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Abstract

Let F be a group whose abelianization is Zk, k ≥ 2. An element of F is visible if its
image in the abelianization is visible, that is, the greatest common divisor of its coordinates
is 1.

We compute densities of visible elements in some strongly Markov groups, which include
free and surface groups. We use this result to show that the probability of a homogeneous
equation in a surface group to have solutions is neither 0 nor 1, as the length of the right-
and left-hand side of the equation go to infinity.

2000 Mathematics Subject Classification: 20E05, 68Q25.
Key words: free groups, surface groups, equations, visible elements, asymptotic behavior.

1 Introduction

Let F be a group whose abelianization is Zk, with k ≥ 2. An element of F is called visible if its
image in the abelianization is visible, that is, the greatest common divisor of its coordinates is
1. Let Σ be a compact connected orientable surface of genus r, r ≥ 2. If Σ has no boundary,
then a presentation for the fundamental group of Σ, which we call the surface group of genus
r, is 〈a1, b1, . . . , ar, br | [a1, b1] · · · [ar, br]〉 . If Σ has boundary, then the fundamental group of
Σ is simply the free group of finite rank.

In this paper we compute the density of visible elements in a large class of groups containing
the surface groups of compact connected orientable surfaces, with or without boundary. We
thus extend the results of [5], where the density of visible elements in the free group of rank
two was computed. Since the limits we obtain are different from 0 and from 1, this shows that
visible elements form a set of intermediate density in a large class of groups. Intermediate
density of sets in groups has been displayed for the first time in [5], and this tends to be
a relatively rare behaviour for many combinatorial and algebraic properties encountered in
group theory. Most of the properties studied in the literature ([6]) turned out to be negligible
or generic, that is, with density equal to 0 or 1, respectively.

A consequence of our results is the fact that the solvability of homogeneous equations in
the class of groups that we study is also a non-negligible and non-generic property. Let G be
a finitely generated group, A a fixed generating set, and X = {X1, . . . , Xn}, n ≥ 1, a set of
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variables. An equation in variables X1, . . . , Xn with coefficients g1, . . . , gm+1 in G is a formal
expression given by

g1X
ε1
i1
g2X

ε2
i2
. . . Xεm

im
gm+1 = 1,

where m ≥ 1, εj ∈ {1,−1} for all 1 ≤ j ≤ m, and ij ∈ {1, . . . , n}. An equation is homogeneous
if the variables are on the left-hand side of the equation and the constants are on the right-hand
side of the equation:

Xε1
i1
Xε2

i2
. . . Xεm

im
= w, (1.1)

where w ∈ G. We say that the equation (1.1) is a homogeneous equation of type (m, |w|A) or
an (m, |w|A)-homogeneous equation.

We will be interested in the asymptotic behavior of (m, |w|A)-homogeneous equations when
G is a surface or a free group, and m and |w|A go to infinity. Our study of the asymptotics
of homogeneous equations was motivated by two related questions: firstly, how often does a
homogeneous equation in a free or surface group have solutions, and secondly, how likely is
it, for two random words u and v in the group to have that v is an endomorphic image of u?
The second question was partly inspired by the work of Kapovich, Schupp and Shpilrain ([6]).
They show that the probability of two elements u and v in Fk to be in the same automorphic
orbit is 0 as the lengths of u and v go to infinity. The following paragraph clarifies the relation
between the two questions.

Suppose that z(X1, . . . , Xn) is the word in X1, . . . , Xn representing the left-hand side of
(1.1), i.e. z(X1, . . . , Xn) = Xε1

i1
Xε2

i2
. . . Xεm

im
. Let Fn be the free group of rank n on generators

x1, . . . , xn. Notice that the equation (1.1) has solutions if and only if there exists an homo-
morphism φ : Fn → G such that φ(z(x1, . . . , xn)) = w, where z is written in the generators
x1, . . . , xn. The following ratios quantify the pairs of elements of the form (z, w).

Definitions 1.1. Let F, G be groups finitely generated by finite sets A and B, respectively.

1. The (s, t)-mapping ratio eρ(F,G, s, t) is the ratio of the pairs of elements (f, g) ∈ F ×G
such that |f |A ≤ s, |g|B ≤ t and with the property that g is the homomorphic image of
f, among all pairs (f, g) ∈ F ×G with |f |A ≤ s, |g|B ≤ t, that is,

eρ(F,G, s, t) =
]{(f, g) ∈ F ×G : |f |A ≤ s, |g|B ≤ s, φ(f) = g for some φ ∈ Hom(F,G)}

]{(f, g) ∈ F ×G : |f |A ≤ s, |g|B ≤ s}
.

2. The spherical (s, t)-mapping ratio eγ(F,G, s, t) is the ratio of the pairs of elements (f, g) ∈
F × G such that |f |A = s, |g|B = t and with the property that g is the homomorphic
image of f among all pairs (f, g) ∈ F ×G with |f |A = s, |g|B = t, that is,

eγ(F,G, s, t) =
]{(f, g) ∈ F ×G : |f |A = s, |g|B = s, φ(f) = g for some φ ∈ Hom(F,G)}

]{(f, g) ∈ F ×G : |f |A = s, |g|B = s}
.

In Section 3 we will study the asymptotic behavior of the (s, t)-mapping ratio eρ(F,G, s, t)
for F and G free-abelian groups. For some homogeneous equations in groups with (finite rank)
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free-abelian abelianization, one can decide whether they have solutions or not by looking at
the equations in the abelianization. The computation of the asymptotic behavior of this ratio
is based on the densities of visible elements in a free-abelian group.

In Section 4 we study the densities of visible elements in free and surface groups (Corollary
4.10). We obtain one of our main results which relates the densities of visible points in surface
and free groups with the densities in the abelianization. In fact, our results hold for a wider
class of strongly Markov groups, as discussed in Appendix A.

In Section 5 we study the asymptotic behavior of the spherical (s, t)-mapping ratio
eγ(F,G, s, t) when F,G are free or surface groups. As a corollary, we obtain that the probability
of an (s, t)-homogeneous equation in a surface group to be solvable is neither 0 nor 1, as s, t
go to infinity.

We were informed that the asymptotic behavior of homogeneous equations is also being
studied in a work in progress by B. Gilman, A. Miasnikov and V. Romankov.

2 Notation

We will use the following notation for sequences: a sequence is a mapping v : I → X from an
interval I of Z to a set X. We will write vI for the sequence v : I → X and for i ∈ I, vi := v(i).

Let i, j ∈ Z. We write [i↑j] := {k ∈ Z : k ≥ i and k ≤ j}, ]−∞↑j] := {k ∈ Z : k ≤ j}, and
[i↑∞[ := {k ∈ Z : k ≥ i} to denote intervals in Z indexing a sequence.

Definitions 2.1. Let F be a finitely generable group, and let A be a finite generating set of
F . If w ∈ F , then |w|A denotes the length of the shortest word in A±1 representing w.

1. Let S ⊂ F and n ≥ 0. Then

ρ(n, S) = ]{x ∈ S : |x|A ≤ n},

and
γ(n, S) = ]{x ∈ S : |x|A = n}

denote the cardinality of the ball and sphere of radius n in F , respectively.

2. Let S ⊂ F . The asymptotic density of S in F is

ρ̄A(S) = lim sup
n→∞

ρ(n, S)
ρ(n, F )

.

If the limit exists, then we denote it by ρA(S) and we call it the strict asymptotic density.

3. Let S ⊂ F . The spherical density of S in F is

γ̄A(S) = lim sup
n→∞

γ(n, S)
γ(n, F )

.

If the limit exists, then we denote it by γA(S) and we call it the strict spherical density.
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4. Let S ⊂ F . The annular density of S in F is

σ̄A(S) = lim sup
n→∞

1
2

(
]{x ∈ S : |x|A = n− 1}
]{x ∈ F : |x|A = n− 1}

+
]{x ∈ S : |x|A = n}
]{x ∈ F : |x|A = n}

)
If the limit exists, then we denote it by σA(S) and we call it the strict annular density.

Let r ≥ 1 be an integer. A length function lp : Zr → R will denote the restriction to Zr of
the ||.||p-norm from Rr for some 1 ≤ p ≤ ∞.

We can define the asymptotic and annular densities in a similar way in Zr by changing
|x|A with lp(x) and denoting the limits by ρ̄p(S) and σ̄p(S).

Definitions 2.2. For a nonzero element z ∈ Zr we denote by gcd(z) the greatest common
divisor of its coordinates. If z = (0, . . . , 0) ∈ Zr we set gcd(z) = ∞. Note that gcd is invariant
under the action of Aut(Zr) = SL(r,Z). Hence, for all z ∈ Zr, gcd(z) does not depend on the
basis of Zr.

An element of z ∈ Zr is called visible if gcd(z) = 1. If gcd(z) = t, then we call the element
t-visible.

We denote by Fab the abelianization of the group F, that is, Fab = F/[F, F ]. Suppose that
Fab is a free-abelian group of finite rank and let ab: F → Fab be the abelianization map. We
say that an element f ∈ F is visible (resp. t-visible) if ab(f) is visible (resp. t-visible) in Fab.

3 Densities of visible elements in Zr

Let r ≥ 2 be an integer and let Ut denote the set of all t-visible elements in Zr. For a complex
number k, recall that the Riemann zeta function is given by

ζ(k) =
∞∑

n=1

1
nk
, Re(k) > 1.

A classical result in number theory provides the value for the strict asymptotic density of
t-visible elements in Zr.

Proposition 3.1. For any integer t ≥ 1 we have

ρ∞(Ut) =
1

trζ(r)
.

The following lemma shows that homomorphisms between groups with free-abelian abelian-
ization (of finite rank) send t-visible elements to tm-visible elements, where t,m are positive
integers. The second part of the lemma shows that a visible element in a group can be mapped
to any element in the image via a homomorphism.

Lemma 3.2. Let F,G be groups whose abelianization is free-abelian of finite rank. Let f ∈ F.
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(i). Let φ : F → G be a group homomorphism. Then gcd(ab(φ(f))) is a multiple of
gcd(ab(f)). In particular, if gcd(ab(f)) = ∞, then gcd(ab(φ(f))) = ∞.

(ii). If, moreover gcd(ab(f)) = 1, then for any element g in G there exists an homomorphism
φ : F → G such that φ(f) = g.

Proof. Let n be the rank of Fab and let {e1, . . . , en} be a basis of Fab. For f ∈ Fab, we denote
by (f)i the ith coordinate of f with respect the basis. That is, f = (f)1e1 + · · ·+ (f)nen.

(i). Let g = φ(f). Then (ab(g))j =
∑n

i=1(ab(f))i(φ(ei))j .

Thus each (ab(g))j is a multiple of gcd(ab(f)), since each (ab(f))i is a multiple of
gcd(ab(f)).

(ii). Since gcd(ab(f)) = 1, then gcd((ab(f))1, . . . , (ab(f))n) = 1 and therefore there ex-
ist integers p1, . . . , pn such that

∑n
i=1(ab(f))ipi = 1. Consider the homomorphism

ψ1 : Fab → 〈x | 〉 which sends ei to xpi for all 1 ≤ i ≤ n. It follows that ψ1(ab(f)) = x.
Let ψ2 : 〈x | 〉 → G be any homomorphism sending x to g. This shows that the com-
position of ab, ψ1 and ψ2 produces a homomorphism φ : F → G such that φ(f) = g.

Corollary 3.3. Let Zn and Zk be the free abelian groups of ranks n and k, respectively. Then
the following inequalities hold:

1
ζ(n)

≤ lim inf
s→∞,t→∞

eρ(Zn,Zk, s, t), (3.1)

lim sup
s→∞,t→∞

eρ(Zn,Zk, s, t) ≤ 1− 1
ζ(k)

(
1− 1

ζ(n)

)
. (3.2)

Proof. Let eab(s, t) := eρ(Zn,Zk, s, t).
By Lemma 3.2(ii)

eab(s, t) ≥
{(u, v) ∈ Zn × Zk : |u| ≤ s, |v| ≤ t, gcd(u) = 1}

ρ(s,Zn)ρ(t,Zk)
=
{u ∈ Zn : |u| ≤ s, gcd(u) = 1}

ρ(s,Zn)

Taking limits, we obtain (3.1) by Proposition 3.1.
By Lemma 3.2(i)

eab(s, t) ≤ 1− {(u, v) ∈ Zn × Zk : |u| ≤ s, |v| ≤ t, gcd(u) 6= 1, gcd(v) = 1}
ρ(s,Zn)ρ(t,Zk)

= 1−
(

1− {u ∈ Zn : |u| ≤ s, gcd(u) = 1}
ρ(s,Zn)

)
{v ∈ Zk : |v| ≤ t, gcd(v) = 1}

ρ(t,Zk)
.

Taking limits, we obtain (3.2) by Proposition 3.1.
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One of the key ingredients needed to extend the previous result to surface groups as the
ones mentioned in the Introduction is determining the asymptotic density of elements of even
length in Zk. This was done in [5, Proposition 3.6 ] for k = 2, and we now compute the value
for a general k.

Proposition 3.4. Let k ≥ 2, and let U ev
1 denote the visible elements of even length in Zk.

Then

ρ∞(U ev
1 ) =

2k−1 − 1
2k − 1

ρ∞(U1) =
2k−1 − 1

(2k − 1)ζ(k)
.

Proof. Let n be a positive integer. For X1, . . . , Xk ∈ {A,O, E} we denote by X1X2 . . . Xk(n)
the number of all z = (z1, . . . , zk) ∈ U1 such that 0 ≤ zi ≤ n and the parity of zi is Xi. Here
A stands for “any”, E stands for “even” and O stands for “odd”.

We will use the convention X . . .X︸ ︷︷ ︸
k times

= Xk, for any X ∈ {A,O, E} and k ≥ 1.

Note that X1X2 . . . Xk(n) = Xs(1)Xs(2) . . . Xs(k)(n), for any permutation s of {1, . . . , k},
and that Ek(n) = 0 for any k, n ≥ 1.

The total number of elements in U1 of length ≤ n is

Ak(n) =
k∑

i=0

(
k

i

)
Ek−iOi(n). (3.3)

Let U ev
1 (n) be the set of elements of U ev

1 of length at most n. Then

|U ev
1 (n)| =

[ k
2 ]∑

i=1

(
k

2i

)
Ek−2iO2i(n). (3.4)

We claim that:

Ek−iOi(n) = Ok(n) + o(nk) for all 1 ≤ i ≤ k. (3.5)

Assume first that (3.5) holds. From (3.4) and (3.5) we get

|U ev
1 (n)| =

[ k
2 ]∑

i=1

(
k

2i

)
Ok(n) + o(nk),

and since
∑[ k

2 ]
i=1

(
k
2i

)
= 2k−1 − 1, we get that

|U ev
1 (n)| = (2k−1 − 1)Ok(n) + o(nk).

From (3.3) and (3.5) we get

Ok(n)(2k − 1) = Ak(n) + o(nk),

and hence

|U ev
1 (n)| = 2k−1 − 1

2k − 1
Ak(n) + o(nk).
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Since ρ∞(U1) = 1
ζ(k) , we get that

ρ∞(U ev
1 ) = lim sup

n→∞

|U ev
1 (n)|

(2n)k

= lim
n→∞

2k−1−1
2k−1

Ak(n) + o(nk)

(2n)k

=
2k−1 − 1
2k − 1

ρ∞(U1) =
2k−1 − 1

(2k − 1)ζ(k)
.

This completes the proof of the proposition. We now show (3.5). Notice first that

OiEk−i−1A(n) = OiEk−i(n) +Oi+1Ek−i−1(n).

Hence it is enough to show

OiEk−i−1A(n) = 2OiEk−i(n) + o(nk) for all 1 ≤ i ≤ k. (3.6)

Let µ denote the Möbius function and recall that
∑

d|n µ(d) is equal to 1, if n = 1 and 0
otherwise. Hence

OiEk−i−1A(n) =
∑

xj≤n, 2-xj
j=1,...,i

∑
xj≤n, 2|xj

j=i+1,...,k−1

∑
xk≤n

∑
d|gcd(x1,...,xk)

µ(d)

and

OiEk−i(n) =
∑

xj≤n, 2-xj
j=1,...,i

∑
xj≤n, 2|xj

j=i+1,...,k

∑
d|gcd(x1,...,xk)

µ(d).

Now we switch the order in the summation. We rearrange the terms depending on d |
gcd(x1, . . . , xk), writing xi = yid. Since there is an odd coordinate, 2 - d. We obtain that

OiEk−i−1A(n) =
∑
2-d

µ(d)
∑

yj≤n/d, 2-yj
j=1,...,i

∑
yj≤n/d, 2|yj

j=i+1,...,k−1

∑
yk≤n/d

1

and
OiEk−i(n) =

∑
2-d

µ(d)
∑

yj≤n/d, 2-yj
j=1,...,i

∑
yj≤n/d, 2|yj

j=i+1,...,k

1.

Hence OiEk−i−1A(n)− 2OiEk−i(n) is equal to∑
2-d

µ(d)
∑

yj≤n/d, 2-yj
j=1,...,i

∑
yj≤n/d, 2|yj

j=i+1,...,k−1

([n
d

]
− 2

[ n
2d

])
. (3.7)
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The term in parenthesis is either 0 or 1, and it is always 0 for d > n. Thus the asymptotic
behavior of (3.7) is of type

O(
∑
d≤n

∑
yj≤n/d

j=1,...,k−1

1) ⊆O(
n∑

d=1

(n/d)k−1)

=O(nk−1

(
1

k − 2
− 1

(k − 2)nk−2

)
)

=O(nk−1) ⊂ o(nk)

4 Densities of visible elements in surface groups

The main result of this section allows us to compute densities of visible elements in some
strongly Markov groups and in particular in free and surface groups. This result is based on
Theorem A.7 of Sharp. To avoid additional definitions, we will use the following technical
hypothesis:

Hypothesis 4.1. Let F be a group generated by a finite set A such that Fab
∼= Zr. We denote

by ab : F → Zr the abelianization map. Suppose that there exists a symmetric positive definite
real matrix D such that

lim
n→∞

∣∣∣∣(detD)1/2nr/2

(
γA(n, ab−1(α))

γA(n, F )
+
γA(n+ 1, ab−1(α))

γA(n+ 1, F )

)
− 2

(2π)r/2
e−〈α,D−1α〉/2n

∣∣∣∣ = 0,

(4.1)
uniformly in α ∈ Zr.

Appendix A contains a description of those groups which satisfy the above hypothesis.
In order to compute the densities of visible elements in free and surface groups, we need

to fix some notation.

Notation 4.2. For k > 2, we denote by Fk either the free group of rank k or the surface group
of genus k.

If Fk is a free group, then it has a presentation of the form

〈a1, . . . , ak | 〉

and we let A = {a1, . . . , ak}±1.
If Fk is a surface group, then it has presentation of the form

〈a1, b1, . . . , ak, bk | [a1, b1] · · · [ak, bk]〉 ,

and we let A = {a1, b1, . . . , ak, bk}±1.
Let r denote the rank of the abelianization of Fk, that is r = k if Fk is a free group, and

r = 2k if Fk is a surface group.
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Remark 4.3. Let F,A and r as in Notation 4.2. Then by [13, Theorem 1, Theorem 4], F and
A satisfy Hypothesis 4.1.

Definition 4.4. Let Gr be the set of all M ∈ SL(r,Z) such that M = Ir in SL(r,Z/2Z).
Then Gr is a finite-index subgroup of SL(r,Z/2Z).

Proposition 4.5. [5, Proposition 3.3.] Let S ⊆ Zr be a Gr-invariant subset such that δ =
ρ∞(S) exists. Let Ω ⊆ Rr be a nice bounded open set and let

µt,S(Ω) :=
](S ∩ tΩ)

tr
.

Then we have
lim
t→∞

µt,S(Ω) = δλ(Ω), (4.2)

where λ is the Lebesgue measure.

Although [5] indicates that the proof is similar to that of [5, Proposition 2.3], we include
here a proof for Proposition 4.5 for the sake of completeness.

Proof. Each µt,S can be regarded as a measure on Rr. We prove the result by showing that
µt,S weakly converge to δλ as t→∞.

By Helly’s theorem there exists a sequence t[1↑∞[ with limi→∞ ti = ∞ such that the sequence
µt1,S , µt2,S , ... is weakly convergent to some limiting measure. We now identify this measure
by showing that for every convergent subsequence of µti,S the limiting measure is equal to δλ.

Indeed, we assume that η = t[1↑∞[ is a sequence with limi→∞ ti = ∞ such that the sequence
µti,S converges to the limiting measure µη = limi→∞ µti,S . Every µti,S is invariant with respect
to the Gr-action on Rr. Therefore, the limiting measure µη is also Gr-invariant. Moreover,
the measures µt,S are dominated by the measures λt defined as λt(Ω) = ](Zr∩tΩ)

tr .
It is well known that if Ω ⊆ Rr is a nice bounded open set, then the measures λt converge

to the Lebesgue measure λ. It follows that µη is absolutely continuous with respect to λ. It
is also known that the natural action of Gr on Rr is ergodic with respect to λ (see [14] for
the proof of ergodicity). Therefore µη is a constant multiple cλ of λ. The constant c can be
computed for a set such as the open unit ball B in the ‖ · ‖∞ norm on Rr defining the length
function l on Zr. By assumption we know that

lim
t→∞

]{z ∈ Zr : z ∈ S ∩ tB}
]{z ∈ Zr : z ∈ tB}

= δ.

We also have
lim
t→∞

]{z ∈ Zr : z ∈ tB}
tr

= λ(B)

and hence
lim
t→∞

]{z ∈ Zr : z ∈ S ∩ tB}
tr

= δλ(B).

Therefore c = δ and µη = δλ. The above argument shows in fact that every convergent
subsequence of µt,S converges to δλ and limt→∞ µt,S = δλ.
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Definition 4.6. Let F be a group generated by the finite set A and such that Fab
∼= Zr.

For an integer n > 1 and a point x ∈ Rr, let pn be given by

pn(x) =
1
2

(
γA(n− 1, {g ∈ F : ab(g) = x

√
n})

γA(n− 1, F )
+
γA(n, {g ∈ F : ab(g) = x

√
n})

γA(n, F )

)
. (4.3)

This is a distribution supported on finitely many points of 1√
n

Zr.

We need the following results from [9, 12] about the sequence of distributions pn.
In our context, the statement of the local limit theorem obtained by Rivin in [9] and, via

different methods, by Sharp [12] is the following:

Proposition 4.7. ([9, 12, 5]) Let F,A, r as in Hypothesis 4.1 with r > 2. Then:

(a) The sequence of distributions pn converges weakly to a normal distribution N with density
n.

(b) We have
sup

x∈Zr/
√

n

|nr/2pn(x)− n(x)| −→ 0, as n→∞. (4.4)

(c) For c > 0, let Ωc := {x ∈ Zr/
√
n : ‖x‖ > c}. Then

lim
c→∞

∑
x∈Ωc

pn(x) = 0. (4.5)

Proof. By using the Continuity Theorem (see Theorem 2, p. 508 in [4]) and [9, Theorem 5.1],
we have that the sequence of distributions pn converges weakly to the density of the centered
normal distribution with covariance matrix D. This proves (a).

By (4.1) and some easy computations, we have that when n → ∞ and α = x
√
n the

following hold.∣∣∣nr/2pn(x)− 1
(2π)r(detD)1/2

e−〈x,D−1x〉/2
∣∣∣

=
1

2(detD)1/2

∣∣∣(detD)1/2nr/2

(
γA(n− 1, ab−1(x

√
n))

γA(n− 1, F )
+
γA(n, ab−1(x

√
n))

γA(n, F )

)
− 2

(2π)r
e
−〈 α√

n
, D−1α√

n
〉/2
∣∣∣

=
1

2(detD)1/2

∣∣∣(detD)1/2nr/2

(
γA(n− 1, ab−1(α))

γA(n− 1, F )
+
γA(n, ab−1(α))

γA(n, F )

)
− 2

(2π)r
e
−〈 α√

n
, D−1α√

n
〉/2
∣∣∣

=
1

2(detD)1/2

∣∣∣(detD)1/2nr/2

(
γA(n− 1, ab−1(α))

γA(n− 1, F )
+
γA(n, ab−1(α))

γA(n, F )

)
− 2

(2π)r
e−〈α,D−1α〉/2n

∣∣∣ −→ 0,

10



We have thus obtained (b).
We now prove (c).
For c > 0, denote Ωc = {x ∈ Zr/

√
n, ‖x‖ < c}, the complement of Ωc. Then, by Proposition

4.5 and (b), we have that

lim
c→∞

∑
x∈Ωc

pn(x) = 1− lim
c→∞

∑
x∈Ωc

pn(x)

= 1−
∫

x∈Ω∞

n(x)dλ(x) = 0.

Theorem 4.8. Let Ω ⊆ Rr be a nice bounded open set. Let S ⊆ Zr be a Gr-invariant subset
such that δ = ρ∞(S) exists. Then

lim
n→∞

∑
x∈S∩

√
nΩ

pn(x/
√
n) = δN(Ω).

Proof. Note that the proof is the same as that of Theorem 3.4 in [5]. The only difference lies
in the use of Proposition 4.5.

We have ∑
x∈Zr

t∩
√

nΩ

pn(x/
√
n) =

∑
y∈ 1√

n
S∩Ω

pn(y)

= n−r/2
∑

y∈ 1√
n

S∩Ω

n(y)

+ n−r/2
∑

y∈ 1√
n

S∩Ω

(nr/2pn(y)− n(y)).

The local limit theorem of Proposition 4.7(b) tells us that, as n → ∞, each summand
n−r/2pn(y)−n(y) of the sum in the last line of the equation above converges to zero and hence so
does their Cesaro mean. Proposition 4.5 implies that, as n→∞, the sum n−r/2

∑
y∈ 1√

n
S∩Ω n(y)

converges to

δ

∫
Ω

ndλ = δN(Ω).

We obtain the main result of this section by basically following [5, Theorem A]. Our
theorem provides the formula for the spherical density of visible elements in groups that satisfy
Hypothesis 4.1, which include free groups of all finite ranks and surface groups.

Theorem 4.9. Let F,A, r be as in Hypothesis A.5, or more generally, as in Hypothesis 4.1.
Let S ⊆ Zr be a Gr-invariant subset and S̃ = ab−1(S).

11



(i). The strict annular density σA(S̃) exists and, moreover, σA(S̃) = ρ∞(S).

(ii). Let U1 denote the set of visible elements in Zr and V1 = ab−1(U1) denote the visi-
ble elements in F. Let U ev

1 denote the set of visible elements of Zr of even length. If
ab−1(U ev

1 ) = {v ∈ V1 : |v|A is even} then

limm→∞
γA(2m,V1)
γA(2m,F )

= ρ∞(U ev
1 ) =

2k − 2
(2k − 1)ζ(k)

,

limm→∞
γA(2m− 1, V1)
γA(2m− 1, F )

= ρ∞(U1)− ρ∞(U ev
1 ) =

2k

(2k − 1)ζ(k)
.

Proof. For c > 0 denote Ωc := {x ∈ Rr : ‖x‖ < c} and let Ωc be the complement of Ωc. Then

lim
c→∞

N(Ωc) = 1 (4.6)

Let ε > 0 be arbitrary. By (4.6) and Proposition 4.7(c) we can choose c > 0 such that

|N(Ωc)− 1| ≤ ε/3

and such that
lim

n→∞

∑
xΩc

pn(x) ≤ ε/6.

Let S be a Gr-invariant subset of Zr. By Theorem 4.8, and the above formula there is some
n0 ≥ 1 such that for all n ≥ n0 we have∣∣∣∣∣∣

∑
x∈S∩

√
nΩc

pn(x/
√
n)− ρ∞(S)N(Ωc)

∣∣∣∣∣∣ ≤ ε/3,

and ∑
x∈Ωc

pn(x) ≤ ε/3.

Let

Q(n) :=
γA(n− 1, ab−1(S))

2γA(n− 1, F )
+
γA(n, ab−1(S))

2γA(n, F )
.

For n ≥ n0 we let

Q(n) =(
]{g ∈ F : ab(g) ∈ S, |g|A = n− 1 and ‖ab g‖ < c

√
n}

2γA(n− 1, F )

+
]{g ∈ F : ab(g) ∈ S, |g|A = n and ‖ab g‖ < c

√
n}

2γA(n− 1, F )

)
+
(
]{g ∈ F : ab(g) ∈ S, |g|A = n− 1 and ‖ab g‖ ≥ c

√
n}

2γA(n− 1, F )

+
]{g ∈ F : ab(g) ∈ S, |g|A = n and ‖ab g‖ ≥ c

√
n}

2γA(n− 1, F )

)
=

∑
x∈S∩

√
nΩc

pn(x/
√
n) +

∑
x∈S∩(Rr−

√
nΩc)

pn(x/
√
n).

12



In the last line of the above equation, the first sum differs from ρ∞(S)N(Ωc) by at most ε/3
since n ≥ n0, and the second sum is ≤ ε/3 by the choice of c and n0.

Therefore, again by the choice of c, we have |Q(n)− ρ∞(S)| ≤ ε. Since ε is arbitrary, this
proves (i).

We now prove (ii). First notice that since U1 is SL(r,Z)-invariant, it is also Gr-invariant.
We check that U ev

1 is Gr-invariant as well. Let u ∈ Z. Then u ∈ U ev
1 if and only if

∑
1≤i≤r(u)i

mod 2 = 0 and gcd(u) = 1. Let M ∈ Gr. As M ∈ SL(r,Z), gcd(Mu) = gcd(u) = 1. Also, as
M = Ir in SL(r,Z/2Z), ∑

1≤i≤r

(Mu)i mod 2 =
∑

1≤i≤r

(u)i mod 2 = 0.

Hence, U ev
1 is Gr-invariant.

We now take S = U ev
1 , for n ≥ 2 even. Then

Q(n) =
γA(n− 1, ab−1(U ev

1 ))
2γA(n− 1, F )

+
γA(n, ab−1(U ev

1 ))
2γA(n, F )

=
γA(n, ab−1(U ev

1 ))
2γA(n, F )

.

The latter equality follows from the fact that ab−1(U ev
1 ) = {v ∈ V1 : |v|A is even}.

By (i),

2 lim
m→∞

Q(2m) = 2 lim
m→∞

γA(2m,V1)
γA(2m,F )

= 2ρ∞(U ev
1 ).

Thus limm→∞
γA(2m− 1, V1)
γA(2m− 1, F )

= ρ∞(U1)− 2ρ∞(U ev
1 ). By Proposition 3.1 and Proposition 3.4,

we obtain the desired results.

We now focus on surface and free groups.

Corollary 4.10. Let k ≥ 2 and let Fk be a free group of rank k or a surface group of genus
k. Let A and r as in Notation 4.2. Then

(i). limm→∞
γA(2m,V1)
γA(2m,F )

=
2r − 2

(2r − 1)ζ(r)
.

(ii). limm→∞
γA(2m− 1, V1)
γA(2m− 1, F )

=
2r

(2r − 1)ζ(r)
.

Proof. By Remark 4.3, Fk, A and r satisfy the Hypothesis of Theorem 4.9. It only remains
to show that ab−1(U ev

1 ) = {v ∈ V1 : |v|A is even}. Let f be an element of Fk such that
ab(f) = 0 ∈ Zr. Then any word representing w has the same number of a and a−1 and thus it
has even length.

Since ab maps elements of A to unit vectors, for u ∈ U ev
1 there exists v ∈ ab−1(U ev

1 ) of
even length. If ab(v) = ab(v′), then ab(v′v−1) = 0. Hence v′v−1 has even length, and so does
v′. Thus Theorem 4.9(ii) applies.
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5 Asymptotic behavior of homogeneous equations in surface
groups

We now study the asymptotic behavior of eγ(Fn, Fk, s, t) when Fn and Fk are surface or free
groups.

Theorem 5.1. Let Fk and Fn be free or surface groups and let A, B be their respective
generating sets, as in Notation 4.2. Let r(k) and r(n) denote the ranks of the abelianization
of Fk and Fn, respectively. Let ε, δ ∈ {0, 1}. Then the following inequalities hold:

2r(n) − 2(1− ε)
(2r(n) − 1)ζ(r(n))

≤ lim inf
s→∞,t→∞

eγ(Fn, Fk, 2s+ ε, 2t+ δ),

lim sup
s→∞,t→∞

eγ(Fn, Fk, 2s+ ε, 2t+ δ) ≤ 1− 2r(k) − 2(1− δ)
(2r(k) − 1)ζ(r(k))

(
1− 2r(n) − 2(1− ε)

(2r(n) − 1)ζ(r(n))

)
.

Proof. Let Vt and Wt denote the sets of t-visible elements in Fn and Fk, respectively. Let

E(s, t) = {(u, v) ∈ Fn × Fk : |u| = s, |v| = t, φ(u) = v for some φ ∈ Hom(Fn, Fk)}.

Then eγ(Fn, Fk, s, t) = |E(s,t)|
γB(s,Fn)γA(t,Fk) .

By Lemma 3.2 we have the following inequalities:

γB(s,W1)γA(t, Fk) ≤ |E(s, t)| ≤ γB(s, Fn)γA(t, Fk)−
∑
r 6=1

γB(s,Wr)γA(t, V1).

The left inequality holds because every element v in Fk is the homomorphic image of a
visible element in Fn. The right inequality holds because no visible element in Fk is the
homomorphic image of an r-visible element in Fn, if r 6= 1.

By dividing both sides by γB(s, Fn)γA(t, Fk), we get

γB(s,W1)
γB(s, Fn)

≤ eγ(Fn, Fk, s, t) ≤ 1−
∑

r 6=1 γB(s,Wr)γA(t, V1)
γB(s, Fn)γA(t, Fk)

= f(s, t),

where
f(s, t) = 1− γA(t, V1)

γA(t, Fk)
γB(s, Fn)− γB(s,W1)

γB(s, Fn)
.

Let us use βm,k to denote the limits, which depend on the parity of m and the rank of the
abelianization of Fn and Fk, found in Corollary 4.10. That is, βm,k = 2r(k)−2

(2r(k)−1)ζ(r(k))
if m is

even, and βm,k = 2r(k)

(2r(k)−1)ζ(r(k))
if m is odd. In order to simplify the exposition we will abuse

the fact that βm,k depends on the parity of m and for the next paragraph ignore the parities
of s and t.

Then
lim

s→∞,t→∞
f(s, t) = 1− βt,k(1− βs,n),

14



and we get the following inequalities

βs,n ≤ lim inf
s→∞,t→∞

eγ(Fn, Fk, s, t) ≤ lim sup
s→∞,t→∞

eγ(Fn, Fk, s, t) ≤ 1− βt,k(1− βs,n). (5.1)

Now taking into account the parities of s and t we get the inequalities in the statement of
the theorem.

Thus the probability of an (s, t)-homogeneous equation to be solvable is neither 0 nor 1 as
s, t go to infinity.

Corollary 5.2. Let G be a surface group of genus g ≥ 2 or a free group of rank ≥ 2.
Let

A(s, t) =
]{solvable (s, t)-homogeneous equations on G in n variables}

]{(s, t)-homogeneous equations on G in n variables}
.

Then
0 < lim inf

s→∞,t→∞
A(s, t) ≤ lim sup

s→∞,t→∞
A(s, t) < 1.

Similarly, for a fixed orientable surface Σ, the probability of a closed curve in Σ to be the
image of another closed curve in Σ by a continuous map is neither 0 nor 1, as the curves get
more and more “complicated.”

Corollary 5.3. Let Σ be an orientable closed surface of genus k ≥ 2. We fix a presentation
for π1(Σ), 〈a1, b1, . . . , ak, bk | [a1, b1] · · · [ak, bk]〉 . For a closed curve γ in Σ we denote by [γ] the
image of γ in π1(S) and by |[γ]| the length of [γ] with respect to {a1, b1, . . . , ak, bk}.

We say that γ2 is the image of γ1, if it is the image of γ1 under a continuous map S → S.
Let

B(s, t) =
]{([γ1], [γ2]) ∈ π1(S)2, (|[γ1]|, |[γ2]|) = (s, t) with γ2 the image of γ1}

]{([γ1], [γ2]) ∈ π1(S)2, (|[γ1]|, |[γ2]|) = (s, t)}
.

Then
0 < lim inf

s→∞,t→∞
B(s, t) ≤ lim sup

s→∞,t→∞
B(s, t) < 1.

A Appendix: The hypothesis of Theorem 4.9

We will show in this Appendix that Theorem 4.9 holds not only for free and surface groups,
but also for a number of strongly Markov groups.

Definition A.1. We say that a finitely generated group G is strongly Markov if for every finite
symmetric generating set S we can find:

(i). a finite oriented graph Γ = (Γ, V, E, ι, τ) consisting of vertices V and edges E, where one
can write the edges as elements of V × V , and if e = (u, v), the incidence functions are
given by ιe = u and τe = v;
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(ii). a distinguished vertex ∗ ∈ V , with no edges terminating at ∗;

(iii). a labeling map ρ : E → S;

such that

(a). there is a bijection between finite paths in the graph Γ starting at ? and passing through
the consecutive edges e1, . . . , en, and elements g ∈ G given by the correspondence g =
ρ(e1) · · · ρ(en) (where the empty path corresponds to the identity element);

(b). the word length |g| is equal to the path length n.

In particular, this condition is satisfied by all (Gromov) hyperbolic groups (see, for instance,
[2] and [3]).

Example A.2. As free groups are hyperbolic groups, they are strongly Markov, and one can
easily describe the graph in Definition A.1. Let F be the free group of rank two freely generated
by {a, b}. Then a symmetric generating set of F is given by S = {a, a−1, b, b−1}. It is clear that
the labeled graph in Figure 1 satisfies the desired conditions.

aa−1

b−1

b

b

aa−1

b−1

ab

a−1 b−1

b

ab−1

a−1

∗

Figure 1: The graph of F .

16



By the following proposition the fundamental groups of surfaces are also always strongly
Markov.

Proposition A.3. (see [2]) The fundamental group of a compact manifold admitting a hyper-
bolic structure is strongly Markov.

This result was originally proved in 1984 by Cannon [2] and a particular nice account can
be found in [3].

A.1 The shift space

Let M be an l × l matrix with entries in {0, 1} and define the associated shift space XM by

XM = {x[0↑∞[ sequence in {0, 1, . . . , l − 1} : M(xn, xn+1) = 1, ∀n ∈ [0 ↑ ∞[}.

The subshift of finite type σ : XM −→ XM is defined by σ(x[0↑∞[) = x[1↑∞[.
The matrix M can be viewed as the incidence matrix of an oriented graph Γ with l vertices,

and an edge from vertex i to vertex j if M(i, j) = 1. From this point of view, XM can be
thought of as the set of infinite paths in Γ that always follow the orientation of the edges.

The matrix M is aperiodic if there exists n > 0 such that Mn has all its entries > 0. This
is equivalent to the map σ being topologically mixing. From now on, we assume the matrix
M is aperiodic. Then, by the Perron-Frobenius Theorem, an aperiodic matrix M will have a
simple positive eigenvalue λ > 1 which is strictly maximal in modulus.

Let M be the set of σ-invariant probability measures on XM .
Set

Fixn = {x[0↑∞[ ∈ XM : σnx[0↑∞[ = x[0↑∞[}.

It is well-known that ]Fixn = trace Mn ∼ λn, as n→∞. We want to study the asymptotics
of certain subsets of Fixn.

Fix a function f : XM −→ Zr such that f(x[0↑∞[) depends on only finitely many coordinates
of x. Without loss of generality, we may suppose that f(x[0↑∞[) depends only on the first two
coordinates, that is, f(x[0↑∞[) = f(x0, x1). Write

f [n](x[0↑∞[) = f(x[0↑∞[) + f(σx[0↑∞[) + · · ·+ f(σn−1x[0↑∞[).

For α ∈ Zr, consider the following subset of Fixn:

{x[0↑∞[ ∈ Fixn : f [n](x[0↑∞[) = α}.

We now study the asymptotics of the cardinality of this set as n and α vary.
Following the work of Sharp (see [12]), we will assume that f satisfies the following two

natural conditions:

(H1) The set ∪∞n=1{f [n](x[0↑∞[) ∈ Zr : x[0↑∞[ ∈ Fixn} generates Zr, and

(H2)
∫
f dµ = 0, where µ is the measure of maximal entropy.
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We define the subgroup of Zr

∆f =

〈 ∞⋃
n=1

{f [n](x[0↑∞[)− f [n](y[0↑∞[) ∈ Zr : x[0↑∞[, y[0↑∞[ ∈ Fixn}

〉
6 Zr.

Choose x[0↑∞[ ∈ Fixn and y[0↑∞[ ∈ Fixn+1 (for some fixed n) and set cf = f [n + 1](x[0↑∞[) −
f [n](y[0↑∞[). Then ∆f + cf is well-defined and Zr/∆f is the cyclic group generated by ∆f + cf
(see[8]). Furthermore, conditions (H1) and (H2) ensure that Zr/∆f is finite and we can write
d = |Zr/∆f | (see [7]).

In the paper of Sharp (see [12]) there are some local limit theorems for the function f with
respect to the periodic points of σ : XM −→ XM . More precisely, we have the following result:

Theorem A.4. (Corollary 2.1, [12]) Let M be an aperiodic square matrix. Suppose that
f : XM −→ Zr is a function that depends on finitely many coordinates and satisfies the con-
ditions (A1) and (A2). Let d = |Zr/∆f |. Then there exists a positive definite real matrix D
such that

lim
n→∞

∣∣∣ d−1∑
j=0

(detD)1/2nr/2

]Fixn+j
]{x[0↑∞[ ∈ Fixn+j : f [n+ j](x[0↑∞[) = α}− d

(2π)r/2
e−〈α,D−1α〉/2n

∣∣∣ = 0,

(A.1)
uniformly in α ∈ Zr.

We now prove that Hypothesis A.5 implies Hypothesis 4.1, as shown below by Theorem
A.7.

Hypothesis A.5. Let F be a strongly Markov group with abelianization F/[F, F ] isomorphic
to Zr, A be a finite symmetric generating set of F , and ab: F → Zr be the abelianization map.

Let Γ and ρ be a graph and a labeling associated to the group F with respect the generating
set A as in Definition A.1. Let M be the incidence matrix of Γ, and assume that M ′, the matrix
obtained from M by suppressing the row and column associated to ∗, is aperiodic. Suppose
that f : XM → Zr satisfies the following two conditions

Γf := 〈∪∞n=1{f [n](x[0↑∞[) : x[0↑∞[ ∈ Fixn}〉 is equal to Zr (A.2)

and d = |Zr/∆f | = 2.

Example A.6. Let F2 be the free group of rank 2, as in Example A.2, with the graph Γ and
labeling ρ described therein. Let M ′ be the adjacency matrix of the graph Γ with the row
and column containing ∗ suppressed. It is not hard to check that f : XM → Z2, defined by
f(x[0↑∞[) = ab(ρ((x0, x1))), satisfies Hypothesis A.5. Here ρ((x0, x1)) is the label of the edge
that goes from the vertex x0 to x1.

Similarly to Theorem A.4, Sharp obtains the following local limit theorem for F in [12].

Theorem A.7. (Theorem 3, [12]) Let F,A, r as in Hypothesis A.5. Then there exists a
symmetric positive definite real matrix D such that

lim
n→∞

∣∣∣∣(detD)1/2nr/2

(
γA(n, ab−1(α))

γA(n, F )
+
γA(n+ 1, ab−1(α))

γA(n+ 1, F )

)
− 2

(2π)r/2
e−〈α,D−1α〉/2n

∣∣∣∣ = 0,

(A.3)
uniformly in α ∈ Zr.
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Sketch of the proof. We consider the matrix M and the function f of Hypothesis A.5.
Since the matrix M ′ is aperiodic, the function f induces a function fM ′ : XM ′ → Zr. By

(A.2), it can be shown that fM ′ satisfies (H1). By arguments of symmetry one can also show
that fM ′ satisfies (H2).

Hence we can apply Theorem A.4 with d = 2.
The arguments in Section 4 and Section 5 of [12] show that we can replace

]{x[0↑∞[ ∈ Fixn+j : f [n+ j](x[0↑∞[)}
]Fixn+j

by
γA(n, ab−1(α))

γA(n, F )
.

Remark A.8. It can be also shown that surface groups with the Notation 4.2, Fk, A
±1 and

r satisfy Hypothesis A.5.

Acknowledgments

We are grateful to Fernando Chamizo for helpful conversations.

The first-named author was jointly funded by the MEC (Spain) and the EFRD (EU) through Projects
MTM2006-13544 and MTM2008-01550.

The second-named author was partially supported by the SNF (Switzerland) through project number
200020-113199 and by the Marie Curie Reintegration Grant 230889.

The third-named author was supported by the grant MEC-FEDER Ref. MTM2009-08869 from the Direccin
General de Investigacin, MEC (Spain).

References

[1] Cannon, J. The growth of closed surface groups and the compact hyperbolic Coxeter groups. Preprint,
1983.

[2] Cannon, J. The combinatorial structure of co-compact discrete hyperbolic groups. Geom. Dedicata, 16,
123–148, 1984.

[3] Ghys, E.; de la Harpe, P. Sur les Groupes Hyperboliques d’après Mikhael Gromov. Birkhauser, Basel,
1990.

[4] Feller, W. An introduction to probability theory and its applications. Vol II. Second Edition. John Wiley
& Sons, Inc., New York-London-Sydney, 1971.

[5] Kapovich, I.; Rivin, I.; Schupp, P; Shpilrain, V. Densities in free groups and Zk, visible points and test
elements. Math. Res. Lett., 14(2):263–284,2007.

[6] Kapovich, I..; Schupp, P; Shpilrain, V. Generic properties of Whitehead’s algorithm and isomorphism
rigidity of random one-relator groups. Pacific J. Math., 223, no.1:113-140, 2006.

[7] Marcus, B; Tuncel, S. The weight per symbol polytope and scaffolds of invariant associated with Markov
chains. Ergodic Theory Dynam. Syst., 11:129–180, 1991.

[8] Parry, W; Schmidt, K. Natural coefficients and invariants for Markov shifts. Invent. math., 76:15–32, 1984.

[9] Rivin, I. Growth in free groups (and other stories). Preprint.
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