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Absolute Cyclicity, Lyapunov quantities and

Center Conditions

M. Caubergh and A. Gasull

Abstract

In this paper we consider analytic vector fields X0 having a non-
degenerate center point e. We estimate the maximum number of small
amplitude limit cycles, i.e., limit cycles that arise after small perturba-
tions of X0 from e. When the perturbation (Xλ) is fixed, this number is
referred to as the cyclicity of Xλ at e for λ near 0. In this paper, we study
the so-called absolute cyclicity; i.e., an upper bound for the cyclicity of
any perturbation Xλ for which the set defined by the center conditions
is a fixed linear variety. It is known that the zero-set of the Lyapunov
quantities correspond to the center conditions [6]. If the ideal generated
by the Lyapunov quantities is regular, then the absolute cyclicity is the
dimension of this so-called Lyapunov ideal minus 1. Here we study the
absolute cyclicity in case that the Lyapunov ideal is not regular.

Keywords: cyclicity, absolute cyclicity, Hilbert’s sixteenth problem,
center conditions, Lyapunov quantities, bifurcation analysis.

MSC2000: 34C07, 34C23

1 Introduction

1.1 Cyclicity problem and center conditions

The existential part of Hilbert’s 16th problem asks whether there exists a uni-
form upper bound for the number of limit cycles that appear in a planar poly-
nomial vector field, only depending on its degree n. By the so-called Roussarie
reduction this global problem is reduced to the investigation of local ‘cyclicity
problems’; in this reduction one looks for ‘limit periodic sets’, from which limit
cycles can arise when slightly perturbing the vector field (cfr. [15]). Let (Xλ)λ

be an analytic family of vector fields, such that Γ is a limit periodic set of Xλ0 ;
then, the cyclicity of Xλ at

(
Γ, λ0

)
is defined by

Cycl
(
Xλ,

(
Γ, λ0

))
= lim

λ→λ0
sup
γ→Γ

{# limit cycles γ of Xλ} ,

where the limit γ → Γ is taken in the sense of the Haussdorf distance. If for
every given limit periodic set of an analytic family of vector fields, the cyclicity
is finite, then there exists a uniform upper bound for the number of limit cycles
of (Xλ) .

There exist several (equivalent) techniques to study this number. Poincaré
reduced the study of limit cycles to the study of zeroes of maps (δλ)λ , associated
to the family of vector fields (Xλ)λ near the limit periodic set Γ. These maps
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are called displacement maps. In this paper we only consider analytic fam-
ilies of vector fields and isolated singularities; then, by Poincaré-Bendixson’s
theorem, a limit periodic set is one of the following compact invariant sets: a
singularity, a periodic orbit or a graphic. The cyclicity in the first two cases
corresponds to the local study of zeroes of an analytic family of maps; it is
theoretically well-understood. For instance, the cyclicity is finite; knowing a
non-identically zero jet of finite order of the maps δλ0 at the limit periodic set,
an explicit upper bound for the cyclicity is known and given in terms of the or-
der of the first non-zero jet of δλ. This result is often referred to as the theorem
of Melnikov-Pontryagin and is obtained by a division-derivation algorithm. In
fact, in this case, the bifurcation diagram can completely be described by use
of the Weierstrass Preparation Theorem.

When all jets of the map δλ0 at r = 0 vanish identically, then the vector
field is called to be of center type near Γ. This means that the vector field near
Γ consists of a disc or annulus of non-isolated periodic orbits. In this case, the
division-derivation algorithm cannot be applied in a straight forward way. One
first has to remove the degeneracy caused by the center type; this is done by
dividing the displacement maps δλ in the Bautin ideal, i.e. the ideal generated
by the (analytic) coefficients in the asymptotic expansion of (δλ)λ . By Hilbert’s
base theorem, we know that this ideal is finitely generated, and the division of
(δλ)λ in a so-called minimal set of generators provides the upper bound for the
cyclicity in the center case [15] . The parameter values λ at which the generators
of the Bautin ideal vanish, correspond to vector fields Xλ of center type, and
give the center conditions.

In general, it is a difficult problem to calculate the asymptotic expansion of
the maps δλ of infinite order; often only a finite number of coefficients in this
expansion can be calculated. In practice, only the first non-zero coefficient can
be calculated, and this is sufficient to draw conclusions. Therefore, one restricts
the calculations of these coefficients to parameter values for which the previous
coefficients vanish. If at some order the coefficient is not identically zero for all
parameter values, one can give an upper bound for the cyclicity.

In [6] it is proven that the Bautin ideal coincides with the so-called Lya-
punov ideal; furthermore, they coincide at each order of asymptotic expansion.
There exist algorithms in computer-algebra packages to calculate the Lyapunov
quantities (cfr. [11]).

The definition and properties of Lyapunov quantities can for instance be
found in [6], [7], [11]. Among specialists it is well-known that for classical
Liénard equations, the Lyapunov ideal corresponding to the singularity at the
origin, are given by the ‘odd’ coefficients (Cherkas). Using the theory developed
in [6], an asymptotic expansion of the maps (δλ)λ are provided in [7], and the
cyclicity is thus calculated, see also [10, 16]. However, no such explicit center
conditions can be given for the generalized Liénard equation in terms of its
coefficients.

In general, there does not exist any theory to determine the order of non-
vanishing coefficient, nor of stabilizing of the Bautin ideal in terms of the coef-
ficients of the vector field (Xλ)λ . Knowing this order enables us to bound the
cyclicity of the family [15].

When the center condition is generated by merely a one-dimensional param-
eter, say ε = 0, then the technique based on the Bautin ideal corresponds to
the technique of computing Melnikov functions (Abelian integrals).
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By the difficulty of calculating all Lyapunov quantities that make the Bautin
ideal stabilize, the question arised to apply this 1-parameter technique to esti-
mate the cyclicity in the multi-paramater family. When the center conditions
are generated by a multi-dimensional parameter, say ϕ1, . . . , ϕl, then we know
from [3] that the cyclicity of the multi-dimensional family can be studied by
means of a 1-dimensional parameter subfamily. More precisely, there always
exists an analytic curve in parameter space on which the cyclicity is attained, a
so-called curve of maximal cyclicity (mcc). As a consequence, the 1-dimensional
technique can be applied as soon as we know an mcc. Under certain generic
conditions the existence of an algebraic mcc is guaranteed (cfr. [5]). In general,
there does not exist a linear mcc and we only know the existence of an mcc. If
the Bautin ideal is regular, then there exists a linear curve of maximal multi-
plicity (mmc); this is the case of the classical Liénard equations. If the Bautin
ideal is principal, there always exists a linear curve of maximal index (mic).
As a consequence, if the Bautin ideal is regular or principal, an upperbound
for the cyclicity can be found by calculating Melnikov functions in 1-parameter
subfamilies induced by a straight line through λ0 (cfr. [5]).

To verify the conditions for existence of linear mcc, mmc or mic, one has to
compute the Bautin ideal; hence, their existence can not always be ensured. Now
the question arises how to estimate the cyclicity at a center by the knowledge
of only a few number of Lyapunov quantities. This is the subject of this paper.

1.2 Results

In this paper, we suppose that for a given analytic family (Xλ)λ , the center
conditions can be found by a geometric argument; suppose that the vector
field is of center type for parameter values that satisfy {f (λ) = 0} , where f :(
Rm, λ0

)
→ (Rn, 0) is an analytic function, that is not identically zero. Without

loss of generality, we can assume that λ0 = 0.
If m = 1, then the Bautin ideal is principal, hence there exists a linear

mic (cfr. [5]). So the 1-parameter technique can be applied. If, e.g., the first
Lyapunov quantity is given by (f (λ))5 , then, using standard techniques, one
finds that the cyclicity is at most 4. Furthermore, there exist examples for
which the cyclicity is exactly 4 (cfr. [9, 15]). In [9], a precise description of
the bifurcation diagram of limit cycles is given in case that the Bautin ideal
is an arbitrary ideal of dimension 1; there the approach is based on Lyapunov
quantities (which is an equivalent approach, cfr. e.g., [6]).

Here, we investigate the case that the Bautin Ideal is not principal; i.e.,
the case when the dimension of the Bautin ideal is at least 2. Throughout
this paper, we will often deal with the 2-dimensional case in order to simplify
the reading; however, the results can be generalised in a natural way to any
dimension. When the dimension of the Bautin ideal is greater than 2, the
bifurcation diagram becomes more complicated: besides Hopf bifurcations also
boundary bifurcations can occur (cfr. [6]). This extra complexity is also reflected
in the analysis of the bifurcation diagram of the 2-dimensional case study in
section 3.2.

Suppose that the mapping

(Rm, 0) → R2 : λ 7→ (f1 (λ) , f2 (λ))

is a local submersion at λ = 0.
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Then, the absolute cyclicity for a class of analytic families for which the first
Lyapunov quantity takes the form f1 (λ) f2 (λ) is infinite (Theorem 3). Recall
that by absolute cyclicity we mean the maximal cyclicity for an analytic family
of vector fields, satisfying a given property; here the absolute cyclicity concerns
the maximal cyclicity taken over all analytic families having a center in the origin
with centers generated by either f1 (λ) = 0 or f2 (λ) = 0, and first Lyapunov
quantity given by f1 (λ)k1 f2 (λ)k2 .

More generally, if we suppose that the first Lyapunov quantity is given by
λk1

1 λk2
2 · . . . · λkm

m , where ki ∈ N, 1 ≤ i ≤ m, k1 + . . . + km ≥ 1. Then, the
study of the maximal possible cyclicity is reduced to a problem of estimating
the maximum number of small positive zeroes in analytic families of functions
(δλ)λ , λ = (λ1, . . . , λm) , satisfying

δλ|λ=0 ≡ 0 and δλ (r) = rn
(
λk1

1 λk2
2 · . . . · λkm

m + O (r)
)

, (1)

for r → 0, ‖λ‖ → 0, and for certain n, ki ∈ N, 1 ≤ i ≤ m. For m = 1, the answer
is contained in the Weierstrass Preparation Theorem. As far as we know, for
m ≥ 2, there does not exist an analogue of the Weierstrass Preparation Theorem,
where the standard family

(
δ̄λ

)
λ

is a family of multivariate polynomials δ̄λ.
Furthermore, we point out that the property (1) is too wild to find a uniform
upperbound for the maximal number of small positive zeroes of δλ, ‖λ‖ ↓ 0; in
other words, the absolute cyclicity is infinite (Theorem 3).

However, if, instead of (1) , the derivatives of δλ (r) with respect to r satisfy

δλ|λ=0 ≡ 0 and δ
(2j−1)
λ (0) = λ

kj

j , 1 ≤ j ≤ m, (2)

for ‖λ‖ → 0,∀1 ≤ j ≤ m, for certain nj , kj ∈ N, 1 ≤ j ≤ m, with n1 <
n2 < . . . < nm, then by a division-derivation algorithm, the absolute cyclicity
Cabs

m (k1, . . . , km) is shown to be finite (Theorem 4):

Cabs
m (k1, . . . , km) ≤ k1 · . . . · km + m− 2, (3)

where

Cabs
m (k1, . . . , km) = sup

{
Cm

(
δλ,
(
0+, 0

))
: (δλ)λ satisfies (2)

}
,

and
Cm

(
δλ,
(
0+, 0

))
= lim

λ→0
sup
r↓0

{# positive zeroes r of δλ} .

Notice that the result in (3) can be generalized in a trivial way for families δλ

satisfying

δλ|λ=0 ≡ 0, δ
(p)
λ (0) = 0,∀0 ≤ p ≤ nm − 1, n 6= nj and δ

(nj)
λ (0) = λ

kj

j .

In particular, from [9], we obtain Theorem 2:

Cabs
1 (k) = k − 1,

and for m = 2, we find the following finer bounds (Theorem 6):

Cabs
2 (k1, 1) = k1 and for k1 ≥ 2,

[
3k1 + 1

2

]
≤ Cabs

2 (k1, 2) ≤ 2k1,
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where [s] denotes the integer part of s. Furthermore, in section 3.2, we investigate
the germ of the bifurcation diagram for ‖λ‖ → 0, r ↓ 0 for m = k1 = k2 = 2 in
more detail; in general it corresponds to the case where the first (respectively
second) Lyapunov quantity is given by

f1 (λ)2 (respectively f2 (λ)2 ).

Our results seem to indicate that in this case the absolute cyclicity would be 3.
The paper is organized as follows. In section 2, we investigate the existence

of upper bounds for the absolute cyclicity with respect to (1) as well as (2) ; if
it exists, we provide an upper bound. Next, in section 3, we concentrate on the
case that the Bautin ideal is 2-dimensional; as such, we obtain finer estimates.

In the analysis of the bifurcation diagram of the zeroes of the analytic func-
tion δ, we use standard tools, such as the Bautin ideal (cfr. [15]), Newton’s
diagram (cfr. [1]), discriminant (cfr. [13]) and Descartes’ Rule.

Let us finally remark that for a given analytic family of functions δ (r, λ)
with δ (r, λ) = δ (−r, λ) , we can construct the analytic family of vector fields

Xλ =
(

x
∂

∂y
− y

∂

∂x

)
+ δλ (r)

(
x

∂

∂x
+ y

∂

∂y

)
,

where r =
√

x2 + y2 and δ (r, λ) = δλ (r) . Then, the function δλ is a displace-
ment map for Xλ, up to a non-zero analytic factor. However, in the study of
limit cycles, these functions play the same role and have the same properties as
the traditional displacement map. In particular, by symmetry with respect to
the center in the origin, if we have locally the following asymptotics:

δ (r, λ) =
t∑

i=1

αi (λ) ri + O
(
rt+1

)
, r ↓ 0,

then it is well-known that there exist analytic functions Aij (λ) such that locally

α2i (λ) =
i∑

j=1

Aij (λ) α2j−1 (λ)

(cfr. [4]). This is the reason why we provide with examples that are even with
respect to r.

2 Upper bounds for the absolute cyclicity

We first study analytic families of functions satisfying (1) . For m = 1, the
absolute cyclicity can be calculated exactly. This result has been proven in [9].
For sake of completeness, we here include the precise result - rephrased in terms
of zeroes of analytic functions- and its proof. In particular the proof provides
insight in the multi-dimensional case (m > 1). Its proof relies on the curve
selection lemma for subanalytic sets, which we state below:

Lemma 1 ([2], [8] and [14]) Suppose that V is an open subanalytic set in Rp,
and λ0 is an accumulation point of V , then there exists an analytic curve γ :
[0, 1] → Rp such that γ(]0, 1[) ⊂ V and γ(0) = λ0.

5



Theorem 2 ([9]) Consider any analytic family (δλ)λ of functions with λ ∈ R,
such that

δλ (r) = rp
(
λk + λg (r, λ)

)
, (4)

for p ∈ N with
g (r, λ) = O (r) , r ↓ 0. (5)

Then, Cabs
1 (k) = k − 1.

Proof. Let (δλ)λ be a fixed analytic family of maps satisfying (4) and (5) ; then
there exists 1 ≤ i ≤ k, such that

δλ (r) = δ (r, λ) = λirpδ̂ (r, λ) ,

for an analytic map δ̂ with

δ̂ (r, λ) = λk−i + O (r) , r → 0.

First we show that

Cm

(
δλ,
(
0+, 0

))
≤ k − i ≤ k − 1;

then, by providing an example in which Cm (δλ, (0+, 0)) = k − 1, the result
follows. Suppose that the cyclicity Cm (δλ, (0+, 0)) > k − i. As a consequence
of the curve selection lemma (lemma 1), there exist continuous functions ξj :
[0, A] → R, 1 ≤ j ≤ k − i + 1 (that are even analytic outside λ = 0) such that
for 0 < λ < A :

0 < ξ1 (λ) < ξ2 (λ) < . . . < ξk+1 (λ) (6)

with ∀1 ≤ j ≤ k + 1,

δ̂ (ξj (λ) , λ) ≡ 0 and ξj (0) = 0.

(cfr. [4]). From the Intermediate Value Theorem for continuous functions, it
follows that for any r small enough and any 0 < A0 < A small enough, i.e.,
r ∈ ∩k−i+1

j=1 ξj (]0, A0[) , we find (k − i + 1) values λ, say λ1, . . . , λk−i+1, such that
ξj (λj) = r. By (6) , these λ1, . . . , λk−i+1 are disjoint zeroes of δ̂ (r, ·) in [0, A0] .
However, by Rolle’s theorem, for r and A0 small enough, the map δ̂ (r, ·) has at
most k − i zeroes in [0, A0] . Contradiction.

Consider now the analytic family of functions defined by

δ̄λ (r) = δ̄ (r, λ)

= rλ
(
λk−1 + ν1λ

k−2r + ν2λ
k−3r2 + . . . + νk−2λrk−2 + νk−1r

k−1
)
,

where ν = (ν1, . . . , νk) ∈ Rk, λ ∈ R, r > 0. For an appropriate choice of ν =
(ν1, . . . , νk) , we have

Cm

(
δ̄λ,
(
0+, 0)

))
= k − 1.

In particular, from this result it follows that the absolute cyclicity of an
analytic family of functions δλ can not be bounded for the class of functions
defined by (1) , as soon as m ≥ 2.
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Theorem 3 Let m ≥ 2 arbitrary but fixed. Consider analytic families of func-
tions satisfying (1) such that

∑
1≤i1<i2≤m(ki1ki2)2 6= 0 (i.e., at least two in-

dices are nonzero). Then, the absolute cyclicity is infinite. In particular, let
1 ≤ i1 < i2 ≤ m be integers such that ki1ki2 6= 0. Then, ∀M ∈ N, there exists
an analytic family

(
δ̂λ

)
λ

of the above form with

Cm

(
δ̂λ,
(
0+, 0

))
= M.

Proof. Write K =
∑m

i=1,i 6=i2
ki − 1, then we can choose q ∈ N such that

N = K + q(ki2 − 1)− 1 ≥ M. Choose real constants α1, . . . , αN such that

1 + α1ρ + α2ρ
2 + α3ρ

3 + . . . + αKρK + . . . + αNρN

has exactly N positive zeroes. Let 1 ≤ i1 < i2 ≤ m be the smallest integers for
which ki1ki2 6= 0. Then, define

(
δ̂λ

)
λ

by

δ̂λ (r)=λk1
1 λk2

2 . . . λkm
m + α1λ

N+1
i1

λi2r+ α2λ
N
i1λi2r

2+ . . . +αK−1λ
N+3−K
i1

λi2r
K−1

+ αKλi1λ
ki2
i2

rK + αK+1λ
N+1−K
i1

λi2r
K+1 + . . . + αNλ2

i1λi2r
N .

Consider the 1-parameter subfamily defined by the curve ζ(C)=(ζ1(C), . . . , ζm(C)),
C > 0 with

ζi (C) = C,∀i 6= i2 and ζi2 (C) = Cq;

this yields to the 1-parameter family

δ̂ζ(C) (r) = Cq+1[CN+1 + α1C
Nr + α2C

N−1r2 + . . .

+ αK−1C
N+2−KrK−1αKCq(ki2−1)rK

+ αK+1C
N−KrK+1 + . . . + αN−1CrN ].

Next we perform the rescaling r = Cρ, and we can factorize δ̂λ as follows:

δ̂ζ(C) (λ1ρ) = CN+q+2
(
1 + α1ρ + α2ρ

2 + . . . + αN−1ρ
N−1 + αNρN

)
.

This map has N positive zeroes ρ. As a consequence, for parameter values λ
that belong to the curve ζ, the map δ̂λ has N positive zeroes r, that tend to
zero when ‖λ‖ → 0. The result follows.

If
∑m

i=1 ki 6= 0, but for every 1 ≤ i1 < i2 ≤ m, ki1ki2 = 0, then without
refining the class of analytic families of functions (δλ)λ in (1) , the absolute
cyclicity also is infinite. This fact is illustrated by the following family of analytic
functions (δλ)λ , in case m = 2 :

δλ (r) = λ1 + α1λ
l
2r + α2λ

l−1
2 r2 + . . . + αlλ2r

l.

For an appropriate choice of the constants αi, 1 ≤ i ≤ l, the cyclicity of this
family, N2 (δλ, (0+, 0)) , is l. If we now refine this class of analytic families of
functions (δλ)λ to the class determined by (2) , then we have the following
absolute finiteness result:
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Theorem 4 Suppose that (δλ)λ is an analytic family of functions with asymp-
totic expansion for r ↓ 0,

δλ (r) =
m∑

i=1

Āiλ
ki
i rni + O

(
rnm+1

)
(7)

for λ = (λ1, λ2, . . . , λm) ∈ Rm, λ near 0, ki ∈ N \ {0}, Āi 6= 0,∀1 ≤ i ≤ m, and
ni ∈ N with n1 < n2 < . . . < nm. Then, its cyclicity at (0+, 0) is bounded by
k1k2 . . . km + m− 2. As a consequence,

Cabs
m (k1, k2, . . . , km) ≤ k1k2 . . . km + m− 2.

In particular, Cabs
2 (k, l) ≤ kl.

Proof.
The Taylor expansion of δ (·, λ) at r = 0, defines analytic functions αj(λ) , j≥

nm+1, in a neighbourhood of λ = 0, where αj (λ) is the coefficient corresponding
to the power rj . Then, in the local ring of germs of analytic functions at λ = 0,
we consider the ideal generated by{

λk1
1 , λk2

2 , . . . , λkm
m , αj (λ) : j ≥ nm + 1

}
;

this ideal is called the Bautin ideal associated to the analytic family of functions
(δλ)λ . By Hilbert’s base theorem, the Bautin ideal is finitely generated; in
particular, we can choose a set of generators of the form:{

λk1
1 , λk2

2 , . . . , λkm
m , αnj

(λ) : m + 1 ≤ j ≤ L
}

,

such that n1 < n2 < . . . < nL and ∀nm + 1 ≤ j < nt :

αj ∈
{

λk1
1 , λk2

2 , . . . , λkm
m , αj (λ) : nm+1 ≤ j < nt

}
.

As a consequence, by a regrouping of the terms, we can write:

δ (r, λ) =
m∑

i=1

λki
i h̄i (r, λ) +

L∑
i=m+1

αni (λ) h̄i (r, λ) , (8)

such that the factor functions h̄i have the following asymptotics for λ → 0, r ↓ 0 :

h̄i (r, λ) = Air
ni + o (rni) , 1 ≤ i ≤ L,

for non-zero constants Ai, 1 ≤ i ≤ L. Next, by the multi-variate Taylor’s theo-
rem at λ = 0, we find for each αni

,m + 1 ≤ i ≤ L a polynomial ϕi (λ) in the
parameter variable λ1, λ2, . . . , λm such that

αni
− ϕi ∈ I

(
λk1

1 , . . . , λkm
m

)
; (9)

i.e., the analytic function αni − ϕi can be divided in the ideal generated by
λk1

1 , . . . , λkm
m and ϕ is a polynomial of degree kj−1 with respect to λj , 1 ≤ j ≤ m.

By again regrouping the terms in (8) , we find the local division:

δ (r, λ) =
m∑

i=1

λki
i hi (r, λ) +

L∑
i=m+1

ϕi (λ) hi (r, λ) , (10)

8



with ∀1 ≤ i ≤ L :

hi (r, λ) = Air
ni + o (rni) , 1 ≤ i ≤ L. (11)

By the division-derivation algorithm, we find a compact neighborhood W of
λ = 0 in R2 × Rn and a neighborhood V of r = 0 in R+ such that the function
δ (·, λ) has at most L − 1 zeroes in V, ∀λ ∈ W.

In other words,
Cabs

m (k1, . . . , km) ≤ L− 1.

By Newton’s diagram in Nm, (9) and the fact that the family (δλ)λ is not iden-
tically 0, it follows that

L −m ≤ k1k2 · . . . · km − 1,

and the result follows.

Remark 5 Using a division-derivation argument, theorem 4 can be generalized
to e.g., a displacement map δλ having an asymptotic expansion given by

δ(λ) (r) =
m∑

i=1

Āi (λ) λki
i rni + λl

1f (r, λ) + O
(
rnm+1

)
, r ↓ 0,

for λ = (λ1, λ2, . . . , λm) ∈ Rm, ‖λ‖ → 0, ni ∈ N with n1 + 1 < n2 < . . . < nm

and for analytic functions Āi : (Rm, 0) → R with Āi (0) 6= 0, 1 ≤ i ≤ m, and
l ∈ N1 = N \ {0} , f an analytic function such that

f (r, λ) = A (λ) rn1+1 + o
(
rn1+1

)
, r ↓ 0,

and A (0) 6= 0. Then,

Cabs
m ≤ k1k2 · . . . · km + m− 1.

3 Bounds for the absolute cyclicity for λ ∈ R2

3.1 Lower bounds

We now investigate the absolute cyclicity in the case that the Bautin ideal
is 2-dimensional, and we look for lower bounds for the absolute cyclicity. In
the 2-dimensional case the parameter λ ∈ Rm can be expressed by analytic
coordinates (a, b, ν) , where (a, b) ∈ R2 and ν ∈ Rm−2. In what follows we will
forget about the parameter variable ν, and we will simply write λ = (a, b) .
However, all the results can evenly be stated for λ = (a, b, ν) .

Theorem 6 Suppose that (δλ)λ is the analytic family of functions, λ = (a, b) ,
that satisfy

δλ (r) = Ā1a
krn̄1 + Ā2b

lrn̄2 + O
(
rn̄2+1

)
, r ↓ 0,

for λ → 0, for certain positive integers n̄1 < n̄2 and certain analytic functions
Āi : R2 → R, i = 1, 2 with Ā1 (0) Ā2 (0) < 0. Then,

(k + 1)(l + 1)− gcd(k, l)− 1
2

≤ Cabs
2 (k, l) ≤ kl.

In particular Cabs
2 (k, 1) = k and [ 3k+1

2 ] ≤ Cabs
2 (k, 2) = 2k.

9



Proof. We look for a ‘standard polynomial’ in λ = (a, b) with given highest
order terms and with coefficients that are powers of r2,

δ (r, a, b) = ak + blr2 + g (r, a, b) ,

where g (r, a, b) = O
(
r3
)
, r → 0, and the function vanishes when a = b = 0.

Generalizing the 1-parameter case, where the proof is based on the Preparation
Theorem, we construct a polynomial g in powers aibj , 0 ≤ i ≤ k, 0 ≤ j ≤ l
and i + j 6= 0. To this end we use Newton’s diagram exhibiting two leading
monomials, which define some natural quasi-homogeneous degree for the prob-
lem. Joining them with a line yields to a finite number of monomials below that
line, with lower quasi-homogeneous degree. These correspond to the degrees of
freedom available to produce the limit cycles. Then one needs to find a natu-
ral ordering of these monomials with respect to quasi-homogeneous degree so
that each monomial can be used to create a limit cycle. Further in the article
-after remark 7,- we illustrate the ideas and notations in this proof in a concrete
example (cfr. also figure 3.1).

First we select a maximal number of powers aibj , that are independent in
the following sense; a set

{
aisbjs , s = 1, 2, . . . ,L

}
is independent if there exist a

vector (K, L) such that the straight lines perpendicular to (K, L) and through
the points (is, js) , s = 1, 2, . . . ,L, all are different. The set is ordered by the
following ordering with respect to (K, L) :

aisbjs ≺ airbjr ⇐⇒ Kis + Ljs > Kir + Ljr;

geometrically, the powers aisbjs are identified with the vectors (is, js) ; if the
vector perpendicular to (K, L) through the point (ir, jr) lies below the one
through the point (is, js) , then the corresponding powers receive the reverse
ordering.

We choose (K, L) such that the cardinality of the corresponding independent
set S is maximal, K, L ≥ 1, and such that ak, bl ∈ S with

Kk > Ll > Ki + Lj, for all aibj ∈ S.

Now we construct the set S by considering the corresponding set of vectors, the
so-called ‘admissible’ exponents. Let us denote by K and H the following sets:
K = {(i, j) : 1 ≤ li + kj ≤ kl} and

H =
{

j2 − j1
i2 − i1

: (i1, j1) , (i2, j2) ∈ K, i2 ≥ i1 and j2 ≤ j1

}
.

Geometrically, H corresponds to the set of all rational numbers that appear as
slope of the line between two points in K. We consider the straight line through
(0, k) and (l, 0) ; then, we rotate this line clockwise through the point (0, l)
slightly, in such a way that we do not pass through another point of K. Notice
that the slope, say −µ, of the rotated line can be chosen to be any rational
number different from l/k such that

l

k
<

K

L
= µ and

K

L
/∈ H (12)

Furthermore, we can suppose that

Kk > Ll + 2. (13)

10



Condition (13) is not restrictive but a sufficient condition to end up with an
analytic map δ with respect to r2, at r = 0; indeed, this condition can be
obtained after replacing K resp. L by nK resp. nL, where n ∈ N1. In particular,
we can suppose that K and L are even integers.

Set K1 = K \ {(i, j) : li + kj = kl} , N = #K1 and denote the elements of
K1 by (is, js) , 1 ≤ s ≤ N , using the order introduced above with respect to
(K, L) :

(iN , jN ) ≺ (iN−1, jN−1) ≺ . . . ≺ (i1, j1) . (14)

Now we define the corresponding powers ns, 1 ≤ s ≤ N. Denote σ(is, js) =
σs := Kis + Ljs; by construction, by (14) , (12) and (13) , we have

Ll > σ1 > σ2 > . . . > σN .

Next, define ns = lL− σs + 2, then

2 < n1 < n2 < . . . < nN .

Notice that the integers ns, s = 1 . . . N can be supposed to be even (because K
and L can be taken to be even).

Then we define the ‘standard polynomial’ with respect to (k, l) by

δ± (r, a, b) = ak ± blr2 +
N∑

s=1

αsr
nsaisbjs , (15)

For a good choice of the coefficients αs, 1 ≤ s ≤ N, this polynomial δ has
cyclicity N +1 for (a, b) → (0, 0) . More concretely, this cyclicity will be attained
along an algebraic curve (an mcc) of the form

a = CK , b = α0C
L, r = Cρ,

where C is the regular parameter, and α0 a real constant to be determined now.
Choose real constants αs, 0 ≤ s ≤ N such that the polynomial map

ρ 7→ αl
0 +

N∑
s=1

αis
0 αsρ

ns−2

has exactly N disjoint, strictly positive simple zeroes ρ∗1 < ρ∗2 < . . . < ρ∗N . Then,
by the implicit function theorem,

CkK−lL−2 + ρ2

(
αl

0 +
N∑

s=1

αis
0 αsρ

ns−2

)

has N + 1 disjoint zeroes ρ0 (C) < ρ1 (C) < . . . < ρN (C) that depend smoothly
on C, for C sufficiently small, with

ρ0 (0) = 0, ρs (C) = ρ∗s,∀1 ≤ s ≤ N.

To end we prove that

N =
(k + 1)(l + 1)− gcd(k, l)− 3

2
, (16)

11



and the theorem follows.
Recall that N = #K1. If d (k, l) represents the number of integer couples on

the segment joining (0, k) and (l, 0), then N can be expressed as

N =
#{ integer couples in [0, k]× [0, l]} − d(k, l)

2
− 1

=
(k + 1)(l + 1)− d(k, l)

2
− 1, (17)

where the ‘minus one’ corresponds with the point (0, 0) that is not in the set
K1. Now we are left with finding the number d(k, l); by definition,

d(k, l) = {(x, y) ∈ N2 : lx + ky = kl, 0 ≤ x ≤ k, 0 ≤ y ≤ l}.

Therefore we look for points (x, y) with integer coordinates satisfying the dio-
phantine equation

lx + ky = kl, with 0 ≤ x ≤ k.

Its solutions are

x = 0 +
k

gcd(k, l)
t, y = l − l

gcd(k, l)
t, with t = 0, 1, . . . , gcd(k, l).

Hence d(k, l) = gcd(k, l) + 1 and formula (16) follows.

Remark 7 The number N can also be obtained using the celebrated Pick’s For-
mula. Consider a simple polygon constructed on a grid of the plane whose co-
ordinates are integers and such that all its vertices are points of the grid. Then

A = i +
b

2
− 1,

where A is the area of the polygon, i is the number of points of the grid located in
its interior and b is the number of points of the grid on the polygon’s perimeter,
see [12]. By applying it to the triangle A with vertices at (0, 0), (0, k) and (l, 0),
the expression in (16) also follows.

To illustrate the ideas and notations of the above proof we develop a concrete
example (cfr. figure 3.1). Consider the case l = 5 and k = 3. Then if we take
K = 9 and L = 5, conditions (12) are satisfied, i.e., 5

3 < K
L < 2, but condition

(13) is not satisfied because Ll = 25 and Kk = 27. So we can consider K = 18
and L = 10. With these values the set K\{(i, j) : li + kj = kl} consists of the
points

(0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1).

Note that there are precisely N = 6×4−4
2 = 10 points. These ten points, together

with (0, 5) and (3, 0), give the twelve points which we use in the construction
of the map δ±. On each of these points the weight σ(i, j) = 18i + 10j gives a
different value, and they range between σ(0, 1) = 10 and σ(3, 0) = 54, giving
rise to twelve different parallel lines 18x + 10y = 18i + 10j. By ordering the

12



twelve points according to σ(is, js) and by defining the corresponding ns we get
that the polynomial (15) is:

δ± (r, a, b) =a3 ± b5r2 + α1ab3r4 + α2a
2br6 + α3b

4r8 + α4ab2r14

+ α5a
2r16 + α6b

3r22 + α7abr24 + α8b
2r32 + α9ar34 + α10br

42.

This polynomial on the algebraic curve

a = C18, b = α0C
10,

writes as

δ± (r, a, b) =C54 ± α5
0C

50r2 + α1α
3
0C

48r4 + α2α0C
46r6 + α3α

4
0C

40r12

+ α4α
2
0C

38r14 + α5C
36r16 + α6α

3
0C

30r22 + α7α0C
28r24

+ α8α
2
0C

20r32 + α9C
18r34 + α10α0C

10r42.

By substituting r = Cρ in the expression of δ± (r, a, b) it is not difficult to
see that for suitable αs it has N + 1 = 11 positive roots that go to zero when
C ↓ 0.

Figure 1: Illustration for the proof of theorem 6 in case k = 3 and l = 5

Remark 8 The method used to prove Theorem 6 can also be used to give a
lower bound for the cyclicity Cabs

m (k1, k2, . . . , km) of the family of functions (7)
studied in Theorem 4. This lower bound is∏m

j=1(kj + 1)− d(k1, k2, . . . , km)
2

+ m− 2,
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where d(k1, k2, . . . , km) counts the number of points with non-negative integer
coordinates that belong to the hyperplane

m∑
j=1

k1k2 · · · kj−1k̂jkj+1 · · · km xj =
m∏

j=1

kj .

Note that this formula comes from the natural extension of (17) to Rm. The
above linear diophantine equation can be studied to get more explicit expressions
of d(k1, k2, . . . , km).

3.2 Detailed analysis of Cabs
2 (2, 2)

As a corollary of theorem 6, we get:

Corollary 9 Suppose that δ is an analytic map with asymptotics

δ (r, λ) = δλ (r) = r
(
a2 + K1b

2r2 + O
(
r4
))

, r → 0, (18)

where λ = (a, b) and K1 is a non-zero real constant and δ(r, 0) ≡ 0. Then,

3 ≤ Cabs
2 (2, 2) ≤ 4.

This section gives several results that seem to indicate that the absolute
cyclicity is 3.

Using Taylor’s theorem with respect to (a, b, r) at (0, 0, 0), we can distinguish
the study of families (δ (·, λ))λ , satisfying (18) , in between the following 4 types:
for r → 0,

δ (r, a, b) = r(a2 + K1b
2h1 (r, a, b) + K2abh2 (r, a, b) + K3ah3 (r, a, b)

+ K4bh4 (r, a, b)), (19)

δ (r, a, b) = r(a2 + K1b
2h1 (r, a, b) + K2abh2 (r, a, b) + K3bh3 (r, a, b)

+ K4ah4 (r, a, b)), (20)

δ (r, a, b) = r
(
a2 + K1b

2h1 (r, a, b) + K2ah2 (r, a, b) + K3bh3 (r, a, b)
)
, (21)

δ (r, a, b) = r
(
a2 + K1b

2h1 (r, a, b) + K2bh2 (r, a, b) + K3ah3 (r, a, b)
)
, (22)

where K2,K3,K4 are real constants and h1, h2, h3, h4 are analytic functions
with the following asymptotics for r → 0 :

h1 (r, a, b) = r2 + O
(
r3
)
,

h2 (r, a, b) = rn2 + O
(
rn2+1

)
,

h3 (r, a, b) = rn3 + O
(
rn3+1

)
,

h4 (r, a, b) = rn4 + O
(
rn4+1

)
,

for some integers 2 < n2 < n3 < n4.
By the theory based on Bautin Ideal, the map δ of either type (21) or (22)

can have at most 3 positive zeroes r shrinking to zero with the parameter (a, b) .
From the ideas of the proof of theorem 6, we can easily construct examples of
type (21) or (22) having 3 positive zeroes r shrinking to zero with the parameter.
Clearly, a map of type (19) or (20) has at most 4 small positive zeroes shrinking
to zero with the parameter (a, b) .
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In the rest of this section we study a particular case of the subcases (19)
respectively (20) in which the functions hi are monomials r2i, 1 ≤ i ≤ 4, and call
the maps δλ by (Fλ) and (Gλ) respectively; if we write S = r2 and λ = (a, b) ,
then

Fλ (S) = F (S, λ) = a2 + K1b
2S + K2abS2 + K3aS3 + K4bS

4, (23)

respectively

Gλ (S) = G (S, λ) = a2 + L1b
2S + L2abS2 + L3bS

3 + L4aS4. (24)

In section 3.2.1 (respectively 3.2.2), we investigate what are the regions ad-
hering at (0, 0) , existing of parameter values λ = (a, b) , for which the map Fλ

(respectively Gλ) has a fixed number of positive zeroes. Next, we prove that
for any sequence of parameters (λn)n∈N with λn → (0, 0) , n → ∞, the map
Fλn

(respectively Gλn
) have at most 2 positive zeroes, ∀n sufficiently large. If

one of the constants Ki, 1 ≤ i ≤ 4 (respectively Li, 1 ≤ i ≤ 4) vanishes, then
the maximal number of zeroes of Fλ and Gλ is strictly smaller than 4.

In what follows we show that for any choice of the constants Ki, 1 ≤ i ≤ 4,
there are at most 3 positive zeroes shrinking to 0 with the parameter (a, b) . By
use of the Newton polygon, we describe the bifurcation diagram of F and G near
λ = (0, 0) . In this way, the study of the 2-parameter family (Fλ)λ (respectively
(Gλ)λ) can be reduced to the study in a 1-parameter family

(
Fζ(ε)

)
ε

(respec-
tively

(
Gζ(ε)

)
ε
); using again Newton polygons on these 1-parameter families,

we find the following result:

Theorem 10 For any fixed choice of the real constants Ki, Li, 1 ≤ i ≤ 4, the
maximal number of positive zeroes S = ξ (a, b) of the polynomial F(a,b)(resp.
G(a,b)) defined in (23) (resp. (24)) with ξ (a, b) ↓ 0 when (a, b) → (0, 0) , is
strictly smaller than 4.

Applying Descartes’ Rule, we notice that the map Fλ (respectively Gλ) can
only have 4 positive zeroes for parameter values λ = (a, b) that satisfy

K1 < 0,K2ab > 0,K3a < 0,K4b > 0,

respectively
L1 < 0, L2ab > 0, L3b < 0, L4a > 0. (25)

In particular, it is necessary that

sgn (K1K3) = sgn (a) , (26)

respectively

sgn (L1L3) = sgn (b) and sgn (L4) = sgn (a) . (27)

Hence, in the search for 4 positive zeroes we can assume that the constants
Ki, 1 ≤ i ≤ 4 (respectively Li, 1 ≤ i ≤ 4) are non-zero and that K1 < 0
(respectively L1 < 0).
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3.2.1 Type (23)

The bifurcation diagram of the number of positive zeroes of Fλ with respect to
the parameter λ = (a, b) is determined by the following three curves, L1,L2,
and L3 :

L1 ↔ b = 0,

L2 ↔ a = 0,

L3 ↔ D (a, b) = 0,

where D (a, b) is the discriminant of the polynomial F(a,b) (cfr. [13]):

D (a, b) =− 27K4
3a8 − 4K3

3K3
1a3b6 − 6K4K

2
3K2

1a4b5 − 192K2
4K3K1a

5b4

+ (256K3
4 + 18K3

3K1K2)a6b3 + 144K4K2K
2
3a7b2

+ 18K4K3K
3
1K2a

2b8 + 144K2
4K2

1K2a
3b7 + K2

2K2
3K2

1a4b6

− 80K4K3K1K
2
2a5b5 − 128K2

4K2
2a6b4 − 4K3

2K2
3a7b3 − 27K2

4K4
1b10

+ 16K4
2K4a

6b5 − 4K3
2K4K

2
1a3b8.

For parameter values (a, b) belonging to L1, the polynomial F(a,b), looses at
least one degree; therefore, when we let the parameter value cross L1 a zero
can disappear (or appear). For parameter values (a, b) belonging to L2, the
polynomial F(a,b) has a zero located in the origin; as such a positive zero can
disappear, when we let the parameter value pass through L2. The zero-set of
the discriminant, L3, determines the parameter values (a, b) for which F(a,b) has
multiple zeroes. Since multiple zeroes are unstable, the bifurcation of zeroes is
possible when crossing L3.

Therefore we study the behaviour of the graph D (a, b) = 0 near (a, b) =
(0, 0) ; in particular, we determine the asymptotics of its branches, using New-
ton’s polygon (see [1]). The Newton polygon P is constructed from the set of
points:

P = { (8, 0) , (7, 2) , (7, 3), (6, 3) , (6, 4) , (6, 5) , (5, 4) , (5, 5) ,

(4, 5) , (4, 6) , (3, 6) , (3, 7) , (3, 8) , (2, 8) , (0, 10)}.

Hence, there are two ‘feasible lines’ (cfr. [1]), that bound the Newton polygon
from below: the line through the points (8, 0) and (3, 6) , and the line through
the points (3, 6) and (0, 10) . The slopes of the feasible lines are respectively
−6/5 and −4/3. Therefore, the graph of D (a, b) = 0 has two branches adhering
at the origin, say γ1 and γ2; their asymptotic behaviour near the origin is given
by

γ1 ↔ a = AC6, b = BC5 + O
(
C6
)
, C → 0

γ2 ↔ a = EC4, b = FC3 + O
(
C4
)
, C → 0

for some non-zero constants A,B,E, F. In fact, these constants are determined
by D (γ1 (C)) = 0 and D (γ2 (C)) = 0; as a consequence,

−K3
3A3

(
27K3A

5 + 4K3
1B6

)
C48 + O

(
C49

)
= 0

−K3
1F 6

(
27K2

4K1F
4 + 4K3

3E3
)
C30 + O

(
C31

)
= 0
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or equivalently,

A5 = −4K3
1B6

27K3
and E3 = −27K2

4K1F
4

4K3
3

.

From these expressions, it follows that the curves γ1 and γ2 lay in the half
plane {K1K3a < 0} , see figure 2. Now, by (26) , the map F (·, a, b) has strictly
less than 4 positive zeroes for (a, b) in this half plane. As a consequence, the
half plane giving rise to possibly 4 positive zeroes, does not intersect L3 in
a sufficiently small neighborhood of (0, 0) . Furthermore, it follows that the
distribution of the zeroes (positive, negative, imaginary) in a sufficiently small
neighborhood of the origin, is stable at each of the quadrants in the half plane
{K1K3a > 0} .

γ1

γ2

0.2

0.2

0.4

0.4

−0.2−0.4 0

Figure 2: Graph of D (a, b) = 0, near (0, 0) , taking K1 = K3 = −1 and K2 =
K4 = 1.

Hence, to find out whether a region in parameter space realizes 4 positive
zeroes, it suffices to investigate the maximum number of zeroes of F (·, a, b)
induced by an arbitrary linear curve in each of the two quadrants {K1K3a >
0, b > 0}, and {K1K3a > 0, b < 0}.

For a = εā, b = εb̄, ε ↓ 0, ā 6= 0, b̄ 6= 0, the map F (·, a, b) writes as

F (S, a, b) = ε
(
εā2 + εK1b̄

2S + εK2āb̄S2 + K3āS3 + K4b̄S
4
)
.

Using next lemma we find that F
(
·, εā, εb̄

)
has 2 positive zeroes, for sufficiently

small ε > 0.

Lemma 11 Let p1 > 0, p2 < 0, p3 > 0 and p4 < 0 be fixed real constants. Then,
for each sufficiently small ε > 0, the polynomial Pε defined by

Pε (S) = ε
(
p1 + p2S + p3S

2
)

+ p4S
3 + S4,

has exactly 2 real zeroes which are simple and positive.

Proof. By Descartes’ Rule, the map Pε has no negative zeroes; as a conse-
quence, all real zeroes are positive. When ε is zero the polynomial has a triple
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root at 0 and a simple positive one at S = −p4. When ε > 0 is small we can
find the number of positive zeroes of the polynomial Pε by studying it as an
algebraic curve in two variables (ε, S) in a neighborhood of (0, 0). By using
again the Newton polygon we get that this curve has only one branch passing
through the origin and it is given by

ε = At3 + O(t4), S = Bt, t → 0,

where t ∈ R is a parameter and A and B satisfy Ap1 + B3p4 = 0. So, for ε > 0
small, Pε has only two real roots, which are positive and tend to 0 and −p4

when ε ↓ 0, as we wanted to prove.

3.2.2 Type (24)

The bifurcation diagram of the number of positive zeroes of Gλ with respect to
the parameter λ = (a, b) is determined by the following two curves, L1 and L2 :

L1 ↔ a = 0,

L2 ↔ D′ (a, b) = 0,

where D′ (a, b) is the discriminant of the polynomial G (·, a, b) . For parameter
values (a, b) belonging to L1, the polynomial G (·, a, b) , looses at least one degree
and has a zero fixed at the origin; for parameter values (a, b) belonging to L2,
the polynomial G (·, a, b) has multiple zeroes. Therefore, when the parameter
value crosses the set L1 ∪ L2, the number of positive zeroes can change. An
analogous study as in section 3.2.1 based on the Newton polygon, shows that
the graph L2 in a sufficiently small neighborhood of (0, 0) is formed by two
curves γ1 and γ2. Their asymptotics are given by

γ1 ↔ a = AC4, b = BC5 + O
(
C6
)
, C → 0,

γ2 ↔ a = EC5, b = FC4 + O
(
C5
)
, C → 0,

for some non-zero constants A,B,E, F such that

A5 =
27
256

L4
3

L3
4

B4, and E4 =
−4F 5L3

1

27L3
. (28)

From (28) , it follows that γ1 lies in the half plane {L4a > 0} and γ2 lies in the
half plane {L1L3b < 0} . Now, by (27) , the map G (·, a, b) has strictly less than
4 positive zeroes for (a, b) in the half plane {L1L3b < 0} . As a consequence,
the half plane giving rise to possibly 4 positive zeroes, i.e., {L1L3b > 0} , does
not contain γ2 in a sufficiently small neighborhood of (0, 0) . Furthermore, it
follows that the distribution of the zeroes (positive, negative, imaginary) in the
half plane {L1L3b > 0} , in a sufficiently small neighborhood of the origin, is
stable in the regions bounded by γ1 and L1 = {a = 0} . As in the previous case
it suffices to study the number of real zeroes on a line on each of the three
connected components of the half-plane {L1L3b > 0} , minus the sets {a = 0}
and γ1, see figure 3. Indeed, in one of the three zones, viz. the smallest one
between the two branches of γ1, there are strictly less than four real zeroes,
because it lies in the same connected component as the points which are in
{L1L3b < 0} . In short it suffices to find the number of positive real zeroes of
G (S, a, b) given in (24) moving along the two lines:
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(a, b) = (−1,−1)sgn(L3)ε and (a, b) = (1,−1)sgn(L3)ε (29)

for ε > 0, small enough.

0.05

0.05

−0.05

−0.05

a

b

0

Figure 3: Graph of D′ (a, b) = 0, near (0, 0) , where L1 = L3 = −1 and L2 =
L4 = 1. The continuous curve is γ1 and the dotted one γ2. The dashed
lines are not in D′ (a, b) = 0, and are used to get the number of real roots in the
corresponding connected components.

On these lines, G (S, a, b) writes as

G (S, a, b) = ε
[
ε
(
1 + L1S ± L2S

2
)
− |L3|S3 ∓ sgn(L3)L4S

4
]
.

By using similar reasonings as in the proof of Lemma 11, we can conclude that
G, restricted to these lines, has at most two positive real roots for ε > 0 small
enough, as we wanted to prove.
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