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ú
m

31
,
se

te
m

br
e

20
09

.
D

ep
ar

ta
m

en
t

d
e

M
at

em
àt
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1 Dipartimento di Matematica, Università di Parma, Viale G. P. Usberti 53/A, 43124 Parma, Italia
2 ICREA (Institució Catalana de Recerca i Estudis Avançats) and Departament de Matemàtiques,
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Abstract. Two different strategies for deriving hydrodynamic equations for dissi-
pative kinetic models are presented and discussed. The homogeneity scaling ap-
proach, not very well-known in the physical literature, is expanded and applied to
different show-cases in several applications. Then, we show that this strategy may
fail, as it occurs for a thermalized granular gas in a host medium, in which case
the problem can be dealt with by resorting to classical moment closure methods.

1 Introduction

In this paper, we review several strategies to get hydrodynamic equations for dissipative ki-
netic models being the hard-spheres inelastic Boltzmann equation with thermostats our main
example. The hydrodynamic equations for the inelastic Boltzmann collision equation have been
object of ample interest in the scientific community of rapid granular flows and granular gases.

Most of the by-now classical works in the physical literature deal with the standard clo-
sure procedure using the balance equations for mass, momentum and energy and closing these
equations by different arguments. These different hydrodynamic systems are obtained based
on several equations of state, different orders on the expansion parameters or the inelasticity
parameter and different type of particles. We refer to a selected list of classical references [48,
49,43,17,39–41,46,50] and the reviews [42,18] for complete references. These works derive the
equations without no mechanism of energy supply into the system.

In fact, the use and application of these hydrodynamic systems outside their supposed limit
of validity have been reported in several works dealing with vibrating granular flows [12,16,15],
the shock formation around obstacles [52], the homogeneous clustering instability [53,23] and
the pattern formation due to Faraday instability in 2d granular layers [24].

In this work, we want to report about another point of view in deriving hydrodynamic
equations for dissipative systems not so spread in the physical literature when energy-gain
mechanisms, i.e., thermostats, are present. The strategy can be summarized as follows. The hy-
drodynamic equations obtained should only consider the exact macroscopic equations relevant
to the conserved quantities, i.e., mass and mean velocity. The closure procedure should be per-
formed in such a way that the second moments of the unknown distribution are approximated
by the ones of the equilibrium distributions in the homogeneous setting. The steady states of
the homogeneous case can be expressed due to homogeneity scaling from the basic stationary
state with unit mass and zero mean velocity. This coincides with the same principles applied
to the classical elastic Boltzmann equation.

The objective of the second section is then to demonstrate this strategy to several dissipative
kinetic models with thermostats appearing in econophysics, animal collective motion, simplified
granular models and the inelastic Boltzmann equation with stochastic thermostat. Finally, the
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last section is devoted to the Maxwellian model [13] of granular gases in a host medium, where
momentum and energy exchange by collisions with the background are described by a linear
inelastic Boltzmann operator. In this case, as it will be shown, the homogeneity scaling strategy
fails. However, the goal of deriving fluid–dynamic equations for the hydrodynamic variables may
be achieved by resorting to a classical tool like a moment closure technique.

2 Closures by homogeneity scaling

In this section, we review and expand an argument based on homogeneity of the stationary
states to get the Euler-type hydrodynamic equations associated to several dissipative kinetic
equations. As already mentioned in the introduction, in this strategy we try to get equations
for the evolution of the conserved quantities of the system closing them by using the stationary
states of the homogeneous regime. As classically done for the standard Boltzmann equation for
rarefied gases, we then exploit the homogeneity of the solutions with respect to the conserved
quantities to close the system at the Euler level.

This approach was introduced in [5], see also [19], for the one dimensional inelastic kinetic
model with random thermostat proposed in [4]. We will give below a review of this result in any
dimension. We will show the details of this strategy in several examples of dissipative kinetic
systems appearing in economy, collective behavior of individual agents and granular media
models.

2.1 Wealth distribution models

Recently, there have been a whole trend of research in the modelling of the formation of wealth
distribution curves in terms of statistical mechanics. Actually, the idea that these curves are
the steady results of infinitely many binary transactions leads to models based on Boltzmann
type equations [47,34,26,27,36,37]. This field of Econophysics has been quite fruitful in the
last few years, see [28,54,38] and the references therein. In several works [14,30] a first step to
deduce macroscopic balance laws has been the derivation of Fokker-Planck equations from the
Boltzmann equation using certain expansion in terms of small “inelasticity”. The homogeneity
scaling argument allows to overcome this first step and to obtain the hydrodynamics starting
directly from the Boltzmann equation. Let us demonstrate this approach in the case of a
particular model in these wealth distribution type models.

In [35], the authors introduce a kinetic model of conservative economy, in which the density
of wealth depends also on the propensity to invest. They are led to study the evolution of
a distribution function f = f(x,w, t) depending on the propensity x ∈ [0, 1], on the wealth
w ∈ R+ and on time t ∈ R+. The evolution is governed by a non–homogeneous Boltzmann–like
equation,

∂f

∂t
+ Ψ(x, w)

∂f

∂x
= Q(f, f) , (1)

where Ψ is the law of variation of the propensity to invest, and Q(f, f) is a collision operator
describing the effects of the trade. The law Ψ is assumed for simplicity linearly dependent on w,

Ψ(x,w) = (w − χ w̄) µ(x) ,

where χ is a positive constant and w̄ represents a suitable fixed value of the wealth. As concerns
the collision operator, we consider only trades that can be modelled using the following scheme:
when two agents encounter in a trade, their pre-trade wealths w, w∗ change into the post-trade
wealths w′, w′

∗ according to the rule

w′ = p1 w + q1 w∗ ,

w′
∗ = p2 w + q2 w∗ ,
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where the interaction coefficients pi and qi are suitable non-negative random variables such
that the mean of both p1 + q1 and p2 + q2 holds 1 (in this sense, the model is conservative). In
particular, the microscopic exchange rule considered in [30,35,20] is

w′ = (1− γ)w + γw∗ + η w,

w′
∗ = (1− γ)w∗ + γw + η∗w∗,

(2)

where γ ∈ (0, 1/2) is a fixed transaction parameter, and η, η∗ are random variables characterized
by the same distribution with zero mean, variance σ2 and such that η, η∗ ≥ −(1 − γ). Conse-
quently, in a suitable Maxwellian setting in which each trade generates non–negative outputs
so that the collision kernel does not need indicator functions depending on (w,w∗), the weak
form of Q(f, f) may be cast as

∫ ∞

0

ϕ(w) Q(f, f)(w) dw =
1
2

〈∫
R+

2

[
ϕ(w′) + ϕ(w′

∗)− ϕ(w)− ϕ(w∗)
]
f(w)f(w∗) dw dw∗

〉

where 〈h〉 is the expectation of h with respect to the random variable η.
If ρ(x, t) denotes the local density of agents with propensity x at time t, and m(x, t) the

local mean wealth

ρ(x, t) =
∫ ∞

0

f(x, w, t) dw , m(x, t) =
1

ρ(x, t)

∫ ∞

0

w f(x,w, t) dw ,

the corresponding evolution equations read as
∂ρ

∂t
+ µ(x)

∂

∂x

(
ρ m− χ w̄ ρ

)
= 0

∂(ρm)
∂t

+ µ(x)
∂

∂x

[∫ ∞

0

w2 f(x, w, t) dw − χ w̄ ρm

]
= 0 .

(3)

In order to close this system in a suitable hydrodynamic regime, we have to express
∫

w2f dw
in terms of the conserved quantities ρ and m. The most basic closure, at the Euler accuracy,
consists in replacing

∫
w2f dw by the second order moment corresponding to the equilibrium

state with density ρ and mean m.
Our next objective is to write the stationary states in a suitable form. Let g∞(x, w) be

steady state of the Boltzmann equation (1) with ρg ≡ 1 and mg ≡ 1. Due to the homogeneity,
it is not difficult to check that the distribution

f∞ =
ρ

m
g∞

( w

m

)
is again steady state for the model, with density ρ and mean m. Therefore, higher order mo-
ments of all steady states (with general density and mean wealth) are amenable to the ones
corresponding to the state g∞ as

Mk =
∫ ∞

0

wkf∞(w)dw =
ρ

m

∫ ∞

0

wkg∞

( w

m

)
dw = ρ mkM̄k where M̄k =

∫ ∞

0

wkg∞(w)dw.

Information on M̄k (hence on Mk) may be derived taking into account that all moments of
collision operator vanish at the equilibrium state:∫ ∞

0

wnQ(g∞, g∞) dw = 0 , ∀n ∈ N .
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This yields∫ ∞

0

wnQ(g∞, g∞) dw =
1
2

〈∫
R2

+

(
(w′)n + (w′

∗)
n − wn − wn

∗

)
g∞(w)g∞(w∗) dw dw∗

〉

=
1
2

〈∫
R2

+

[
n∑

k=0

(n

k

) (
pk
1qn−k

1 + pk
2qn−k

2

)
wkwn−k

∗ − wn − wn
∗

]
g∞(w)g∞(w∗) dw dw∗

〉

=
1
2

〈∫
R2

+

[(pn
1 + pn

2 − 1) wn + (qn
1 + qn

2 − 1) wn
∗ ] g∞(w)g∞(w∗) dw dw∗

〉
+

1
2

〈∫
R2

+

[
n−1∑
k=1

(n

k

) (
pk
1qn−k

1 + pk
2qn−k

2

)
wkwn−k

∗

]
g∞(w)g∞(w∗) dw dw∗

〉
= 0 ,

from which we have(
2− 〈pn

1 + pn
2 + qn

1 + qn
2 〉

)
M̄n =

n−1∑
k=1

(n

k

)
〈pk

1qn−k
1 + pk

2qn−k
2 〉M̄kM̄n−k . (4)

Thus, even if the equilibrium state is not known in explicit form, in the Maxwellian frame it
has been possible to derive a formula (of recursive type) for its moments.

In particular, coming back to the model discussed in [35] (with pi and qi according to the
rules (2)), we have, just by definition, M̄0 = 1 and M̄1 = 1; then, since(

2
1

)
= 2 , 〈p1q1 + p2q2〉 = 2γ(1− γ), 〈p2

1q
2
1 + p2

2q
2
2〉 = 2σ2 − 4γ(1− γ) + 2 ,

from formula (4) we get

M̄2 =
2 γ(1− γ)

2 γ(1− γ)− σ2
,

therefore the moment of order 2 is well defined only if σ2 < 2 γ(1− γ). Under this assumption,
we may close at the Euler level the macroscopic equations (3) by putting∫ ∞

0

w2f(w) dw =
2 γ(1− γ)

2 γ(1− γ)− σ2
ρ m2 .

This is exactly the same result achieved in [35], with λ = σ2/(γ(1 − γ)). We have shown that
this hydrodynamic closure does not hold only in the continuous trading limit γ → 0, σ → 0,
σ2/γ → λ, and that it may be obtained directly from the Boltzmann equation, with no need
of resorting to an asymptotic Fokker–Planck–type equation [30,20].

If we add to the system (3) an evolution equation for the second order moment, we need a
suitable expression for M3 to achieve the closure. In order to determine if M̄3 is finite, we have
to evaluate 〈p3

1 + p3
2 + q3

1 + q3
2〉, but this is not possible without information on 〈η3〉, 〈η3

∗〉. For
instance, in the particular case η, η∗ ≡ 0 (thus σ2 = 0, M̄2 = 1), we have

p3
1 + p3

2 + q3
1 + q3

2 = 2(1− 3 γ + 3 γ2) > 0 ,

and in analogous way we may evaluate higher order moments.

2.2 Simplified inelastic Granular Models

Several one dimensional models for inelastic interactions have been introduced in the literature
in order to capture part of the features of the full inelastic Boltzmann kinetic equation [1,3–5].
These models can be seen as a one dimensional reduction of simplified granular media models
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studied in [22,55]. In this case, the whole inelasticity of the system is modeled by an effective
first-order convolution like operator in the velocity variable leading to concentration of velocity
due to the loss of kinetic energy. More exactly, the models look like

∂tf + v · ∇xf = λ∇v · (∇vFf) + σ∆vf (5)

with
F (x,v, t) =

1
γ + 2

∫
R3
|v −w|γ+2f(x,w, t) dw.

Here, λ is the inelasticity parameter, σ is a stochastic thermostat to avoid complete cooling of
the system and γ is the parameter related to mimick the different collision frequencies (γ = 1
for hard-spheres). These models are obtained as small inelasticity expansions in the weak form
of Boltzmann inelastic operators, see [55]. Define as usual the particle density and the mean
velocity by

ρ(x, t) =
∫

R3
f(x,v, t) dv and ρu(x, t) =

∫
R3

vf(x,v, t) dv .

Integrating (5) over v we find the continuity equation

∂ρ

∂t
+∇x · (ρu) = 0. (6)

Multiplying (5) by v and integrating over v we obtain

∂(ρu)
∂t

+∇x · (ρu⊗ u) = −∇x ·P (7)

where P is the pressure tensor given by the fluctuations of the velocity, that is,

P(x, t) =
∫

R3
[(v − u(x, t))⊗ (v − u(x, t))] f dv .

We again realize that due to the scaling homogeneity of the problem we get that the family
of stationary solutions can be written in terms of the steady state with mass 1 and zero mean
velocity g∞ as

f∞(v) = ρ1+ 3
2+γ g∞(ρ

1
2+γ (v − u)), (8)

for any value of the conserved quantities by the collision operator, i.e., density ρ and mean
velocity u. Moreover, the stationary states for (5) are known to be isotropic, therefore the
pressure tensor can be approximated in our case by its expression computed from (8) giving

Pij(x, t) = δij

∫
R3

(vi − ui)(vj − uj)f∞ dv = δij A∞ ρ1− 2
2+γ (9)

and A∞ is given by

A∞ =
1
3

∫
R3
|v|2g∞ dv,

the second moment of g∞. Therefore the system (6)-(7) with the pressure given by (9) is the
hydrodynamical system associated to this simplified inelastic model. This leads to the isentropic
Euler equation with strange exponents below 1.

2.3 Collective Behavior Models

In recent years, the modelling of the complex behavior of highly-organize social animals as
insects, birds or fishes has been analysed in terms of statistical mechanics tools. The formation
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of large scale patterns or self-organization is not yet understood and models based on simple
rules as attraction, repulsion and orientation mechanisms have been proposed, see [51,31,29].
In this spirit kinetic modelling is one of the basic modelling techniques [45,21].

Here, we concentrate on a particular kinetic model based on the Cucker-Smale orientation
algorithm [32,33] proposed as an ingredient in the explanation of the formation of flocks for
birds. This model including noise [44] looks like

∂f

∂t
+ v · ∇xf = ∇v · [ξ(f)(x,v, t)f(x,v, t)] + σ∆vf

where
ξ(f)(x,v, t) =

∫
R2d

v −w

(1 + |x− y|2)β/2
f(y,w, t) dy dw,

where d = 2, 3. The particle model behind this kinetic equation reads
dxi

dt
= vi,

dvi

dt
=

Np∑
j=1

mjH(|xi − xj |) (vj − vi) + Γ (t),

where Γ (t) is the brownian motion with zero mean and strength
√

2σ and

H(x) =
1

(1 + |x|2)β/2
, x ∈ Rd,

is called the communication rate which measures the influence distance of each individual agent.
Let us consider the case in which β > d and thus the function H is integrable, let us denote
by cβ its integral. In this case, it is easy to see that stationary homogeneous steady state exist
since they satisfy

∇v · [ξs(f)(v)f(v)] + σ∆vf = 0

with ξs(f)(v) = cβ∇v
|v|2
2 ∗ f . Therefore, they are a particular case of the homogeneous cases

of previous subsection and thus the steady states are given by f∞(v) = ρ
5
2 g∞(ρ

1
2 (v−u)), from

which, one can again obtain the hydrodynamic system associated obtaining the pressure-less
Euler equations: 

∂ρ

∂t
+∇x · (ρu) = 0,

ρ
∂u
∂t

+ ρ (u · ∇x)u = 0.

These pressure-less hydrodynamic systems appear naturally in these models [29,21].

2.4 Inelastic Boltzmann Models

In this final subsection, we aim at deriving hydrodynamic equations for a thermalized granular
medium where the particle interaction is modelled by the full inelastic Boltzmann operator. Let
f(x,v, t) denote the distribution function. Let us recall that number density ρ, mass velocity u,
granular temperature T , viscous stress p and heat flux q may be derived as suitable moments
of f(v) in this way:

ρ =
∫

f(v) dv , ρu =
∫

v f(v) dv , 3 ρ T = m

∫
c2f(v) dv (c = v − u) ,

pij = m

∫ (
cicj −

1
3

c2 δij

)
f(v) dv , qi =

1
2

m

∫
ci c2f(v) dv .
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As usual in kinetic theory, collisions between grains themselves are modelled by a quadratic
inelastic Boltzmann operator for hard-spheres that reads, in weak formulation, as

〈ϕ, Q(f, f)〉 =
1
4π

∫∫∫
|v −w|

[
ϕ(v′)− ϕ(v)

]
f(v)f(w) dv dw dσ̂ (10)

where 〈·, ·〉 is the usual dual product, and the post–collision velocity v′ is given by

v′ =
3− e

4
v +

1 + e

4
w +

1 + e

4
g σ̂ ,

with g = |v − w|, and e is a positive restitution coefficient (less than 1). We refer to [18,56]
and the references therein for deeper discussion of the models.

In order to have again non trivial stationary states we consider the stochastic thermostat as
in previous sections. Then, as usual the linear diffusion term avoids the granular temperature
to go to 0 in the Boltzmann equation:

∂f

∂t
+ v · ∂f

∂x
= Q(f, f) + F ∆vf .

This model again preserves both number density and mass velocity, and the relevant conserva-
tion equations are 

∂ρ

∂t
+

∂

∂xi

(
ρ ui

)
= 0 ,

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
+

1
m

∂ρT

∂xi
+

1
m

∂pij

∂xj
= 0 .

The closure at the Euler level requires the evaluation of temperature and viscous stress at the
steady state. In the three-dimensional case however it is well known that the equilibrium is
isotropic (pij = 0), thus only temperature has to be actually evaluated. Let g∞ be a steady
state with ρg = 1 and ug = 0 and, as in previous subsections, let us look for α > 0 such that

f∞ = ρ3α+1g∞(ρα(v − u)) (11)

is steady state with density ρ and mean u. We have 〈Q(g∞, g∞), ϕ〉 = ρα−2〈Q(f∞, f∞), ϕ̄〉, and
〈∆vg∞, ϕ〉 = ρ−1−2α〈∆vf∞, ϕ̄〉, (where ϕ̄(v) = ϕ(ραv)), so that by imposing

〈ϕ̄, Q(f∞, f∞)〉+ F 〈ϕ̄, ∆vf∞〉 = 0

for all ϕ̄, we get α = 1
3 , hence

f∞ = ρ2g∞(ρ
1
3 (v − u)) .

Isotropic moments of f∞ are then related to the corresponding ones of g∞ by∫
|v − u|2 kf∞(v) dv = ρ1− 2 k

3

∫
|w|2 kg∞(w) dw .

In the particular case k = 1 we get ρ(T∞)f = ρ
1
3 (T∞)g. If we want to compute the exact value

of the temperature for the steady state with unit density and zero mean velocity, we cannot do
it explicitly for the hard-spheres collision kernel.

Assuming a suitable pseudo–Maxwellian approximation is adopted, as in [13,6,7,2,9,25],
then this computation can be made explicit. In this approximation, the relative speed appearing
in the collision kernel is replaced by B

√
T , and from now on we shall denote Q̃(f, f) the

operator (10) with this approximation. Simple computations provide

1
3

F

∫
v2 ∆vg∞ dv = 2F
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while, skipping details

1
3

∫
v2Q̃(g∞, g∞) dv = −B

√
(T∞)g

1− e2

4
(T∞)g .

Imposing the equilibrium condition, we find the equilibrium temperature

(T∞)g =
(

8F

B(1− e2)

) 2
3

.

Then Euler closure is achieved by replacing ρT in (2.4) by

ρ(T∞)f =

[(
8F

B(1− e2)

)2

ρ

] 1
3

.

3 Hydrodynamic equations by means of the moments of the steady state

Another interesting topic dealt with in several papers in recent literature is the evolution of
a granular powder in a host medium, considered as a fixed background [11,8]. It is modelled
by adding to the inelastic Boltzmann equation a linear operator L(f) describing the scattering
with the background:

∂f

∂t
+ v · ∂f

∂x
= Q(f, f) + L(f) . (12)

The linear operator may be cast, in weak form, as

〈ϕ, L(f)〉 =
1

4π λ

∫∫∫
|v −w|

[
ϕ(v′L)− ϕ(v)

]
f(v)fB(w) dv dw dσ̂ (13)

where fB is the distribution of the host medium (not necessarily a Maxwellian distribution),

v′L = v − α
1 + eB

2

(
v −w − g σ̂

)
,

the post–collision velocity (the restitution coefficient eB may be different from e), and α =
mB/(m + mB) the mass ratio factor.

As in the final part of the previous section, we will adopt the pseudo–Maxwellian approxi-
mation for the binary collision operator, as in [13,6,7,2,25]. Also in the linear operator we adopt
the pseudo–Maxwellian assumption, setting in the kernel |v − w| = Bb (

√
T )γ (with γ ≥ 0),

and L̃(f) shall denote (13) with this approximation.
The most interesting case seems to be the option γ = 1, for which in both collision operators

the relative speed is approximated by the thermal speed. However, let us note that in this case
it is not possible to proceed as above, recovering the moments of all steady states in terms of
the ones of the equilibrium with number density equal to 1. In fact, let us look for the suitable
α such that f∞(v) of the form (11) is a steady state for (12). Since

〈ϕ, Q̃(g∞, g∞)〉 = ρα−2 〈ϕ̄, Q̃(f∞, f∞)〉

and
〈ϕ, L̃(g∞)〉 = ρα γ−1 〈ϕ̄, L̃(f∞)〉 ,

by imposing the equilibrium we get

α =
1

1− γ
,

that unfortunately is not defined for γ = 1, and moreover is positive only for γ < 1.



9

We have therefore to find another strategy to achieve closed sets of hydrodynamic equations
corresponding to the physical option γ = 1. It is well known that for a granular material in
a host medium the unique macroscopic quantity that is conserved during the evolution is the
number density:

∂ρ

∂t
+

∂(ρui)
∂xi

= 0 , (14)

and to close this equation it suffices to express the mass velocity u in terms of n and of the back-
ground parameters. Taking the weak forms (10) and (13) (with the Maxwellian approximation)
corresponding to the weight function ϕ(v) = v, we get

〈v, Q̃(f, f)〉 = 0 , 〈v, L̃(f)〉 = −α
1 + eB

2 λ
Bb

√
T ρBρ(u− uB) ,

therefore at the equilibrium we have u = uB . Equation (14) is then, at the Euler level, a quite
trivial drift–diffusion equation at the background mean velocity. Thus, we will apply a typical
closure method for hydrodynamic equations to the balance laws of macroscopic moments up to
the temperature equation.

Macroscopic equations for ρ, u, T may be cast in convective form as

∂ρ

∂t
+

∂

∂xi

(
ρ ui

)
= 0 ,

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
+

1
m

∂ρT

∂xi
+

1
m

∂pij

∂xj
= −α

1 + eB

2 λ
Bb

√
T ρBρ(u− uB) ,

3
2

ρ
∂T

∂t
+

3
2

ρui
∂T

∂xi
+ ρT

∂ui

∂xi
+ pij

∂ui

∂xj
+

∂qi
∂xi

= 〈1
2

mc2, Q̃(f, f)〉+ 〈1
2

mc2, L̃(f)〉

(15)

where only the first equation represents a conservation law, and the complete set is not closed
because of the presence, in the streaming part, of the viscous stress p and of the heat flux q.

We may close the system by replacing pij and qi by their equilibrium values, obtained
imposing that〈(

cici −
1
3

c2δij

)
, Q̃(f∞, f∞)

〉
+

〈(
cici −

1
3

c2δij

)
, L̃(f∞)

〉
= 0 (16)

〈ci c2, Q̃(f∞, f∞)〉+ 〈ci c2, L̃(f∞)〉 = 0 . (17)

The evaluation of the required collision moments involve long, even if quite standard, cal-
culations, that for brevity we do not report in detail. We remark only that all integrals over
the unit vector σ̂ are amenable to the following ones:∫

S2
dσ̂ = 4π ,

∫
S2

σi dσ̂ = 0 ,

∫
S2

σi σj dσ̂ =
4
3

π δij .

The second order moment of the quadratic operator results in

m〈ci cj , Q̃(f, f)〉 = − (3− e)(1 + e)
8

B
√

T ρ pij −
1− e2

4
B
√

T ρ2 T δij ,

and consequently, since the viscous stress tensor is traceless,

m〈c2, Q̃(f, f)〉 = − 3
4

(1− e2) B
√

T ρ2 T ,

so that

m

〈(
cicj −

1
3

c2δij

)
, Q̃(f, f)

〉
= − (3− e)(1 + e)

8
B
√

T ρ pij .
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As concerns the third order moment, the final result is

1
2

m〈ci c2, Q̃(f, f)〉 = − (1 + e)(11− 7e)
24

B
√

T ρ qi .

A bit more involved (and also new in the literature, to our knowledge), is the evaluation
of contributions corresponding to the linear inelastic operator. They shall contain also the
background macroscopic moments, including its viscous stress and heat flux, since here we are
not assuming the host medium accommodated at a Maxwellian shape. Skipping all intermediate
details, we have

m〈ci cj , L̃(f)〉 = − α (1 + eB)
Bb

λ

√
T

(
ρBpij + ρρBT δij

)
+ α2 (1 + eB)2

4
Bb

λ

√
T

[
ρBpij

+ ρρBT δij +
1− α

α
ρpB

ij +
1− α

α
ρρBTB δij + ρρB

(
T +

1− α

α
TB

)
δij

+
1
3

mρρB(u− uB)2δij + mρρB(ui − uB
i )(uj − uB

j )
]

,

and consequently

m〈c2, L̃(f)〉 = −α (1 + eB)
Bb

λ

√
T ρρB

[
3T − α

1 + eB

2

(
3T + 3

1− α

α
TB + m(u− uB)2

)]
so that

m

〈(
cicj −

1
3

c2δij

)
, L̃(f)

〉
= − α (1 + eB)

Bb

λ

√
T

{
ρBpij − α

1 + eB

4

[
ρBpij +

1− α

α
ρpB

ij

+ ρρB

(
m(ui − uB

i )(uj − uB
j )− 1

3
m(u− uB)2δij

)]}
.

The third order moment results in

1
2

m〈ci c2, L̃(f)〉 =
Bb

λ

√
T α(1 + eB)

{[
− 3

2
+

7
6

α(1 + eB)− 1
3

α2(1 + eB)2
]

ρBqi

+
1
3

α2(1 + eB)2
m

mB
ρqB

i − 1
3

α2(1 + eB)2
m

mB
ρpB

ij(uj − uB
j )

+
[
− 1

2
+

11
12

α(1 + eB)− 1
3

α2(1 + eB)2
]

ρBpij(uj − uB
j )

+
[
− 5

4
+

5
3

α(1 + eB)− 5
6

α2(1 + eB)2
]

ρρBT (ui − uB
i )

− 5
6

α2(1 + eB)2
m

mB
ρρBTB(ui − uB

i )

−1
6

α2(1 + eB)2mρρB(u− uB)2(ui − uB
i )

}
.

First of all, notice that collision contribution appearing in the third of (15) involves only
the moments ρ, u, T :〈

1
2

mc2, Q̃(f, f)
〉

+
〈

1
2

mc2, L̃(f)
〉

= − 3
8

(1− e2) B
√

T ρ2 T

− 1
2

α (1 + eB)
Bb

λ

√
T ρρB

[
3T − α

1 + eB

2

(
3T + 3

1− α

α
TB + m(u− uB)2

)]
.
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Bearing in mind that u∞ = uB at the equilibrium state, it follows that the steady state
temperature is given by

T∞ =
(1− α)

1 + eB

2

1− α
1 + eB

2
+

B λ

Bb

1
4α

(
1− e2

1 + eB

)
ρ

ρB

TB ,

that in the particular case e = 1 (elastic quadratic operator) reproduces the result of [10].
By imposing now the constraints (16) we get closed expressions for pij and qi in terms of ρ,

u, T and of the background parameters:[
(3− e)(1 + e)

8
Bρ + α(1 + eB)

Bb

λ

(
1− α

1 + eB

4

)
ρB

]
pij = (18)

α

(
1 + eB

2

)4
Bb

λ
ρ

{
(1− α)pB

ij + α mρB

[
(ui − uB

i )(uj − uB
j )− 1

3
(u− uB)2δij

]}
and{

(1 + e)(11− 7e)
24

Bρ +
Bb

λ
α(1 + eB)

[
1
3

α2(1 + eB)2 − 7
6

α(1 + eB) +
3
2

]
ρB

}
qi = (19)

Bb

λ
α3(1 + eB)3

[
1
3

m

mB
ρqB

i − 1
3

m

mB
ρpB

ij(uj − uB
j )− 5

6
m

mB
ρρBTB(ui − uB

i )

− 1
6

mρρB(ui − uB
i )(u− uB)2

]
+

Bb

λ
α(1 + eB)

{[
− 1

3
α2(1 + eB)2 +

11
12

α(1 + eB)

− 1
2

]
ρBpij(uj − uB

j ) +
[
− 5

6
α2(1 + eB)2 +

5
3

α(1 + eB)− 5
4

]
ρρBT (ui − uB

i )
}

.

By inserting (18) and (19) into the streaming part of equations (15), we obtain an approximated
closed set of evolution equations for ρ, u, T .

Unfortunately expressions (18) and (19) are quite complicated, but become more manageable
for some particular asymptotic scalings. Let ε be the relevant pertinent small parameter.

In conditions not far from thermodynamical equilibrium (for both gas and background),
with ε standing for Knudsen number, it seems reasonable to suppose that u− uB = O(ε), and
that simultaneously pB = O(ε) and qB = O(ε). Under these assumptions also pij and qi are
O(ε) and, neglecting O(ε2) terms, equations (18) and (19) reduce to:[

(3− e)(1 + e)
8

Bρ + α(1 + eB)
Bb

λ

(
1− α

1 + eB

4

)
ρB

]
pij = α

(
1 + eB

2

)4
Bb

λ
(1− α) ρ pB

ij ,{
(1 + e)(11− 7e)

24
Bρ +

Bb

λ
α(1 + eB)

[
1
3

α2(1 + eB)2 − 7
6

α(1 + eB) +
3
2

]
ρB

}
qi =

Bb

λ
α3(1 + eB)3

1
3

m

mB
ρqB

i − Bb

λ
α3(1 + eB)3

5
6

m

mB
ρρBTB(ui − uB

i )

+
Bb

λ
α(1 + eB)

[
− 5

6
α2(1 + eB)2 +

5
3

α(1 + eB)− 5
4

]
ρρBT (ui − uB

i ) .

Another simplification may arise from the fact that, in physical problems like the evolution
of a granular powder in the atmosphere, grains mass is much higher than field particle mass,
namely m � mB , so that we may assume α itself as small parameter. Therefore the constitutive
equations for pij and qi take, at first order accuracy in ε = α, very simple expressions:[

(3− e)(1 + e)
8

Bρ + α(1 + eB)
Bb

λ
ρB

]
pij = α

(
1 + eB

2

)4
Bb

λ
ρ pB

ij ,



12 [
(1 + e)(11− 7e)

24
Bρ +

3
2

Bb

λ
α(1 + eB) ρB

]
qi = − 5

4
Bb

λ
α(1 + eB) ρρBT (ui − uB

i ) .

Though these last two truncations are much in the spirit of the Chapman–Enskog expan-
sion (leading to Navier–Stokes–type equations), the achieved constitutive equations express
pij and qi in terms of the background properties and of the fundamental fields, not of their
gradients.
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