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àt

iq
u
es

.
h
t
t
p
:
/
/
w
w
w
.
u
a
b
.
c
a
t
/
m
a
t
e
m
a
t
i
q
u
e
s

On the asymptotic behavior of the gradient flow

of a polyconvex functional

J. A. Carrillo ∗, S. Lisini†

Abstract

In this paper, we study the asymptotic behavior of the solutions of the system of non-
linear partial differential equations studied in [ESG05] for the evolution of a family of diffeo-
morphisms. We prove existence and regularity of the asymptotic state of solutions and we
find an explicit rate of convergence of the time dependent solution to the corresponding final
state. We study also a system not considered in [ESG05], linked to a linear Fokker-Planck
equation. For this system we show existence of solutions, of the asymptotic state, the regu-
larity and the rate of convergence of the solution to a final state. In both cases, the final
states are obtained from the composition of the limit in time of the flow map with the initial
data. This structure of the limiting stationary states allows a way of constructing maps with
given jacobians as in [ASMV03].

1 Introduction

The present paper deals with the study of the asymptotic behavior of the solution of the following
non-linear evolution problem

∂u

∂t
= div

(
Φ′(detDu)(cofDu)T

)
in U × (0,+∞)

u(0, ·) = ū in U ,
(1.1)

where U is a bounded, connected open subset of Rd, d ≥ 1, and Φ : (0,+∞) → R is a smooth
strictly convex function. The initial datum ū : U → V belongs to Diff (U ;V ): the class of C1

diffeomorphisms from U to V such that ū(∂U ) = ∂V and det(Dū) > 0 (since V is diffeomorph
to U , then V is a bounded connected open subset of Rd). The measure of the domain can be
normalized by a simple change of variables, so we will reduce to the case |U | = 1 in what follows.

The problem (1.1), studied in [ESG05] and [ALS06], is the gradient flow, with respect to the
L2(U ; Rd) metric, of the polyconvex functional

I(u) :=
∫

U
Φ(detDu) dx (1.2)
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defined on Diff (U ;V ). Indeed, at least formally, the problem (1.1), has a natural variational
formulation as

d

dt

∫
U

u · ξ dx = −δI(u; ξ) for every ξ ∈ C1(U ; Rd) with (cofDu)nU ⊥ ξ on ∂U , (1.3)

where δI(u; ξ) denotes the Euler Lagrange first variation of I along the vector field ξ. Indeed,
recalling that DΦ(detA) = Φ′(detA)(cof A)T for every positive d× d matrix A, we compute

δI(u; ξ) :=
d

ds
I(u + sξ)

∣∣∣
s=0

=
∫

U
Φ′(detDu)(cofDu)T ·Dξ dx

= −
∫

U
div

(
Φ′(detDu)(cofDu)T

)
· ξ dx,

(1.4)

and the boundary condition in (1.3) imposed on the test vector field ξ allows to make the
integration by parts in (1.4) without boundary term.

In a weak sense, this variational formulation encompasses the natural boundary condition
needed in (1.1). More precisely, if the solution of the system of partial differential equations (1.1)
is smooth enough and defined as the L2(U ; Rd)-gradient flow of the polyconvex functional (1.2),
then this functional has to decrease along solutions of (1.1). Doing the formal computation of
its time evolution, we have

d

dt
I(u(t)) = −

∫
U

∣∣∣div
(
Φ′(detDu)(cofDu)T

)∣∣∣2 dx − ∫
∂U

Φ′(detDu) nT
U (cof Du)T ∂u

∂t
dσ

from which the natural boundary condition to add in (1.1) is

(cofDu) nU ⊥ ∂u

∂t
on ∂U

and the solution has to satisfy u(t, ·) ∈ Diff (U ;V ) for every t ≥ 0.
The existence of a unique solution of problem (1.1) satisfying u(t, ·) ∈ Diff (U ;V ) for any

t > 0 was proved by Evans, Gangbo and Savin [ESG05] by means of a change of variables which
transforms the problem (1.1) into a non linear boundary value problem involving a nonlinear
diffusion equation on the set V .

In order to make more precise this relation, let us remind the reader the standard notation of
image measure through a map. Given two measures µ and ν in the sets U and V respectively,
we say that a Borel map T : U −→ V transports µ onto ν, or that ν is the image measure of
µ through the map T , denoted by ν = T#µ, if for any Borel measurable set B ⊂ V , ν(B) =
µ(T−1(B)), or equivalently∫

U
ζ◦T (x) dµ(x) =

∫
V
ζ(y) dν(y) , ∀ζ ∈ C0

b (V ) .

If the map T ∈ Diff (U ;V ) and the measures µ and ν are absolutely continuous with respect to
Lebesgue measure with densities ρ̃ and ρ respectively, then ν = T#µ is equivalent by the change
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of variables theorem to ρ(T (x)) det(DT (x)) = ρ̃(x). Let us denote by L d
|U the absolutely

continuous measure associated to the characteristic function of the set U .
With this notation, we can state that the authors of [ESG05] observed the following fact:

given a solution u ∈ Diff (U ;V ) of problem (1.1), defining

w(t, ·) := (u(t, ·))−1,

then the scalar function ρ defined by

ρ(t, y) := detDw(t, y) =
1

detDu(t,w(t, y))
, y ∈ V , (1.5)

which is the Lebesgue density of the probability (because |U | = 1) measure νt := (u(t, ·))#L d
|U ,

solves the nonlinear boundary value problem of diffusion type
∂

∂t
ρ = ∆P (ρ) in (0,+∞)× V ,

Dρ(t, ·) · nV (·) = 0 on (0,+∞)× ∂V ,

ρ(0, ·) = ρ̄ :=
1

detDū
◦ ū−1 in V ,

(1.6)

where the function P is linked to Φ by the relation P (s) = −Φ′(1/s). Since d
ds(−Φ′(1/s)) =

Φ′′(1/s)/s2, by the convexity of Φ we have that the map s 7→ P (s) is monotone increasing, and
thus the problem (1.6) is parabolic. We also notice that defining the function ψ : [0,+∞) → R,
as

ψ(s) := sΦ
(1
s

)
, s > 0, ψ(0) = lim

s→0
sΦ

(1
s

)
= lim

r→+∞

Φ(r)
r

,

we have
P (s) = sψ′(s)− ψ(s).

Finally, let us define the functional on measures in the target space V as

Ψ(ν) :=
∫

V
ψ(ρ(x)) dx , if ν = ρL d (1.7)

and +∞ otherwise. We will denote by Ψ(ρ) the value of the functional Ψ at the measure
ν = ρL d.

A remarkable idea of the approach in [ESG05] is the following: the solution u of problem
(1.1) can be built by solving the problem (1.6) as first step, then considering (1.6) as a continuity
equation with velocity field given by

F (t, y) := −∇P (ρ(t, y))
ρ(t, y)

= −∇ψ′(ρ(t, y)), (1.8)

and constructing its associated flow as the second step. Actually, the flow is given by the maps
Y : [0,+∞)× V → V that are the maximal solutions of the Cauchy problems{

Y ′(t, y) = F (t,Y (t, y)),
Y (0, y) = y, y ∈ V

(1.9)
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and, finally, setting
u(t, x) := Y (t, ū(x)), (1.10)

which turns out a solution of problem (1.1). In fact, the key idea is that the equation (1.1) is
the L2(U ,Rd)-gradient flow of the functional I(u) and the equation (1.6) is the W2-gradient
flow of the functional Ψ(ν), where W2 is the Wasserstein euclidean distance between probability
measures, see [Vil03], [AGS05]. Moreover, these two gradient flows are in some sense equivalent
through the change of variables (1.5), see [ALS06] for precise statements. The main result of
[ESG05], can be stated as follows.

Theorem 1.1 (Evans-Gangbo-Savin). Let us assume that V is a bounded open set of class
C2,α with 0 < α < 1; if ū ∈ C1,α(U ;V ) ∩ Diff (U ;V ) and 0 < ρmin ≤ detDū−1 ≤ ρmax, then
there exists a unique solution of the distributional formulation (1.3) of the problem (1.1) such
that u(t, ·) ∈ Diff (U ;V ) with ∂tu ∈ L2((0, T ) × U ; Rd) for any T > 0. Moreover u has the
representation formula (1.10).

The assumptions in Theorem 1.1 imply that the flow (1.9) is well defined (see also the
discussion on the proof of our Theorem 2.5). Since the solutions of problem (1.1) are defined
for t ∈ (0,+∞), a natural issue consists in the study of the asymptotic behavior of the solutions
for t → +∞. Moreover, since the solutions to (1.6) are known to converge exponentially fast
to their equilibrium solution, a constant value over the domain V , then we may expect that
the lagrangian formulation of this problem given by the diffeomorphism u(t) converges also to
some final state. If so, this is related to show that the flow map for each single point Y (t, y)
has a limiting value as t→∞ and that the limiting map is smooth enough to give us a limiting
diffeomorphism u∞. The only possibility for the solutions of the Cauchy problems (1.9) to have
a limiting value is that the right-hand side is integrable in time, i.e., we need to show that
F ∈ L1(0,+∞;C1(V )) for which the convergence rate to stationary states of the solutions of
(1.6) will be crucial. Later, we need more properties on the flow map in order to deduce that
the limiting map is indeed an element in Diff (U ;V ).

This strategy was already used in the case of the heat equation and the Stokes flow in
[ASMV03] to construct maps with given jacobians. In fact, our results here allow us also to
construct maps with given jacobians by solving these partial differential equations to find the
limiting flow maps. We refer to [ASMV03] and the references therein for the motivations and
applications of these maps. We will remind the main elements of the strategy in [ASMV03] in
the next section. Let us finally mention that the numerical solution of the system (1.1) can be
an effective way of computing the solutions of the nonlinear diffusion equations (1.6) and their
asymptotic behavior as demonstrated in [CM].

Our main result in the next section states that, under the assumptions of Theorem 1.1, the
solution of the problem (1.1) converges, as t→ +∞, to a stationary state u∞, depending on the
initial datum, with exponential rate. Moreover u∞ enjoy an Hölder regularity property as the
initial datum and it satisfies

det(Du∞(x)) = c > 0, ∀x ∈ U . (1.11)

This condition is indeed a necessary condition for a smooth stationary point of I, see [ESG05].
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Furthermore, in Section 3 we will generalize these ideas to linear Fokker-Planck equations.
Here, we use a Log-Sobolev type inequality that will be crucial to obtain the exponential con-
vergence towards the equilibrium of their solutions, and thus, to show the integrability in time
of the velocity field to start the strategy discussed above.

2 Nonlinear diffusions

Let us start by recalling the main arguments in the existence of maps with fixed Jacobian by
[ASMV03]. More precisely, we can find the following result about the existence of the limit
diffeomorphism of a flow of a given velocity vector field.

Theorem 2.1 (Large Time Limit of Flow Maps, [ASMV03, Theorem 3]). Let V ⊂ Rd be a
bounded connected domain of class C2. Assume that F : (0,+∞) → C1(V ; Rd) is a continuous
vector-field satisfying

F ∈ L1(0,+∞;C1(V ))

and the boundary condition

F (t, y) · nV (y) = 0 ∀y ∈ ∂V .

Then the flow {
Y ′(t, y) = F (t,Y (t, y)) t ∈ (0,+∞),
Y (0, y) = y, y ∈ V

is well defined. The map
Y ∞(y) := lim

t→+∞
Y (t, y), y ∈ V

is well defined and it is a diffeomorphism of V on V of class C1(V ;V ). Moreover, we have

det(DY ∞(y)) = exp
( ∫ +∞

0
div F (t,Y (t, y)) dt

)
. (2.1)

Furthermore, if for some 0 < β < 1 there exists a constant C > 0 such that∫ +∞

0
|∇F (s, f(s))−∇F (s, g(s))| ds ≤ C ‖f − g‖β

∞ , ∀f, g ∈ C0(0,+∞;V ), (2.2)

then Y ∞ and its inverse belong to C1,β(V ;V ).

We will also need some results concerning regularity for solutions of quasi-linear parabolic
equations. We collect in the next Theorem some estimates for variable coefficients linear
parabolic evolution problems that are useful in the proof of the main results of the present
paper. For the proof in the very general context of the parabolic systems of order 2m and more
general coefficients, see [Bel79, Section 4, estimates (4.10), (4.12)].
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Theorem 2.2 (Regularity Estimates, [Bel79]). Let V ⊂ Rd be a bounded connected domain of
class C2+α with α ∈ (0, 1) and β ∈ (0, 1). Denoting by QT = V × (0, T ), if a : QT → R and
b : QT → Rd are of class Cβ,β/2(QT ), then the classical solution of the problem

∂v

∂t
= a∆v + b · ∇v in QT ,

∇v(t, ·) · nV (·) = 0 on (0, T )× ∂V ,

v(0, ·) = v̄ in V .

with v̄ ∈ Cα(V ), satisfies the following inequality

t1−
α−β

2 ‖v(t, ·)‖C2+β(V ) ≤ C ‖v̄‖Cα(V ) , t ∈ (0, T ), (2.3)

where C depends only on T , V , ‖a‖C1+β,(1+β)/2(QT ), ‖b‖C1+β,(1+β)/2(QT ).
If a ∈ C1+β,(1+β)/2(QT ) and v is a solution of problem

∂v

∂t
= div(a∇v) in QT ,

∇v(t, ·) · nV (·) = 0 on (0, T )× ∂V ,

u(0, ·) = v̄ in V .

then for every t0 > 0 there exists C depending only on the ‖a‖C1+β,(1+β)/2(QT ) and the domain
V and t0 such that

‖v(t, ·)‖C2+β(V ) ≤ C ‖v̄‖C0(V ) , ∀t ∈ [t0, T ). (2.4)

We will also need a technical lemma to deal with the regularity of the flow maps.

Lemma 2.3 (Estimates on the Velocity Field). Let V be a bounded connected domain of class
C2,α and v ∈ C2,β(V ) and m := min v, M := max v with α ∈ (0, 1), β ∈ (0, α]. Let P be a C3

function from (0,+∞) to R. If m > 0, then for every constant a ∈ R there exist a constant C,
depending only on M , m, P , a and V , such that∥∥∥∥∇P (v)

v

∥∥∥∥
C1,β(V )

≤ C ‖v − a‖C2,β(V ) . (2.5)

Proof. The case of P (ρ) = ρ is proved in [ASMV03, Lemma 1]. In our general case, we observe
that ∥∥∥∥∇P (v)

v

∥∥∥∥
C1,β(V )

≤
∥∥P ′(v)

∥∥
C0(V )

∥∥∥∥∇vv
∥∥∥∥

C1,β(V )

+
∥∥P ′(v)

∥∥
C1,β(V )

∥∥∥∥∇vv
∥∥∥∥

C0(V )

.

From the smoothness of P and the bounds from above and below on the density, it is easy to
see that there exists C > 0 depending only on P , m, M , and a such that∥∥P ′(v)

∥∥
C1,β(V )

≤ C
(
1 + ‖v − a‖C1,β(V )

)
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and ∥∥P ′(v)
∥∥

C0(V )
≤ sup

r∈[m,M ]
|P ′(r)| := M̃.

Since by [ASMV03, Lemma 1] we have∥∥∥∥∇vv
∥∥∥∥

C1,β(V )

≤ C ‖v − a‖C2,β(V ) ,

then ∥∥∥∥∇P (v)
v

∥∥∥∥
C1,β(V )

≤ C M̃ ‖v − a‖C2,β(V ) + C
(
1 + ‖v − a‖C1,β(V )

) 1
m
‖v − a‖C1(V ) .

Using the interpolation inequality

‖f‖C1,γ(V ) ≤ C ‖f‖
1+γ
2+β

C2,β(V )
‖f‖

1− 1+γ
2+β

C0(V )

for γ = 0 and for γ = β and observing that ‖v − a‖C0(V ) ≤M + a, we obtain (2.5).

Finally, let us clarify the deep relation between the gradient flows associated to the diffeo-
morphism equation (1.1) and the nonlinear diffusion equation (1.6). In fact, equation (1.1) is
the L2(U ,Rd)-gradient flow of the functional I(u) while equation (1.6) is the W2-gradient flow
of the functional Ψ(ν) defined in (1.7), see [ALS06]. Before that, let us remind the reader the
definition of the euclidean Wasserstein distance W2.

Let P(V ) denote the set of probability measures in Rd supported in V . Define the functional
W2 in P(V )×P(V ) by

W 2
2 (µ, ν) = inf

Π∈Γ(µ,ν)

∫∫
V ×V

|x− y|2 dΠ(x, y) ,

where Π runs over the set Γ(µ, ν) of all couplings of the probability measures µ and ν; that is,
the set of probability measures in V × V with first marginal µ and second ν. For absolutely
continuous probability measures f L d

|V and gL d
|V we will simply write W2(f, g) in place of

W2(f L d
|V , gL d

|V ). The functionalW2 is a metric on P(V ); it is called the euclidean-Wasserstein
metric, where the euclidean refers to the exponent 2 on the distance |x − y|. We refer to
[Vil03, AGS05] for much more information about this distance. Finally, we refer to [AGS05] for
the precise meaning of the statement: the equation (1.6) is the W2-gradient flow of the functional
Ψ(ν) since it is not the objective of this paper. In fact, all we need is the following result:

Lemma 2.4 (Relation between gradient flows, [ALS06]). Let us assume that V is a bounded
open set of class C2,α with α ∈ (0, 1). If ū ∈ C1,α(U ;V ) ∩ Diff (U ;V ) and 0 < ρmin ≤ ρ̄ =
detDū−1 ≤ ρmax then given the solutions u(t, ·) ∈ Diff (U ;V ) to (1.1) with initial datum ū and
ρ(t, ·) to (1.6) with initial datum ρ̄, we have

Ψ(ρ(t, ·))−Ψ(ρ(T, ·)) =
∫ T

t
|F (s, y)|2ρ(s, y) dy ds =

∫ T

t

∥∥∥∥ d

ds
u(s, ·)

∥∥∥∥2

L2(U )

ds, (2.6)

for all t, T ∈ [0,+∞), t < T .
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In the previous identity (2.6), the first equality is precisely the energy identity for gradient
flow solutions of the nonlinear diffusion equation (1.6). The second equality follows from the
change of variables (1.5) together with (1.9) and the representation formula (1.10).

These previous ingredients allow us to show the first main result of this paper for nonlinear
diffusions.

Theorem 2.5 (Asymptotic behavior). Let us assume that V is a bounded open set of class
C2,α with α ∈ (0, 1). If ū ∈ C1,α(U ;V ) ∩ Diff (U ;V ) and 0 < ρmin ≤ detDū−1 ≤ ρmax then
there exist u∞ ∈ C1,β(U ;V ) ∩ Diff (U ;V ) for every β < α, satisfying (1.11), and there exist
constants C ≥ 0 and σ > 0, depending on the initial datum, such that

‖u(t, ·)− u∞‖L2(U ;Rd) ≤ C e−σt ∀t > 0, (2.7)

where u is the solution of the problem (1.1) given by Theorem 1.1.

Remark 2.6 (Strategy and Previous Literature). The representation formula (1.10) of the
solution of problem (1.1) suggests that it is natural to study the asymptotic limit of the problem
(1.1) by showing the existence and regularity of the map

Y ∞(y) := lim
t→+∞

Y (t, y).

By means of the map Y ∞, the stationary states of the problem (1.1) can be represented by the
formula

u∞(x) = Y ∞(ū(x)).

Theorem 2.1 was originally applied to the case of the heat equation in [ASMV03, Theorem 1].
Thus the result of [ASMV03] immediately proves our Theorem 2.5 in the particular case of
Φ(s) = − log s, for which the diffusion equation in (1.6) is indeed the heat equation. We prove
that Theorem 2.1 applies also to our more general non linear diffusion.

Proof. We show the existence and regularity of the map Y ∞ by applying Theorem 2.1 to the
vector field F defined in (1.8), where ρ is the solution of problem (1.6). The strategy can be
summarized in the following two main steps:

Step 1.- We have to check that

F ∈ L1(0,+∞;C1(V )) (2.8)

to show that Y ∞ exists and it is a diffeomorphism.
Step 2.- We have to prove (2.2), i.e., that there exists a constant C > 0 such that for all

f, g ∈ C0(0,+∞;V ) ∫ +∞

0
|∇F (s, f(s))−∇F (s, g(s))| ds ≤ C ‖f − g‖β

∞

to show that Y ∞ and its inverse belong to C1,β(V ).
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Since ρ̄ = detDū−1 ∈ C0,α(V ) satisfies 0 < ρmin ≤ ρ̄ ≤ ρmax, the problem (1.6) has a
classical solution ρ. By the maximum principle we have that

0 < ρmin ≤ ρ(t, x) ≤ ρmax in Q = (0,+∞)× V . (2.9)

Then ρ ∈ Cα,α/2(QT ), see [PV93, Theorem 1.3 and Remarks 1.3, 1.4], and there exists a constant
γ such that

‖ρ‖Cα,α/2(QT ) ≤ γ ‖ρ‖L∞(QT ) ≤ γ ‖ρ̄‖L∞(V ) , (2.10)

with γ independent on T thanks to (2.9), indeed γ depends on T only through the norm
‖ρ‖L∞(QT ), see [DiB93, Cap. III Theorem 1.3], and the estimate (2.10) holds on Q.

Setting v̄ := P (ρ̄) and a(t, x) := P ′(ρ(t, x)) we consider the problem
∂v

∂t
= a∆v in (0,+∞)× V ,

Dv(t, ·) · nV (·) = 0 on (0,+∞)× ∂V ,

v(0, ·) = v̄ in V .

(2.11)

Since P ′ is Lipschitz continuous on [ρmin, ρmax], from (2.10) we have that a ∈ Cα,α/2(QT ) and
there exist two constants c, C such that 0 < c ≤ a(x, t) ≤ C. By the maximum principle we
obtain

0 < vmin := P (ρmin) ≤ v(t, x) ≤ vmax := P (ρmax) in Q = (0,+∞)× V ,

and the parabolic regularity theory shows that v is a classical solution of (2.11). By the unique-
ness of the solutions of problems (1.6) and (2.11) we have that v(t, x) = P (ρ(t, x)). Since
a ∈ Cβ,β/2(QT ) for every β ∈ [0, α], we can thus apply Theorem 2.2 and by (2.3) we have the
following intermediate Schauder-type estimate

t1−
α−β

2 ‖v(t, ·)‖C2+β(V ) ≤ C ‖v̄‖Cα(V ) , t ∈ (0, T ), (2.12)

with C depending only on T and ‖a‖Cβ,β/2(QT ) which depends, by (2.10), only on ρ̄.
In order to analyze the behavior near +∞ we fix an integer k ≥ 1 and we define ak(t, x) :=

P ′(ρ(t+ k, x)) and we consider the problem
∂ρk

∂t
= ∇ · (ak∇ρk) in (0, T )× V ,

Dρk(t, ·) · nV (·) = 0 on (0,+∞)× ∂V ,

ρk(0, ·) = ρ(k, ·)− ρ∞ in V ,

where ρ∞ denotes the stationary solution of problem (1.6), which is

ρ∞ :=
1
|V |

∫
V
ρ̄(x) dx =

1
|V |

.

Due to uniqueness of solution for the problem (1.6) and the fact that ρ∞ is constant, we have
that ρk(t, x) = ρ(t+ k, x)− ρ∞. Fixing T > 2, by the regularity of P and ρ we have, for β ≤ α,
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ak ∈ C1+β,1/2+β/2(QT ) and ‖ak‖C1+β,1/2+β/2(QT ) does not depend on k. Then, we can apply the
estimate (2.4) of Theorem 2.2 and we obtain that

‖ρ(t+ k, ·)− ρ∞‖C2+β(V ) ≤ C ‖ρ(k, ·)− ρ∞‖C0(V ) , t ∈ [1, T ), (2.13)

where C is independent on k. Recalling the fundamental decay estimate for porous medium
type equations, see [AR81] and [Váz07, Theorem 16.2 and Remark at page 546], we have

‖ρ(t, ·)− ρ∞‖C0(V ) ≤ Ce−σt (2.14)

with C and σ depending only on ‖ρ̄‖L1(V ) , from (2.13) we obtain that

‖ρ(t+ k, ·)− ρ∞‖C2+β(V ) ≤ Ce−σk, t ∈ [1, T ). (2.15)

Lemma 2.3 for a = 0 implies that

‖F (t, ·)‖C1+β(V ) ≤ C ‖v(t, ·)‖C2+β(V ) . (2.16)

From (2.16) and (2.12) we obtain∫ 2

0
‖F (t, ·)‖C1+β(V ) dt < +∞. (2.17)

Now, let us use again Lemma 2.3 for a = v∞ = P (ρ∞) to get

‖F (t, ·)‖C1+β(V ) ≤ C ‖v(t, ·)− v∞‖C2+β(V )

and by the smoothness of P and (2.9)

‖v(t, ·)− v∞‖C2+β(V ) ≤ C ‖ρ(t, ·)− ρ∞‖C2+β(V )

Then, using (2.15) we get∫ +∞

2
‖F (t, ·)‖C1+β(V ) dt =

+∞∑
k=1

∫ k+1

k
‖F (t, ·)‖C1+β(V ) dt ≤ C

+∞∑
k=1

e−σk < +∞. (2.18)

In particular (2.8) holds and (2.2), which follows from (2.17) and (2.18), holds for every β <
α. We have thus obtained that Y ∞ exists and it is of class Cβ. Then u∞ := Y ∞ ◦ ū is a
diffeomorphism of class Cβ.

In order to prove the exponential decay (2.7), we show that

Ψ(ρ(t, ·))−Ψ(ρ∞) ≤ Ce−2σt. (2.19)

Indeed, since
∫
V ρ(t, x) dx =

∫
V ρ∞ dx, using the Taylor formula for ψ we write∫

V
[ψ(ρ(t, x))− ψ(ρ∞)] dx =

∫
V

[ψ(ρ(t, x))− ψ(ρ∞)− ψ′(ρ∞)(ρ(t, x)− ρ∞)] dx

=
∫

V

1
2
ψ′′(ξ(x))(ρ(t, x)− ρ∞)2 dx ≤ C̃||ρ(t, ·)− ρ∞||2L2(V ),

(2.20)
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where C̃ = 1
2 max{ψ′′(r) : r ∈ [ρmin, ρmax]}. Since

||ρ(t, ·)− ρ∞||2L2(V ) ≤ |V |||ρ(t, ·)− ρ∞||2L∞(V ),

we obtain (2.19) from (2.20) and (2.14). By the gradient flow energy identity given in Lemma
2.4 and passing to the limit as T →∞, we get

Ψ(ρ(t, ·))−Ψ(ρ∞) =
∫ +∞

t
|F (s, x)|2ρ(s, x) dx ds.

Again, Lemma 2.4 and (2.19) imply∫ +∞

t

∥∥∥∥ d

ds
u(s, ·)

∥∥∥∥2

L2(U )

ds ≤ Ce−2σt.

And thus, we conclude∫ t+n+1

t+n

∥∥∥∥ d

ds
u(s, ·)

∥∥∥∥
L2(U )

ds ≤
( ∫ t+n+1

t+n

∥∥∥∥ d

ds
u(s, ·)

∥∥∥∥2

L2(U )

ds
)1/2

≤ C1/2e−(t+n)σ,

and consequently∫ +∞

t

∥∥∥∥ d

ds
u(s, ·)

∥∥∥∥
L2(U )

ds =
+∞∑
n=0

∫ t+n+1

t+n

∥∥∥∥ d

ds
u(s, ·)

∥∥∥∥
L2(U )

ds ≤ C1/2

1− e−σ
e−σt.

Observing that

||u(t, ·)− u∞(·)||L2(U ) ≤
∫ +∞

t

∥∥∥∥ d

ds
u(s, ·)

∥∥∥∥
L2(U )

ds ,

we obtain (2.7).
Finally, let us observe that ∂ρ

∂t + F · ρ = −ρdiv F , and thus

d

dt
log ρ(t,Y (t, y)) = −(div F )(t,Y (t, y)),

for all y ∈ V . Integrating in [0, t] and taking the limit t→∞ using (2.1), we finally get

det(DY ∞(y)) = exp
( ∫ +∞

0
div F (t,Y (t, y)) dt

)
=

ρ∞
ρ̄(y)

,

for all y ∈ V . Now, (1.11), follows from the representation formula u∞ := Y ∞ ◦ ū and the
definition of ρ̄.

11



3 The Fokker-Planck case

In this section, we consider the extension of the Evans-Gangbo-Savin approach to study existence
and representation formula for solution of the system

∂u

∂t
= div

(
− 1

detDu
(cofDu)T

)
−∇V (u) in U × (0,+∞)

u(0, ·) = ū in U ,
(3.1)

where V : V → R is a given confinement potential V ∈ C2(V ). Following the same approach of
Section 2 we study the asymptotic behavior of the solution of system (3.1) under the additional
assumption that

V is convex and D2V (x) ≥ λId (3.2)

with λ > 0 (Id denotes the d× d identity matrix).
Recalling that A(cof A)T = (detA)Id for every d× d matrix A, the equation in (3.1) can be

rewritten as
∂u

∂t
= div

(
− (Du)−1

)
−∇V (u).

The problem (3.1) is the gradient flow, with respect to the L2(U ; Rd) metric, of the pertur-
bation with a lower order term depending on V of the polyconvex functional (1.2) in the case
Φ(s) = − log s,

I(u) := −
∫

U
log(detDu) dx+

∫
U
V (u) dx

defined on Diff (U ;V ). Analogously to the previous section, we can observe that when a solution
u of problem (3.1) is known, defining

w(t, ·) := [u(t, ·)]−1,

then the scalar function ρ defined by

ρ(t, y) := detDw(t, y) =
1

detDu(t,w(t, y))
, y ∈ V , (3.3)

which is the Lebesgue density of the measure νt := (u(t, ·))#L d
|U , solves the linear boundary

value problem of Fokker-Planck diffusion type
∂ρ

∂t
= ∆ρ+ div(ρ∇V ) in (0,+∞)× V ,

(∇ρ(t, ·) + ρ(t, ·)∇V (·)) · nV (·) = 0 on (0,+∞)× ∂V ,

ρ(0, ·) = ρ̄ :=
1

detDū
◦ ū−1 in V ,

(3.4)

(in the notation of the previous Section, since Φ(s) = − log s, consequently P (s) = s). Let us
finally remark that the linear Fokker-Planck equation is the W2-gradient flow of the functional

ΨV (ν) :=
∫

V
[ρ(y) log ρ(y) + V (y)ρ(y)] dy , if ν = ρL d
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and +∞ otherwise.
In this case, the approach similar to the one of Evans, Gangbo and Savin reads as follows:

the solution u of problem (3.1) can be built by solving the problem (3.4) as the first step,
constructing the flow, as the second step, of the vector field F V associated to the solution of
problem (3.4)

F V (t, y) := −∇ log ρ(t, y)−∇V (y), (3.5)

given, by definition of flow, by the maps Y : [0,+∞)× V → V that are the maximal solutions
of the Cauchy problems {

Y ′(t, y) = F V (t,Y (t, y)),
Y (0, y) = y, y ∈ V

and, finally, setting
u(t, x) = Y (t, ū(x)), (3.6)

which turns out a solution of problem (3.1). The existence result can be stated as follows.

Theorem 3.1. Let us assume that V is a bounded open set of class C2,α with 0 < α < 1
with V ∈ C2(V̄ ). If ū ∈ C1,α(U ;V ) ∩ Diff (U ;V ) and 0 < ρmin ≤ detDū−1 ≤ ρmax then
there exists a unique solution of the (distributional formulation of) problem (3.1) such that
u(t, ·) ∈ Diff (U ;V ) with ∂tu ∈ L2((0, T ) × U ; Rd) for any T > 0. Moreover u has the
representation formula (3.6) and it satisfies

ΨV (ρ(t, ·))−ΨV (ρ(T, ·)) =
∫ T

t
|F V (s, y)|2ρ(s, y) dy ds =

∫ T

t

∥∥∥∥ d

ds
u(s, ·)

∥∥∥∥2

L2(U )

ds, (3.7)

for all t, T ∈ [0,+∞), t < T .

Proof. We give only a sketch of the proof. First of all, we observe that with the change of variable
ρ̃ = ρeV , the problem (3.4) can be rewritten as follows, where the new density ρ̃ satisfies an
Ornstein-Ulenbeck type equation,

∂ρ̃

∂t
= ∆ρ̃+∇ρ̃ · ∇V in (0,+∞)× V ,

∇ρ̃(t, ·) · nV (·) = 0 on (0,+∞)× ∂V ,

ρ̃(0, ·) = ρ̄(·)eV (·) in V ,

, (3.8)

and the vector field (3.5) can be rewritten as

F V (t, y) := −∇ log ρ̃(t, y).

Since ρ̃(0, ·) is bounded from above and bounded away from 0, and the maximum principle holds
for problem (3.8) we have the same bounds for every fixed t > 0. Since V is smooth, the estimate
(2.3) of Theorem 2.2 yields

t1−
α−β

2 ‖ρ̃(t, ·)‖C2+β(V ) ≤ C ‖ρ̃(0, ·)‖Cα(V ) , t ∈ (0, T ).
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Then ∫ T

0
‖F V (t, ·)‖C1(V ) < +∞,

and the flow Y is well defined for every t ≥ 0. Since, by the regularity of the solution of problem
(3.8) and the maximum principle for this equation, for every t > 0 and for every y ∈ V we can
solve the backward problem {

y′(s) = F V (s, y(s)), s ∈ (0, t]
y(t) = y, y ∈ V ,

the map Y (t, ·) is a diffeomorphism of V on itself. Reasoning as in the paper [ESG05], it is
straightforward to show that (3.6) solves the weak formulation of the system (3.1). The last
identity is direct from the change of variables (3.3) together with (3.6).

In the same way we can state our asymptotic result for solution of system (3.1).

Theorem 3.2. Let us assume that V is a convex bounded open set of class C2,α with 0 < α < 1
and V ∈ C2(V̄ ) a given confinement potential satisfying (3.2). If ū ∈ C1,α(U ;V )∩Diff (U ;V )
and 0 < ρmin ≤ detDū−1 ≤ ρmax then there exist u∞ ∈ C1,α(U ;V ) ∩ Diff (U ;V ) and a
constant C ≥ 0, depending on the initial datum, such that

‖u(t, ·)− u∞‖L2(U ;Rd) ≤ Ce−λt ∀t > 0,

where u is the solution of the problem (3.1) given by Theorem 3.1. The final states u∞ satisfies

e−V (u∞(x)) det(Du∞(x)) = c > 0, ∀x ∈ U . (3.9)

Proof. First of all we define the stationary state for the problem (3.4) given by

ρ∞(y) := Z e−V (y), y ∈ V ,

where Z is chosen to normalize ρ∞ to be a density of unit mass in V . We again are going to
apply Theorem 2.1 for which we need to check the integrability of F V at +∞. We observe that,
by Theorem 2.2 applied to the solution of problem (3.8) with initial datum ρ̃(k, ·) − ρ̃∞, there
exists C > 0 such that

‖ρ̃(t+ k, ·)− ρ̃∞‖C2,β(V ) ≤ C ‖ρ̃(k, ·)− ρ̃∞‖C0(V ) , for all t ≥ 1 ,

for every k ∈ N. We show that there exist C > 0 and σ > 0 such that

‖ρ̃(t, ·)− ρ̃∞‖C0(V ) ≤ Ce−σt. (3.10)

Since V is a confinement potential satisfying (3.2), then the following logarithmic Sobolev
inequality holds

ΨV (ρ)−ΨV (ρ∞) ≤ 1
2λ

∫
V
|∇ log ρ+∇V |2ρ dy, (3.11)
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for all positive densities ρ ∈ L1
+(V ) with unit mass for which the right-hand side is well defined.

This inequality can be seen in [CJMTU, AGS05]. Since the linear Fokker-Planck evolution
satisfies

d

dt

∫
V

[ρ(t, y) log ρ(t, y) + V (y)ρ(t, y)] dy = −
∫

V
|∇ log ρ(t, y) +∇V (y)|2ρ(t, y) dy ,

then, by the inequality (3.11), we easily obtain that

ΨV (ρ(t, ·))−ΨV (ρ∞) ≤ e−2λt (ΨV (ρ̄)−ΨV (ρ∞)) (3.12)

and the Csizar-Kullback inequality, see [CJMTU] for instance, yields

‖ρ(t, ·)− ρ∞‖L1(V ) ≤ C e−λt. (3.13)

Recalling the interpolation inequality [Nir59, Bre83],

‖ρ(t, ·)− ρ∞‖C0(V ) ≤ C ‖ρ(t, ·)− ρ∞‖
d

d+1

C1(V )
‖ρ(t, ·)− ρ∞‖

1
d+1

L1(V )
,

the uniform boundedness of the C1 norm for t ≥ 1, the definition of ρ̃ and (3.13), we obtain (3.10).
We can then repeat for ρ̃ the final part of the proof of Theorem 2.5 to show the integrability
in time of the flow map F V . The proof of the convergence of u(t, ·) towards u∞ with the
exponential rate of convergence λ follows as in the proof of Theorem 2.5 from (3.12) and (3.7).
The formula (3.9) can be obtained by the same argument used at the end of the proof of Theorem
2.5.
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