 ∪ e±2 with e±i denoting the edges
of ∂T x in the xi-direction and

e+
i = {e ⊂ ∂T x : v · n− > 0} e−i = {e ⊂ ∂T x : v · n− < 0} i = 1, 2. (105)

Similarly ∂T v = γ±1 ∪ γ±2 with γ±i denoting the edges of ∂T v in the vj-direction:

γ+
i = {γ ⊂ ∂T v : Eh · n− > 0} γ−i = {γ ⊂ ∂T v : Eh · n− < 0} i = 1, 2. (106)

Next lemma extends [33, Lemma 8] and [21, Lemma 3.6] to higher dimensions also with
the more general projections defined in §4.2.

Lemma 12 Let Th = T x
hx

× T v
hv

be the tensor product of two cartesian meshes T x
hx

and T v
hv

of Ωx and Ωv, respectively. Let k ≥ 1 and let f ∈ C0([0, T ]; W 1,∞(Ω) × Hk+2(Ω)) be the
distribution function solution of (1)–(3) and fh ∈ Zk

h its approximation satisfying (16). For

any R ∈ Th let K1
R and K2

R be defined as in (46)–(47). Let v0 = P0
v (v) and E0 = P0

x(E) be

the local L2-projections onto the piecewise-constants on Th of v and E respectively. Then for
any R = T x × T v ∈ Th, the following estimate hold

|K1
R(v0, f, ϕ)| ≤ C|v0|hk+1‖f‖k+2,R‖ϕ‖0,R. (107)

Moreover, if E does not vanish on R it also holds

|K2
R(E0, f, ϕ)| ≤ C‖E‖0,∞,T xhk+1‖f‖k+2,R‖ϕ‖0,R. (108)

Furthermore, if one of the components of E vanishes on R, but the other (others) do not i.e.,
Ei(x

∗) = 0 for some x∗ ∈ T x but Ej 6= 0 on R for j 6= i, then

|Kvj

R (E0
j , f, ϕ)| ≤ C‖E‖0,∞,T xhk+1‖f‖k+2,R‖ϕ‖0,R. (109)

Proof We prove the lemma for d = 2. We start by noting that since both v0 and E0 are nonzero
constant vectors, without loss of generality we can assume for both that all their components
are positive; i.e. v̄1, v̄2 > 0 and respectively E0

1 > 0 and E0
2 > 0. Then we can further rewrite

K1
R(v̄, f, ϕ) = Kx1

R (v̄, f, ϕ) +Kx2
R (v̄, f, ϕ)

K2
R(E0, f, ϕ) = Kv1

R (E0, f, ϕ) +Kv2
R (E0, f, ϕ),

(110)

where, using the notation given in (105) and (106) and taking into account the definitions of

the numerical fluxes (17) and the projection operator eΠ the two terms above read

Kxi
R (v̄, f, ϕ) =

Z
R

[f −Πh(f)]vi∂xiϕ dx dv −
Z

T v

Z
e+

j

[f − (π−x,j × eΠv)(f)]−ϕv̄i dxj dv

+

Z
T v

Z
e−j

[f − (π−x,j × eΠv)(f)]+ωhv̄i dxj dv i, j = 1, 2 j 6= i,
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and

Kvi
R (E0, f, ϕ) =

Z
R

(f −Πh(f))E0
i

∂ϕ

∂vi
dx dv −

Z
T x

Z
γ+

j

E0
i [f − ( eΠx × eΠv)(f)]+ϕ dvj dx

+

Z
T x

Z
γ−j

E0
i [f − ( eΠx × eΠv)(f)]−ϕ dvj dx i, j = 1, 2 j 6= i. (111)

We now start with the proof of (107). The proof of the approximation result for Kx1
R and Kx2

R
are essentially the same, so we just carry out the proof for one of them, say Kx1 :

Kx1
R (v̄, f, ϕ) =

Z
R

[f −Πh(f)]v̄1
∂ϕ

∂x1
dx dv −

Z
T v

Z
e+
2

[f − (π−x,2 × eΠv)(f)]−ϕv̄1 dx2 dv

+

Z
T v

Z
e−2

[f − (π−x,2 × eΠv)(f)]+ωhv̄1 dx2 dv.

We first consider Kx1
R = Kx1

R (v0, f, ϕ) on the reference element, which with a small abuse

on the notation we still denote by R = T x × T v = [−1, 1]4; T x = [−1, 1]2 = T v . Now, we
claim that

Kx1
R (v̄, f, ϕ) = 0, ∀ f ∈ Pk+1(R), ϕ ∈ Qk(R). (112)

Let ϕ ∈ Qk(R) be fixed and notice that from the fact that eΠ and π̃x,2 × eΠv are polynomial

preserving operators it follows that (112) holds true for every f ∈ Qk(R). Therefore to show

(112) it is enough to consider f ∈ Pk+1(R) r Qk(R); i.e., f = xk+1
1 , xk+1

2 , vk+1
1 and vk+1

2 .

We first set f = xk+1
1 . Then f − Πh(f) = f − π−x,1f on R and so the volume term

vanishes by means of (35). As for the boundary terms, note that on e+
2 , x1 = 1 while on e−2 ,

x1 = −1 and so f −Πh(f) = 1− 1 on e+
2 and f −Πh(f) = (−1)k+1 − (−1)k+1 on e−2 . Hence,

f −Πh(f) ≡ 0 on both boundary integrals.

The other cases f = xk+1
2 , vk+1

1 , vk+1
2 are all done arguing as follows. Integration by parts

of the volume term gives:Z
R

v̄1(f −Πh(f))
∂ϕ

∂x1
dx dv = −

Z
R

v̄1
∂(f −Πh(f))

∂x1
ϕ dx dv

+

Z
T v

Z
e+
2

v1[f − (π−x,2 × eΠv)(f)]−ϕ− dx2 dv−
Z

T v

Z
e−2

v1[f − (π+
x,2 × eΠv)(f)]−ϕ− dx2 dv.

Now observe that if f = xk+1
2 , vk+1

1 or vk+1
2 the volume term on the right hand side vanishes

(since both f and Πhf are independent of x1). Hence, substituting the above expression into
the definition of Kx1

R and we get

Kx1
R (v̄, f, ϕ) =

Z
T v

Z
e−2

[f − (π−x,2 × eΠv)(f)]+ϕv̄1 dx2 dv

−
Z

T v

Z
e−2

v̄1[f − (π+
x,2 × eΠv)(f)]−ϕ− dx2 dv

=

Z
T v

Z
e−2

v̄1[[ f − (π−x,2 × eΠv)(f) ]]x1ϕ− dx2 dv

where we have denoted the jump by [[ · ]]x1 to stress the fact that the jump is taken along the

x1 direction. If f = xk+1
2 , then f − (π−x,2 × eΠv)(f) = f − π−x,2(f) which depends only on x2

and therefore it is continuous as a function of x1. Hence, [[ f − π−x,2(f) ]]x1 ≡ 0.

If f = vk+1
1 or f = vk+1

2 , the same reasoning (f independent of x1) gives [[ f− eΠv(f) ]]x1 ≡
0. Moreover, notice that this does not depend on the precise definition of eΠv . Even if E or one

of its components happen to vanish inside R, one still have [[ f −Pv,1(f) ]]x1 = 0 for f = vk+1
1

and [[ f − Pv,2(f) ]]x1 = 0 for f = vk+1
2 . Therefore, (112) holds also true for f ∈ Pk+1(R).

Now, for fixed ϕ ∈ Qk(R), the linear functional f 7→ K1(v̄, f, ϕ) is continuous on Hm+2(R)
with norm bounded by Cv̄‖ϕ‖0,R. Furthermore, due to (112), it vanishes over Pm+1(R) for
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0 ≤ m ≤ k. Thus, from Bramble-Hilbert Lemma, we get that for f ∈ Hm+2(R) with R being
the reference element

|Kx1
R (v̄, f, ϕ)| ≤ C|v̄||f |m+2,R‖ϕ‖0,R 0 ≤ m ≤ k.

Then, standard scaling arguments together with the L∞-stability of the L2-projection yield
to the estimate

|Kx1
R (v̄, f, ωh)| ≤ Chk+1‖v‖0,∞,T v‖f‖k+2,R‖ωh‖0,R.

The same bound can be shown for Kx2
R , and so substituting in (110) we reach (107).

The proofs of estimates (108) and (109) for K2
R are done analogously; if none of the

components of E vanish inside R, the definition of the projection operator eΠv is given in
terms of π±i,v and so the proof (108) can be performed arguing as for K1

R. Hence it is omitted.

In the case one (but not all) of the components of E vanish we next show that the same
argument used for showing (107) can be reproduced in this case.

Without loss of generality we can assume that E1 > 0 (and so E0
1 > 0) and E2 = 0

(but observe that not necessarily E0
2) in R so that eΠv = π+

v,1 × Pv,2. We consider Kv1
R in the

reference element R = T x × T v = [−1, 1]2 × [−1, 1]2;

Kv1
R (E0, f, ϕ) =

Z
R
[f −Πh(f)]E0

1

∂ϕ

∂v1
dx dv−

Z
T x

Z
γ+
2

[f − ( eΠx × Pv,2)(f)]+ϕE0
1 dv2 dx

+

Z
T x

Z
γ−2

[f − ( eΠx × Pv,2)(f)]−ϕE0
1 dv2 dx,

and we claim that

Kv1
R (E0, f, ϕ) = 0 ∀ f ∈ Pk+1(R) ∀ϕ ∈ Qk(R). (113)

As before, it is easy to see that (113) holds true for all f ∈ Qk(R) using that Πh is a polynomial

preserving operator. So we only need to check for f = xk+1
1 , xk+1

2 , vk+1
1 , vk+1

2 . We start by

setting f = vk+1
1 . Then, f −Πhf = f − eΠx × π+

v,1 × Pv,2f depends only on v1 and therefore

taking into account (35), the volume term is zero. As for the boundary terms, since v1 = ±1

on γ±2 and f is a function only of v1, from the collocation property (36) of π+
v,1 it can be easily

seen that (f −Πh(f))|
γ
±
2

≡ 0.

If f = vk+1
2 (or f = xk+1

1 , xk+1
2 ), integration by parts of the volume term, together with

the fact that f −Πh(f) is independent of v1 gives

Kv1
R (E0, f, ϕ) = −

Z
R

∂[f −Πh(f)]

∂v1
E1ϕ dx dv

−
Z

T x

Z
γ+
2

[[ f − ( eΠx × Pv,2)(f) ]]v1ϕE0
1 dv2 dx

= −
Z

T x

Z
γ+
2

[[ f − ( eΠx × Pv,2)(f) ]]v1ϕE0
1 dv2 dx = 0

where in the last step we have used that for f = vk+1
2 (resp. f = xk+1

i ) the function f −Pv,2f
(resp. f − π̃x,if ) does not depend on v1, and so its jump along this direction is zero. Hence,
(113) holds true and now arguing as we did for K1, using Bramble-Hilbert Lemma together
with standard scaling arguments, estimate (109) follows and the proof is complete.

Proof of Lemma 8. We prove the Lemma for d = 2. We show estimate (48) first in a single
element R = T x×T v ∈ Th and then we sum over all elements of the partition. Let v̄ := P0

v(v)
be the L2-projection onto the piecewise constants on Th of v and we write

K1
R(v, f, ωh) = K1

R(v − v̄, f, ωh) +K1
R(v̄, f, ωh). (114)
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Last term above is estimated by means of (107) from Lemma 12. To bound the first term, let

∂T x = e±1 ∪ e±2 with e±i denoting the edges of ∂T x in the xi-direction defined in (105).
Then, Hölder inequality, trace inequality [3] and inverse inequality [20] together with with

the error estimates (12) and (42), give

|K1
R(v − v̄, f, ωh)| ≤ ‖v − v̄‖0,∞,T v

×

0@‖ωe‖0,R‖∇xωh‖0,R +
X

i=1,2

‖ωe‖
0,e±i ×T v‖ωh‖

0,e±i ×T v

1A
≤ Chvhk‖f‖k+1,R‖ωh‖0,R.

Substituting this estimate together with (107) in (114) we finally get

|K1
R(v, f, ωh)| ≤ Chk+1(‖f‖k+1,R + ‖P0(v)‖0,∞,T x‖f‖k+2,R)‖ωh‖0,R,

and so summation over all elements R ∈ Th, concludes the proof.

Remark 4 It might seem at first sight that the assumption that the partition Th is constructed
so that v does not vanish inside any element R, has not been used. Notice however, that such
condition is implicitly used in the proof, since we implicitly used that both the numerical fluxes
and the projections are uniquely defined along each ei ∈ ∂T x × T v .

Proof of Lemma 9. We consider first an arbitrary fix element R = T x×T v ∈ Th and prove
the corresponding estimate there. Let ∂T v = γ±1 ∪ γ±2 with γ±i denoting the edges of ∂T v in

the vi-direction defined as in (106). Adding and subtracting P0
v (E) we can decompose K2 as

K2
R(Eh, f, ωh) = K2

R(Eh − P0(E), f, ωh) +K2
R(P0(E), f, ωh). (115)

For the first term, Hölder inequality together with trace and inverse inequalities and estimate
(41) give,

|K2
R(Eh − P0(E), f, ωh)| ≤ ‖Eh − P0(E)‖0,∞,T x

×

0@‖ωe‖0,R‖∇vωh‖0,R +
X

i=1,2

‖ωe‖
0,T x×γ±i

‖ωh‖
0,T x×γ±i

1A
≤ C‖Eh − P0(E)‖0,∞,T xhk‖f‖k+1,R‖ωh‖0,R.

Writing now Eh − P0(E) = Eh −E + E− P0(E) and using triangle inequality together with
the L∞ estimate (12) we finally get

|K2
R(Eh − P0(E), f, ωh)| ≤ (Chk‖E−Eh‖0,∞,T x + Chk+1‖E‖1,∞,T x )‖f‖k+1,R‖ωh‖0,R.

(116)
To conclude we need to estimate last term in (115). However, we need to distinguish several
cases according to whether E or any of its components vanishes inside R:

(i) None of the components of E vanish inside R,
(ii) both components E1 and E2 vanish at some point: ∃x∗ ∈ T x such that E(x∗) = 0,
(iii) only one of the components vanishes, say E1; i.e. ∃x∗ ∈ T x s.t. E1(x∗) = 0 but

E2(x) 6= 0 ∀x ∈ T x.

In the first case (i), estimate (108) from Lemma 12 provides the desired bound.

In the case (ii), Πh = eΠx ⊗Pv,1 ⊗Pv,2. Then, Hölder inequality, estimates (41) together
with inverse and trace inequalities and the stability in L∞ of the L2-projection (11), give

|K2
R(P0(E), f, ωh)| ≤ ‖P0(E)‖0,∞,T x

×

0@‖ωe‖0,R‖∇vωh‖0,R +
X

i=1,2

‖ωe‖
0,T x×γ±i

‖ωh‖
0,T x×γ±i

1A
≤ C‖E‖0,∞,T xhk‖f‖k+1,R‖ωh‖0,R.
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Using now the fact that ∃x∗ ∈ T x such that E(x∗) = 0 together with the mean value theorem
and the assumed regularity of E, we find

‖E‖0,∞,T x = max
x∈T x

|E(x)−E(x∗)| ≤ C max
x∈T x

|x− x∗||E|1,∞,T x ≤ ChT x |E|1,∞,T x .

Hence, in case (ii) we have

|K2
R(P0(E), f, ωh)| ≤ Chk+1|E|1,∞,T x‖f‖k+1,R‖ωh‖0,R. (117)

Finally, we deal with the last case (iii). Without loss of generality we assume that E1 > 0 on
R and E2 vanishes at some x∗ ∈ T x. Arguing as for the splitting in (110) we can write

K2
R(P0(E), f, ϕ) = Kv1

R (P0(E), f, ϕ) +Kv2
R (P0(E), f, ϕ),

where the terms Kv1
R and Kv2

R defined as in (111). Now, since E2 vanishes inside R but E1 does

not, estimate (109) from Lemma 12 gives the bound for Kv1
R . Hence to conclude we only need

to estimate the term Kv2
R (P0(E), f, ϕ). Reasoning as for the case (i); the fact that ∃x∗ ∈ T x

such that E2(x∗) = 0 together with the mean value theorem and the assumed regularity of E,
gives

‖E2‖0,∞,T x = max
x∈T x

|E2(x)− E2(x∗)| ≤ C max
x∈T x

|x− x∗||E2|1,∞,T x ≤ ChT x |E|1,∞,T x ,

and so using this bound together with the L∞ of the L2-projection (11), Hölder inequality,
estimates (41) and trace and inverse inequalities, we finally get

|Kv2
R (P0(E), f, ωh)| ≤ ‖P0

v,2(E2)‖0,∞,T x

×

0@‖ωe‖0,Rh−1‖ωh‖0,R +
X

i=1,2

‖ωe‖
0,T x×γ±i

‖ωh‖
0,T x×γ±i

1A
≤ C‖E2‖0,∞,T xhk‖f‖k+1,R‖ωh‖0,R

≤ Chk+1|E|1,∞‖f‖k+1,R‖ωh‖0,R,

which together with estimate (109) give the desired estimate also in the case (iii). Summing
over all elements of the partition, the above estimate together with estimates (116), (117)
and (108) from Lemma 12 we reach (49) and conclude the proof of the lemma.
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