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Abstract

We construct various examples of Armendariz and related rings
by reviewing and extending some results concerning the structure of
nil(R). In particular, we give some examples of Armendariz rings
related to power series rings and an example of an n-Armendariz ring
for all n ≥ 1 which is not Armendariz.

1 Introduction

A ring R (associative with unit) is said to be Armendariz if the product of
two polynomials in R[x] is zero if and only if the product of their coefficients
is zero. More precisely, if f(x) = a0 + · · · + anx

n and g(x) = b0 + · · · +
bmxm ∈ R[x] such that f(x)g(x) = 0, then aibj = 0 for all i = 0, . . . , n and
j = 0, . . . , m. We will refer to this as the Armendariz condition.

This definition was given by Rege and Chhawchharia in [19] using the
name Armendariz since E.P. Armendariz had proved in [5] that reduced
rings satisfied this condition. In the mentioned paper, Armendariz used this
condition to prove that for a reduced ring R the polynomial ring R[x] is Baer
if and only if R is a Baer ring, and that the same is true for pp-rings. Then,
after their introduction in [19], Armendariz rings have appeared in many
results concerning certain types of annihilator conditions in a ring R being
preserved under the pass to the polynomial ring R[x].

In the following theorem we summarize some results in this directions by
M. Rege, A. Chhawchharia, N.K. Kim, Y. Lee, Y. Hirano, C.Y. Hong and
T.K. Kwak.

∗Work supported by MEC-DGESIC (Spain) through grant MTM2008-0621-C02-01,
and by the Comissionat per Universitats i Recerca de la Generalitat de Catalunya through
grant 2009 SGR 1389
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Theorem 1. Let R be an Armendariz ring. Then

(1) R is semicommutative if and only if R[x] is semicommutative [19].

(2) R is Baer if and only if R[x] is Baer [13].

(3) R is a pp-ring if and only if R[x] is a pp-ring [13].

(4) R satisfies right (left) acc⊥ if and only if R[x] satisfies right (left) acc⊥
[8].

(5) R is reversible if and only if R[x] is reversible [14].

(6) R is right zip ⇒ R[x] is right zip [9].

In fact, Hirano in [8, Proposition 3.1] gives a very nice characterization
of Armendariz rings through a bijection between the sets of annihilators of
subsets of R and subsets of R[x]. Recently, several types of generalizations
of Armendariz rings have been introduced for some of which variations of the
previous results are also valid. We will review some of the known examples
of Armendariz rings and provide some new examples.

From [5], the first non-trivial example of an Armendariz ring should be a
reduced ring. Rege and Chhawchharia proved in [19] that Z/(m), and more
generally R/I where R is a DIP, is an Armendariz ring. Kim and Lee, in
[13], prove that if R is a reduced ring, the subring S of the triangular matrix
ring T3(R) whose diagonal terms are equal, is an Armendariz ring. A more
elaborated example is given by Huh Lee and Smocktunowicz in [10]; if K is
a field, R = K〈a, b, c | cc = ac = crc = 0 ∀r ∈ A〉, where A = 〈a, b, c〉, is an
Armendariz ring.

Other Armendariz rings can be obtained through typical ring construc-
tions: Subrings of Armendariz rings are clearly Armendariz. Rege and
Chhawchharia studied conditions for which trivial extensions T (R, R/I) of a
reduced ring R are Armendariz and in [15] Lee and Zhou characterize when
trivial extensions of Armendariz rings are Armendariz. Also if R is a ring
and e a central idempotent, then it is easy to see that R is Armendariz if and
only if eR and (1 − e)R are Armendariz and hence S × T is an Armendariz
ring if and only if S and T are Armendariz rings. Anderson and Camillo,
in [2], prove that the polynomial ring R[x] over an Armendariz ring R is
Armendariz. They also prove the following result

Theorem 2 (Anderson, Camillo[2]). Let R be a ring and n ≥ 2, then
R[x]/(xn) is Armendariz if and only if R is a reduced ring.
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This construction can be seen as universally adjoining a nilpotent com-
mutative element to the ring R, and, in the case of K-algebras and through
coproducts of rings, the corresponding non commutative version is proved in
[3]

Theorem 3 (Antoine [3]). Let K be a field, S a K-algebra and n ≥ 2.
Then S ∗K K〈x | xn = 0〉 is Armendariz if and only if S is a domain with
U(S) = K∗.

We will use this constructions to provide examples of Armendariz rings
by reviewing some of the situations in which they appear.

2 Examples of Armendariz rings

2.1 Nilpotent elements in Armendariz rings

We observe from the previous examples that the set of nilpotent elements in
an Armendariz ring has an important role (see [3]). If R is a ring, we denote
this set by nil(R). In the examples listed above the set of nilpotent elements
is very well determined and forms an ideal. Also, all of the ring constructions
mentioned (subrings, trivial extensions, polynomial rings, products of rings,
. . . ) preserve the property of nil(R) being an ideal except for Theorem 3.
Hence, in [3], the following example is given:

Let K be a field and R = K〈a, b | b2 = 0〉. It is clear that S ∼= K[a] ∗K

K〈b | b2 = 0〉 and satisfies the conditions of Theorem 3. Therefore R is an
Armendariz ring, but b is nilpotent and neither ab, nor ba are nilpotent.

Anyway, the set of nilpotent elements forms a subring without unit, and
this is true not only in the case of R Armendariz, but in many of the gener-
alizations of this condition. Recall that a ring R is 1-Armendariz1 if linear
polynomials satisfy the Armendariz condition. That is

(a0 + a1x) · (b0 + b1x) = 0 ⇒ a0b1 = a1b0 = 0.

Anderson and Camillo, proved that for von-Neuman regular rings, this condi-
tion is equivalent to the Armendariz condition and, in fact, to the ring being
reduced. Lee and Wong in [16] extend some known results to 1-Armendariz
rings and provide an example of a 1-Armendariz ring which is not Armen-
dariz,

F3[a, b]/(a3, a2b2, b3), (1)

1These rings are also called Weak-Armendariz (see [16] for example) but we will use this
notation for coherence with n-Armendariz rings and because the term weak-Armendariz

is also used for another definition which we will see later.
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where we can see that (a + bx)3 = (a + bx)(a2 + 2abx + b2x2) = 0, whereas
aba 6= 0.

To deal with nil(R) in the general case of a 1-Armendariz ring, we prove
the following lemma which is essentially a generalization of [10, Lemma 7].

Lemma 1. Let R be a 1-Armendariz ring. If a, b, c ∈ R such that ac = 0
and b is nilpotent, then abc = 0.

Proof. We claim that, for any r ≥ 1, ab2r

c = 0 implies ab2r−1

c = 0. Then, if
bn = 0 for some n ≥ 1, taking r such that 2r > n we have ab2r

c = 0. Thus,
using induction in r ≥ 1, we obtain abc = 0.

To prove the claim, it is enough to consider the following product in R[x]

(a + ab2r−1

x) · (c − b2r−1

cx) = 0,

which implies ab2r−1

c = 0, since R is 1-Armendariz.

Using the previous Lemma, if a, b ∈ R are nilpotent elements in an Ar-
mendariz ring R, say an = bm = 0, then an−r1bar1 = 0 for any r1 = 0, . . . , n.
Now, given 0 ≤ r2 ≤ r1, we have an−r1bar1−r2bar2 = 0. Repeating this pro-
cess, any word in {a, b} containing at least n occurrences of a is 0. The same
can be done for b and hence, it is clear that

(ab)n = (a − b)n+m = 0.

Therefore we have proved the following:

Corollary 1. If R is a 1-Armendariz ring, then nil(R) forms a subring
without unit of R.

This condition is also satisfied by another generalization of Armendariz
rings, namely Nil-Armendariz rings (see [3]). A ring R is Nil-Armendariz if
f(x)g(x) ∈ nil(R)[x] implies aibj ∈ nil(R). This definition is motivated by
the following fact, which is easy to prove since reduced rings are Armendariz.

Proposition 1. Let R be a ring such that nil(R) E R. Then, if the prod-
uct of two polynomials has nilpotent coefficients, then the product of their
coefficients is also nilpotent.

A similar definition is given by Liu and Zhao in [17]. A ring R is weak-
Armendariz if whenever the product of two polynomials is zero, the prod-
uct of their coefficients is nilpotent. It is clear that Nil-Armendariz rings
are Weak-Armendariz, and it can be seen that Armendariz rings are Nil-
Armendariz.
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The Armendariz condition can be extended to the product of more than
two polynomials, [2, Proposition 1]. This way of extending the Armendariz
condition to a product of more than two polynomials is not true for the case
of 1-Armendariz rings, as we can see from the above example of Lee and
Wong (1), and is not known for Weak-Armendariz rings. This tool is what
makes Nil Armendariz rings more suitable than weak-Armendariz rings.

By observing that any commutative ring is Nil-Armendariz (since nil(R)E
R and Proposition 1), for any field K, K[x, y]/(x2, y2) is an example of Nil-
Armendariz ring which is not 1-Armendariz. Hence we have the following
diagram where the question marks are unknown examples.

Armendariz //

��

Nil Armendariz
//

��

Weak-Armendariz
?

oo

1-Armendariz // nil(R) is a subrng

?

OO

Armendariz rings have a tight relation with annihilator conditions. We
extend the previous diagram to a more elaborate one. Recall that a ring
R is reversible if ab = 0 implies ba = 0. R is semicommutative if ab = 0
implies aRb = 0. It is not difficult to see that reduced rings are reversible,
reversible rings are semicommutative, and that for a semicommutative rings
R, we have nil(R) E R.

It can be seen using the previous results that the following list of examples
correspond to the ones marked in the table.

①,❶ A field K and a non commutative skew field D respectively.

②,❷ K[x]/(x2) and D[x]/(x2).

③,❸ R1 = F3[a, b, c]/(a2b2, a3, b3) and R1 × D.

④,❹ R2 = K[x, y]/(x2, y2) and D[x, y]/(x2, y2).

⑤,❺ R3 = K〈x, y | xy = 0〉 (see [3]), and R1 ×R3 for the 1-Armendariz but
not Armendariz case.

⑥ R2 × R3.

⑦,❼ R4 = K〈a, b, c | cc = ac = crc = 0 ∀r ∈ A〉, where A = 〈a, b, c〉, (see
[10]) and then R4 × R1.

⑧ T2(K) the upper triangular matrix ring.

⑨,❾ R5 = K〈x, y | x2 = 0〉 and then R5 × R1.

⑩ T2(R5).
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Power Series rings

There are a couple of questions related to the power series ring. One is
whether or not the Armendariz condition is preserved in power series rings,
and the other is the class of rings for which the Armendariz condition is
satisfied for products of power series.

Rege and Bhuphang in [18] give an example of a commutative Armendariz
ring R whose power series ring is not Armendariz. The ring is constructed
using a non trivial Prfer domain D, and considering the Nagata extension
R = T (D, Q(D)/D), which is Armendariz, but whose power series ring is
not even 1-Armendariz. Using Theorem 3 we will give a new example.

Example 1. R = K〈a, b | b2 = 0〉 is an Armendariz ring such that the power
series ring R[[x]] is not Nil-Armendariz nor 1-Armendariz.

Proof. R is Armendariz by Theorem 3. Now, let S = R[[x]] be the power
series ring with coefficients in R.

Let u = (1−ax) ∈ S. u is a unit in S with u−1 = (1+ax+a2x2+. . . ) ∈ S,
and f = ubu−1 is such that f 2 = 0.

One can see that in the polynomial ring S[Y ], (b + bfY ) · (b − fbY ) = 0
but bfb 6= 0. But observing that b, f ∈ nil(S) whereas bf is not nilpotent, we
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obtain that nil(S) is not a subring of S and hence S is not Nil-Armendariz
nor 1-Armendariz.

Observe that for any n ≥ 1, (bf)n is the product

b(1 − ax)b(1+ax+a2x2+ . . . )
︸ ︷︷ ︸

=bf

b(1− ax) · · · b(1 − ax)b(1+ax+a2x2+ . . . )
︸ ︷︷ ︸

=bf

.

Since b2 = 0, and (ba)n 6= 0, it is clear by the above expression that the
least non zero coefficient of x is obtained by taking a b and an a alternatively
in each factor. Therefore, the coefficient of x2n in the above expression is
(−1)n(baba)n 6= 0. Hence (bf)n 6= 0 for all n ≥ 1 and nil(S) is not a subring
of S.

Kim, Lee and Lee in [12], define powerserieswise Armendariz rings as
rings such that (

∑

i≥0 aix
i)(

∑

i≥0 bix
i) = 0 imply aibj = 0 for all i, j ≥ 0.

Powerserieswise Armendariz rings are clearly Armendariz rings, but Ar-
mendariz rings need not be Powerserieswise Armendariz as they show by
giving two examples. One is the cited above example by Huh Lee and Smock-
tunowicz in [10]. The other one, by Hamnn and Swan [7], S = K〈ai (i ≥ 0) |
aiajak = 0 (i, j, k ≥ 0)〉 where K is a field.

Again, the ring obtained using Theorem 3 gives a new example.

Example 2. Let K be a field and R = K〈a, b | b2 = 0〉. As noted above, R
is Armendariz, but

(b − bax) · (b + abx + a2bx2 + a3bx3 + . . . ) = 0

whereas bab 6= 0. And hence, R is not Powerserieswise Armendariz.

In fact, in [12] it is proved that if R is powerserieswise Armendariz, then
nil(R) coincides with the upper and lower nilradical, and in particular is an
ideal.

Armendariz rings and n-Armendariz Rings

Rege and Buhphang, in [18], introduced the following generalization of Ar-
mendariz rings

Definition 1 (Rege Buhphang). A commutative ring R is n-Armendariz if
(a0 + a1x)(b0 + b1x + · · ·+ bnx

n) = 0 in R[x] implies aibj = 0.

Rege and Buhphang give an example of a 1-Armendariz ring which is
not 2-Armendariz using the extension Q( 3

√
2) to build a P2-closed domain

which is not P3-closed. The same example can be generalized using different
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extensions. For example, given a prime q > 0, we will consider the Galois
field F2q to give an example of a q − 2-Armendariz ring which is not q − 1-
Armendariz.

Example 3. This example is based on [18, Remark 4]. Recall that a subring
R ⊆ D is Pn closed if, for all β ∈ D which is a root of a monic polynomial
of degree n in R[x], β ∈ R.

Let K = F2q = F2(α) with α a primitive element of the field. Let A =
K[x], R = F2 + xK[x] and D = K(x). It is clear that D is the field of
fractions of A and of R. Since α is a root of a degree q monic irreducible
polynomial with coefficients in F2, α ∈ D can be viewed as a root of a degree
q monic polynomial in R[y]. But α 6∈ R and hence R ⊆ D is not Pq-closed.

Suppose u ∈ D is a root of a degree n < q monic polynomial yn +
fn−1y

n−1 + · · · + f1y + f0 with fi ∈ R. Since fi ∈ A = K[x] which is
integrally closed in K(x), u ∈ A. If we evaluate the previous polynomial in
x = 0 and let β = u(0), ci = fi(0) ∈ F2, we have

βn + cn−1β
n−1 + · · · + c1β + c0 = 0.

Hence r = [F2(β) : F2] ≤ n, but since F2(β) ⊆ K, r should divide q. Since
q is prime, we have [F2(β) : F2] = 1, and hence u(0) = β ∈ F2. Therefore
u ∈ R and we have R ⊆ D is Pn−1-closed.

Now, using [18, Theorem and Proposition 2.5], the Nagata extension or
trivial extension T (D, D/R) is (q−2)-Armendariz but not q−1-Armendariz.

This way we can construct, for arbitrarily large n, a ring R which is
n-Armendariz but not Armendariz.

Observe that n-Armendariz rings can be called {1, n}-Armendariz mean-
ing the Armendariz condition is true for polynomials f and g of degrees 1
and n respectively, and then define {m, n}-Armendariz rings in the natural
way. Also for the non commutative case, we could define the same for an
ordered pair (m, n), but we will only consider commutative rings.

Using this terminology, we prove that there exists a ring R which is {1, n}-
Armendariz for all n ≥ 1 but which is not {2, 2}-Armendariz, and thus it is
not Armendariz.

Let K be a field with char(K) 6= 2, and let R be the K-algebra with
commuting generators

A = {a0, a1, a2, b0, b1, b2},

and with relations
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1. a0b0 = a2b2 = 0.

2. a0b1 + a1b0 = 0.

3. a1b2 + a2b1 = 0.

4. a0b2+a1b1+a2b0=0.

5. x1x2x3 = 0 where
x1, x2, x3 ∈ A.

R is graded by the length of the monomials since all the relations are
homogeneous in this degree. Therefore, if we denote the grading by R = R0⊕
R1⊕R2, elements can be written uniquely as α = α0+α1+α2 where αi ∈ Ri.
Hence, except where noted, given α ∈ R, αi will denote the corresponding
part in this decomposition.

In R we also have an {a, b}-grading. We can define this grading through
d(ai) = 0 and d(bj) = 1 and observing that the relations are homogeneous
in this degree. Hence we can write R = R(0) ⊕R(1) ⊕R(2) the corresponding
decomposition.

Combining this two gradings, observe that R1 ∩ R(2) = {0} and hence
given α ∈ R1 we can write it uniquely as α = αa + αb, where αa ∈ R(0) and
αb ∈ R(1) with the subindexs labeled for obvious reasons.

By the relations it is clear that R0 = K and that A is a K-basis for R1.
Now, using the Diamond Lemma, it can be proved that the following is a
K-basis for for R2,

C = {a0b1, a0b2, a1b1, a1b2, and aiaj , bibj such that i, j = 0, 1, 2}.

We will use this gradings and K-basis to study the zero divisors of R

Lemma 2. Let α, β ∈ R \ {0}. Then αβ = 0 if and only if α0 = β0 = 0 and
α1β1 = 0.

Proof. We have

αβ = (α0β0) + (α0β1 + α1β0) + (α0β2 + α1β1 + α2β0)

Where each of the parenthesis corresponds to each component in Ri. Let
αi, βj be the least non zero degree components in α, β respectively. Then
αiβj = (αβ)i+j, the corresponding (i + j)-th component. Since αβ = 0, each
of its components is zero and hence αiβj = 0. But R0 = K which is a a field,
and αi, βj 6= 0. Hence, i, j > 0 and the result is clear.

Lemma 3. Let α, β ∈ R1 \ {0} such that αβ = 0. Then we are in one of the
following cases

1. α = λa0, β = µb0 for some λ, µ ∈ K∗.

2. α = λa2, β = µb2 for some λ, µ ∈ K∗.

3. α = λ(a0 + γa1 + γ2a2), β = µ(b0 + γb1 + γ2b2) for some λ, µ, γ ∈ K∗.
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And the symmetric cases 1’,2’,3’ interchanging ai’s and bj’s.

Proof. If we write α = αa+αb, β = βa+βb with αa, βa ∈ R(0) and αb, βb ∈ R(1)

as in the {a, b}-grading decomposition, then

αβ = (αaβa) + (αaβb + αbβa) + (αbβb) = 0.

Since each component in R(i) should be zero, αaβa = αbβb = 0. The relations
in R make it clear that if we multiply two non zero elements within R1∩R(0)

or R1 ∩ R(1) we obtain a nonzero element.
Thus, since α, β 6= 0, we will have α = αa, β = βb, or α = αb, β = αa. We

consider the first case and write

α = λ0a0 + λ1a1 + λ2a2, and β = µ0b0 + µ1b1 + µ2b2,

where λi, µj ∈ K. The other case is proved symmetrically and leads to cases
1’,2’, 3’.

Now, αβ = 0 gives

0 = αβ = λ0µ0a0b0+
λ0µ1a0b1 + λ1µ0a1b0+
λ0µ2a0b2 + λ1µ1a1b1 + λ2µ0a2b0+
λ2µ1a2b1 + λ1µ2a1b2+
λ2µ2a2b2

(2)

Applying the relations to each of the lines in (2) to write them in terms of
the K-basis C, and equaling the coefficients to zero, we obtain the following
equations

(a) λ0µ1 − λ1µ0 = 0.

(b) λ0µ2 − λ2µ0 = 0.

(c) λ1µ1 − λ2µ0 = 0.

(d) λ2µ1 − λ1µ2 = 0.

Now we consider the following cases which will lead to cases 1, 2 or 3 in
the Lemma,

(i) λ1 = λ2 = 0, λ0 6= 0.

(ii) λ0 = λ2 = 0, λ1 6= 0.

(iii) λ0 = λ1 = 0, λ2 6= 0.

(iv) λ0 = 0, λ1, λ2 6= 0.

(v) λ1 = 0, λ0, λ2 6= 0.

(vi) λ2 = 0, λ0, λ1 6= 0.

(vii) λ0, λ1, λ2 6= 0.

Case (i) By (a), (b) we have µ1 = µ2 = 0. Hence α = λ0a0 and β = µ0b0.
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Case (ii) By (a), (c) and (d) we have µi = 0 and hence β = 0. A contra-
diction.

Case (iii) By (b), (d) we have µ0 = µ1 = 0. Hence α = λ2a2 and β = µ2b2.

Case (iv) By (a) we have µ0 = 0. Now by (c) µ1 = 0 and now by (d) µ2 = 0
which implies β = 0, a contradiction.

Cases (v),(vi) Similar to the previous case, this both lead to a contradiction.

Case (v) By arguing symmetrically for the µi as in the previous cases, we
see that µ0, µ1, µ2 6= 0. Hence, multiplying by a nonzero constant
we suppose that λ0 = µ0 = 1. Now we obtain the following
equations

µ1 − λ1 = 0, µ2 − λ2 = 0,
λ2µ1 − λ1µ2 = 0, λ1µ1 − λ2 = 0.

Therefore, µ1 = λ1, µ2 = λ2 and λ2 = λ1µ1 = λ2
1. Hence, in the

general case we will have, for some λ, µ and γ ∈ K \ {0},

α = λ(a0 + γa1 + γ2a2),

β = µ(b0 + γb1 + γ2b2).

Since this gives αβ = 0 we are done.

In view of this zero divisors we denote, for every γ ∈ K∗,

cγ = a0 + γa1 + γ2a2, dγ = b0 + γb1 + γ2b2.

Lemma 4. Let R be as above, and let D ⊂ R be the set of zero divisors in
R. Then,

1. a0R ∩ b0R = a0b1K = a1b0K.

2. a2R ∩ b2R = a1b2K = a2b1K.

3. cγR ∩ dγD = cγD ∩ dγR = {0} for all γ ∈ K∗.
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Proof. (i) and (ii) are clear by looking at a K-basis for R2. Let us prove
that cγR ∩ dγD = {0}. Let r, s ∈ R \ {0} such that cγr = dγs. It is clear
that if we write r = r0 + r1 + r2 and s = s0 + s1 + s2 then r0 = s0 = 0 and
cγr1 = cγr = dγs = dγs1. Hence we assume, r, s ∈ R1. Now, let us consider
the {a, b}-grading and write r = ra + rb and s = sa + sb. We have

cγra + cγrb = dγsa + dγsb.

The R(0) part in the above equation gives cγra = 0. Since cγ , ra ∈ R1∩R(0)

and cγ 6= 0, ra = 0. Similarly looking at the R(2) part, we obtain sb = 0.
Therefore we can write r = µ0b0 + µ1b1 + µ2b2 and s = λ0a0 + λ1a1 + λ2a2.

By expanding the following equation,

cγ(µ0b0 + µ1b1 + µ2b2) = dγ(λ0a0 + λ1a1 + λ2a2),

and applying the relations to write it in terms of the K-basis for R2, we
obtain the following equations after identifying the coefficients

µ1 − γµ0 = λ0γ − λ1, (3)

µ2 − γ2µ0 = λ0γ
2 − λ2, (4)

γµ1 − γ2µ0 = λ1γ − λ2, (5)

γµ2 − γ2µ1 = λ1γ
2 − λ2γ. (6)

We compute the equations (4) − (5) − γ(3) and γ(3) − (5), to obtain

γ2µ0 − 2γµ1 + µ2 = 0, (7)

γ2λ0 − 2γλ1 + λ2 = 0. (8)

From equation (8), since γ 6= 0 and K has characteristic different from 2,
if two λi = 0, then the third is also zero. Hence, if s ∈ D \ {0}, by looking
at the form of the zero divisors in Lemma 3, s has the form s = δcλ for
some δ, λ ∈ K∗. We suppose, without loss of generality, δ = 1 and thus
λ0 = 1, λ1 = λ and λ2 = λ2. If we substitute this in equation (8), we have
(γ − λ)2 = 0 and hence γ = λ. Therefore dγs = dγcγ = 0.

In case r ∈ D \ {0} we can argue the same way through equation (7), to
prove r = δ′dγ and hence cγr = 0.

Lemma 5. R is n-Armendariz for all n ≥ 1.

12



Proof. Let f(x) = α0 + α1x, g(x) = β0 + β1x + · · · + βnxn ∈ R[x] such that
f(x)g(x) = 0. We want to see that αiβj = 0.

If either α0 or β0 are 0 the result is trivial. Also, suppose βn 6= 0 and
factoring out xk conveniently, we may suppose β0 6= 0. By a similar argument
as that in Lemma 2 for the grading in R[x] given by (R[x])i = Ri[x], we may
suppose αi, βj ∈ R1.

Now we have

α0β0 = α1βn = 0 and α0βi + α1βi−1 = 0 for i = 1, . . . , n.

For the product α0β0 we will consider the cases 1,2 and 3 in lemma 3, and
leave cases 1’,2’ and 3’ which are proved symmetrically. Also, by multiplying
by certain nonzero elements in K, we consider the following cases

1. α0 = a0, β0 = b0 2. α0 = a2, β0 = b2 3. α0 = cγ, β0 = dγ, γ ∈ K∗

1. In this case we have a0β1 + b0α1 = 0. Since α1βn = 0, by Lemma 3
and the fact that a0R ∩ b0R = a0b1K = a1b0K, the only possibility is
α1 = λa0 which implies β1 = µ1b0. Now by a0βi + λa0βi−1 = 0 we can see
inductively that βi = µib0 and hence, that αiβj = 0.

2. This case is similar to the previous, using that a2R ∩ b2R = a1b2K =
a2b1K.

3. We have cγβ1 = −dγα1. Since α1βn = 0, α1 is a zero divisor. Now by
Lemma 3 and the fact that cγR ∩ dγD = {0}, we have that α1 = λcγ and
hence β1 = µ1dγ. Inductively we see that βi = µidγ for some µi ∈ K.
Hence, αiβj = 0.

Example 4. R is an n-Armendariz ring for all n ≥ 0 but it is not Armen-
dariz.

Proof. As seen before, R is n-Armendariz for all n ≥ 0, but

(a0 + a1x + a2x
2) · (b0 + b1x + b2x

2) = 0,

whereas a0b1 6= 0, and thus it is not Armendariz (it is not {2, 2}-Armendariz).

13



2.2 Polynomial rings over nil-Armendariz rings

As we have seen in Theorem 1, the Armendariz condition is useful for taking
properties related to annihilators from the ring to its polynomial ring. In
the case of Nil-Armendariz rings, it is natural to ask wether or not this
properties are also preserved. But we can see from the following examples,
that in the general case there is a Nil-Armendariz counterexample to each of
the assertions in the Theorem.

Recall that reversible and semicommutative rings are Nil-Armendariz.
Thus, since there exist examples of semicommutative or reversible rings such
that the polynomial ring is not (see [10, Example 2] and [14, Example 2.1]
respectively), these are also Nil-Armendariz counterexamples to Theorem 1,
(1) and (4).

Recall that a ring R is Baer if all right annihilators of subsets of R
are generated by idempotents, and that a ring is a right (left) pp-ring (for
principally projective) provided all right (left) annihilators of elements of R
are generated by an idempotent. Also recall that whereas the Baer condition
is left/right symmetric, this is not the case for pp-rings, and a ring is a pp-ring
if it is a right and left pp-ring.

If K is a field, R = T2(K), the ring of upper triangular matrices over K, is
a Nil-Armendariz ring since nil(R) E R. Now, the right and left annihilators
of subsets of R are {0}, R, R ( 1 a

0 0 ) and ( 0 a
0 1 ) R, which are all generated by

idempotents. Hence R is both a Baer and a pp-ring.
Now observe that in R[x]

r.annR[x]

{(
−x 1
0 0

)}

=

(
0 a(x)
0 xa(x)

)

R[x]

which is not generated by an idempotent (idempotents have 0 or 1 along the
diagonal). Hence we can give Nil-Armendariz counterexamples to Theorem
1, (2) and (3).

Example 5. Given a field k, R = T2(k) is a Nil-Armendariz, Baer and
pp-ring, such that the polynomial ring R[x] is not a Baer nor a pp-ring.

Following [8], if an Armendariz ring has the ascending chain condition on
annihilators, so has the polynomial ring. But even commutative Goldie rings
need not satisfy so. JW. Kerr in [11] for the case of K = F2 and Antoine and
Ced in [4] for a finite field K = Fpn, give examples of commutative Goldie K-
algebras, such that the polynomial ring does not satisfy the ascending chain
condition on annihilators. Since commutative rings are Nil-Armendariz by
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Proposition 1, this examples are Nil-Armendariz counterexamples to Theo-
rem 1, (4).

F. Cedó in [6] provides an example of a Zip ring for which the polynomial
ring is not zip. By carefully studying this example, we will prove that nil(R)E
R and hence R is Nil-Armendariz.

Example 6 (Cedó [6]). Let K be a field. Let R be the K-algebra with gen-
erators A = {a0,n, a1,n, b1,n, b2,n, a∞, aλ | n ≥ 0, λ ∈ K} and relations

1. a0,ib1,j = a0,ib2,j = a1,ib1,j (j ≥ i ≥ 0),

2. a1,ib2,j = 0 (j ≥ i ≥ 0),

3. a1,ia∞ = (a0,i + λa1,i)aλ = 0 (i ≥ 0, λ ∈ K),

4. a∞x = aλx = b1,ix = b2,ix = 0 (i ≥ 0, λ ∈ K, x ∈ A).

In [6], a K-basis for R is given which is split in disjoint subsets as A0 ∪
A1 ∪ A2 ∪ A3 where

A0 = {1}, A1 = {al1,i1 · · ·aln,in | n ≥ 1, iη ≥ 0, lη ∈ {0, 1}},

A2 = {al1,i1 · · ·aln,inaµ | n ≥ 0, iη ≥ 0, lη ∈ {0, 1}, ln = 0, µ ∈ K∪{∞}} and

A3 = {al1,i1 · · ·aln,inbk,j | n ≥ 0, iη ≥ 0, lη ∈ {0, 1}, k ∈ {1, 2},
and if n > 0 and j ≥ in, ln = 0 and k = 1}.

Given α ∈ R, α can be written uniquely as α = α0 + α1 + α2 + α3 where
αi ∈ spanK(Ai). If α is nilpotent, it is clear by the relations that α0 = 0.
Also, we see that A2

2 = A2
3 = A2A1 = A2A3 = A3A1 = A3A2 = 0 and hence,

if α ∈ A, with α0 = 0, we have

α2 = α2
1 + α1α2

︸︷︷︸

∈spanK(A2)

+ α1α3
︸︷︷︸

∈spanK(A3)

and for n > 1
αn = αn

1 + αn−1
1 α2

︸ ︷︷ ︸

∈spanK(A2)

+ αn−1
1 α3

︸ ︷︷ ︸

∈spanK(A3)

.

By looking at the set of basis elements in A1, it is clear that αn
1 = 0 if

and only if α1 = 0. Observe that if α0 = α1 = 0 then α2 = 0. Hence, α is
nilpotent if and only if α0 = α1 = 0, and we have nil(R) = span(A2 ∪ A3).
Since A1A2 ⊆ A2 and A1A3 ⊆ A3, we see that this set forms a two sided
ideal and by Proposition 1, R is Nil-Armendariz.

Ced in [6] proves that R is a right zip ring and R[x] is not. Hence there
is a Nil-Armendariz counterexample to Theorem 1 (6).
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Therefore we have counterexamples to all possible generalizations of The-
orem 1 to Nil-Armendariz rings. Moreover, one could ask whether or not the
Nil-Armendariz condition itself passes to the polynomial ring. This question
is addressed in [3], where, by relating it to a question of Amitsur ([1]), is true
in the case of K-algebras over a non denumerable field but fails in general
using counterexamples provided by A. Smocktunowicz in [20].
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[4] Ramon Antoine and Ferran Cedó. Polynomial rings over Goldie rings.
Journal of Algebra, 237(1):262–272, 2001.

[5] Ephrain P. Armendariz. A note on extensions of Baer and p.p. rings.
Journal of the Australian Mathematical Society, 18:470–473, 1974.
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