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ió

N
ú
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Abstract

A general method is given for revising degrees of belief and arriving
at consistent decisions about a system of logically constrained issues.
In contrast to other works about belief revision, here the constraints
are assumed to be fixed. The method has two variants, dual of each
other, whose revised degrees of belief are respectively above and be-
low the original ones. The upper [resp. lower] revised degrees of belief
are uniquely characterized as the lowest [resp. greatest] ones that are
invariant by a certain max-min [resp. min-max] operation determined
by the logical constraints. In both variants, making balance between
the revised degree of belief of a proposition and that of its negation
leads to decisions that are ensured to be consistent with the logical
constraints. These decisions are also ensured to satisfy a property of
respect for unanimity about any particular issue, as well as a property
of monotonicity with respect to the original degrees of belief. The ap-
plication of the method to certain special domains comes down to well
established or increasingly accepted methods, such as the single-link
method of cluster analysis and the method of paths in preferential
voting.

Keywords: constrained judgment aggregation, degrees of belief,
belief revision, plausible reasoning, artificial intelligence, decision
theory, doctrinal paradox, cluster analysis, preferential voting,
conjunctive normal forms.
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1 Introduction

1.1 Around 1990 Lewis A. Kornhauser and Lawrence G. Sager pointed out
that collegial courts are liable to what they termed the doctrinal paradox
[14, 15 ]. A simple example of it would be the following: A person is on trial
for having committed a crime. The case involves two issues p and q whose
conjunction, i. e. both of them being true, determines whether the accused is
guilty or not. The case is heard by a jury of three members. One of them
believes that p is true but not q ; accordingly, he finds the accused not guilty.
Another one believes that q is true but not p ; so he also finds the accused
not guilty. Finally, the third member of the jury believes that both p and
q are true, so he finds the accused guilty. Altogether, one can say that the
jury has reached a majority verdict of not guilty. However, one can also say
that they have a majority opinion that p is true and that q is also true;
accordingly, the accused should be considered guilty. The above-mentioned
authors acknowledge that “We have no clear understanding of how a court
should proceed in cases where the doctrinal paradox arises” [15 ].

The main issue in a trial is whether the accused is guilty or not. Let t
denote the proposition that he is guilty. We are assuming that this proposi-
tion is logically connected to p and q as specified by the following doctrine:
t ↔ p ∧ q . Every member of the jury is required to be consistent with it.
Therefore, there are only four consistent opinions about the truth of (p, q, t),
namely: (1, 1, 1), (1, 0, 0), (0, 1, 0) and (0, 0, 0), where 1 means true, and
0 means false. Let us consider all possibilities for a jury that is hearing such
a case: let x, y, z, u be the fractions who adhere to, respectively, each of
those four consistent opinions. In terms of these numbers, the fractions of
the jury who believe in the truth of t, p, q are respectively vt = x , vp = x+y
and vq = x+ z . These numbers can be seen as degrees of collective belief in
the truth of the respective propositions. A natural criterion for collectively
deciding about t is to consider it true whenever vt >

1
2
, i. e. x > 1

2
. In

the following we will refer to it as the conclusion-based criterion . In
contrast, the premise-based criterion considers t true if and only if both
vp, vq >

1
2
, i. e. both x+y, x+z > 1

2
. Clearly, if t is found true by the

conclusion-based criterion, then it will also be found true by the premise-
based one. However, the converse does not hold, as it is exemplified in the
preceding paragraph, where vp = vq = 2

3
> 1

2
but vt = 1

3
< 1

2
.

1.2 The core of the problem is that the majority rule does not keep con-
sistency with the doctrine. Even though each individual votes in a consis-
tent way, the outcome of the majority rule need not be consistent! By the
majority rule we mean accepting a proposition α and rejecting its negation
α whenever vα >

1
2
.
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From this point of view, the problem is entirely analogous to the well-
known paradox remarked in the eighteenth century by the Marquis of Con-
dorcet in connection with preferential voting [19 ]: When several individu-
als vote on three or more alternatives by ordering them according to their
preferences, the majority rule may result in a cyclic (i. e. non transitive)
binary relation. In preferential voting one is interested in the propositions
pxy : ‘x is preferable to y ’, where x and y vary over all possible pairs of
alternatives, and the doctrine is transitivity, namely pxy ∧ pyz → pxz for any
three alternatives x, y, z , together with asymmetry, namely pxy → pyx for
any two alternatives x, y . As before, the problem is that the majority rule
does not keep consistency with the doctrine. The standard example involves
three alternatives a, b, c and three rankings, namely a � b � c , b � c � a
and c � a � b . If vxy denotes the fraction of times that x is preferred to y ,
one gets vab = vbc = vca = 2

3
and vba = vcb = vac = 1

3
. Clearly, the condition

vxy >
1
2

does not define a transitive relation.

Yet another class of objects whose aggregation and subsequent applica-
tion of the majority rule may break away from the corresponding doctrine
are equivalence relations. Consider, for example, the set {a, b, c} and the
equivalence relations associated respectively with the three following parti-
tions: {{a, b}, {c}} , {{a}, {b, c}} and {{a, b, c}} . If vxy denotes the fraction
of times that x and y belong to the same class, one gets vab = vbc = 2

3
and

vac = 1
3

(together with vyx = vxy ). Here too, the aggregation operation does
away with transitivity.

All these problems are particular cases of a more general one where the
objects being aggregated are systems of degrees of belief for several propo-
sitions which are logically constrained by a certain doctrine. This general
problem can be referred to as that of constrained judgment aggregation.
In a celebrated paper published in 1952, Georges Th. Guilbaud already iden-
tified this problem as a generalization of Condorcet’s one: “The general logic
of propositions ... teaches us that the problem is universal. Given several
propositions or questions, every logical relation between them can be ex-
pressed by establishing the list of possible arrangements of signs and the list
of impossible arrangements. ... the rule of the majority may very well lead
to a forbidden arrangement” [10 ].

1.3 Condorcet’s paradox is closely related to the celebrated impossibility
theorem formulated in 1950–63 by Kenneth J. Arrow [1, 9 ]. This theorem
is concerned with preferences expressed by means of complete rankings, ties
allowed, and with rules for (deterministically) aggregating any given set of in-
dividual preferences of this form into a collective one of the same form. Quite
naturally, one would be interested in rules that comply with the following con-
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ditions: (i) Anonymity: all individuals play the same role; (ii) Respect for
unanimity: if every individual strictly prefers x to y , then the collective rank-
ing strictly prefers also x to y ; (iii) Independence of irrelevant alternatives:
the collective preference about two alternatives x and y depends only on the
individual preferences about x and y . According to Arrow’s theorem, such
a rule does not exist, except in the case where there are only two alternatives.

The doctrinal paradox has motivated the question of extending Arrow’s
theorem to the general problem of constrained judgment aggregation. Anal-
ogously to the preceding paragraph, one would be interested in rules that,
besides keeping consistency with the doctrine in question, comply also with
the following conditions: (i) Anonymity; (ii) Respect for unanimity: if a
particular proposition is accepted by every individual, then it is also ac-
cepted by the collective judgment; (iii) Issue-by-issue aggregation (or inde-
pendence): the collective judgment about each issue depends only on the
individual judgments about it. In the present context, the possibility or im-
possibility of a rule satisfying these conditions clearly depends on the struc-
ture of the doctrine under consideration. For instance, the majority rule will
always do for an empty doctrine, i. e. several propositions without any logical
connection between them. Accordingly, the existing impossibility results, for
which we refer to [20, 21, 7, 17, 8 ], specify certain conditions to be met by
the doctrine.

1.4 In practice, one is bound to make decisions, even for doctrines that
are included in the above-mentioned impossibility results. The purpose of
this article is to put forward a general rule for making such decisions in
consistency with the doctrine. This rule will not comply with the property
of issue-by-issue aggregation. However, it will be anonymous and it will
respect unanimity about any particular issue whenever the individual beliefs
are consistent with the doctrine.

The proposed method generalizes two other ones that are already known
in certain particular areas: In fact, when the doctrine corresponds to the
notion of an equivalence relation on a certain set of items, then one of the
variants of our method yields the so-called single-link method of cluster anal-
ysis [13 ]. On the other hand, when the doctrine corresponds to the notion
of a total order, then the proposed method reduces to the one that was
introduced in 1997 by Markus Schulze [23, 24 : p. 228–232 , 4, 5 ].

The problem considered in this article should be distinguished from a
related but different one that is often referred to as ‘belief revision’. This
subject is reviewed for instance in [11 ]. In contrast to the present work, where
the doctrine remains fixed, there one deals with the possibility of changing it.
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2 Setting up the problem

In this section we introduce in more detail the objects that we will be dealing
with. We will be clearly based upon propositional logic. However, instead of
dealing with all-or-none truth assignments, we will deal with degrees of belief
in the whole range from 0 to 1. The term ‘belief’ should be understood here
in a very wide sense; depending on the context, it may be more appropriate
to use other terms, such as ‘plausibility’, ‘certainty’, ‘evidence’, et cetera.
On the other hand, we will also deal with decision values within a set of
three alternatives meaning respectively ‘accepted’, ‘rejected’ and ‘undecided’.
Allowing for undecidedness is unavoidable as soon as one looks at aggregating
different views on the same issues. Besides, the notion of aggregation also
calls for allowing the degree of belief of a negation p to be independent from
that of p . This leads to viewing p and p as antagonistic to each other but
not necessarily mutually exclusive.

2.1 To begin with, we are interested in a finite set of basic propositions
p, q, r, ... together with their respective negations p, q, r, ... . Following the
standard terminology of logic, we will refer to p, q, r, ... as atoms , and an
atom or its negation will be called a literal . The set of atoms will be denoted
as Π+ , and the set of literals will be denoted as Π . So, Π = ∪p∈Π+ {p, p} .
A truth assignment is a mapping whereby each literal is assigned one of
the values ‘true’ or ‘false’, with the restriction that p is false [resp. true]
whenever p is true [resp. false].

We will also deal with compound propositions. They are represented by
formulas that combine atoms by means of the Boolean operators of propo-
sitional calculus, such as ¬,∧,∨,→ and ↔ . The negation operator will be
written either ¬ or (a line placed on top) depending on the size of the
formula to which it is applied. To be precise, we are assuming that ¬p = p
and ¬(p) = p for any p ∈ Π+ . The notions of entailment —or logical
implication— and logical equivalence between formulas will be under-
stood exactly as in classical bivalent propositional logic: One formula entails
another if there is no truth assignment that makes the first formula true and
the second false. Two formulas are logically equivalent to each other when
their truth value is the same for any truth assignment.

A doctrine can be seen as a compound proposition —in other words,
a formula— whose truth is assumed to hold. A truth assignment that makes
this formula true will be said to be consistent with the doctrine.

In dealing with the doctrine, we will make a crucial use of the well-known
fact that any formula can be transformed into logically equivalent ones of
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the form

Φ(D) :=
∧

C∈D

( ∨

p∈C
p

)
, (1)

where D stands for a collection of subsets of Π . A formula of this form
is called a conjunctive normal form (or product-of-sums formula), and
the expressions within parentheses are called its clauses (or implicates,
or factors). Generally speaking, a clause means any formula of the form

φ(C) :=
∨

p∈C
p, (2)

where C is a subset of Π . Obviously, specifying a clause is equivalent to
specifying the associated set C ⊂ Π , and specifying a conjunctive normal
form is equivalent to specifying the associated collection D of subsets of Π .
Because of that, in the following we will sometimes refer to the sets C ∈ D

themselves as ‘clauses’ and we may even refer to the collection D as the
‘doctrine’.

A conjunctive normal form being true means that each of its clauses is
true. On the other hand, a clause being true means that at least one of
its literals is true; in other words, if all of its literals but one are known
to be false, then the remaining one must be true. Therefore, the doctrine
associated with (1) provides the following implications:

p ←
∧

α∈C
α 6=p

α, (3)

for any C ∈ D such that p ∈ C . The method developed below will be based
crucially on such implications.

The conjunctive normal forms equivalent to a given doctrine are by no
means unique. Later on, we will require them to belong to a special class that
we will refer to as prime conjunctive normal forms , and eventually we
will choose a particular member of that class which is known as the Blake
canonical form . These concepts will be introduced in § 3.2.

On the other hand, we adopt from now on the following assumptions:

(D1) The doctrine is satisfiable.

(D2) It does not contain unit clauses, i. e. clauses with a single literal.
Otherwise, one can always fix it by replacing such literals and their
negations by the corresponding truth values, and deleting them
from Π .
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(D3) It explicitly contains each of the tertium non datur clauses p ∨ p ,
with p ∈ Π+ . This special convention provides the trivial implica-
tions p← p for any p ∈ Π .

2.2 A valuation is a mapping w whereby each literal p in Π is assigned
a value wp in the interval of real numbers from 0 to 1. The number wp ,
sometimes denoted alternatively as w(p), can be seen as a degree of belief in
the proposition p .

Generally speaking, the values of wp and wp need not add up to 1,
but their sum can take any value from 0 to 2. Having wp + wp < 1 means
a lack of information, whereas wp+wp > 1 means that some contradiction is
present. A valuation that satisfies wp +wp = 1 for any p ∈ Π will be called
balanced .

The truth assignments of classical propositional logic are balanced valu-
ations that take only the values 0 and 1.

Later on, we will sometimes compare two valuations v and w . In that
connection, v ≤ w will mean simply that vp ≤ wp for any p ∈ Π .

A decision is a mapping whereby each proposition p in Π is assigned
one of the three following possibilities: ‘accepted’, ‘rejected’ or ‘undecided’,
with the restriction that p is accepted if and only if p is rejected, and that
p is undecided if and only if p is undecided. In other words, a decision is a
balanced valuation with values in {0, 1

2
, 1} , where these three values mean

respectively ‘rejected’, ‘undecided’ and ‘accepted’.

A decision will be said to be definitely consistent with D when, for
each clause C ∈ D and every p ∈ C , one has the following implication: if α
is rejected for every α ∈ C \ {p} , then p is accepted.

Every valuation w gives rise to a decision in the following way, that
depends on a parameter η in the interval 0 ≤ η ≤ 1: For any p ∈ Π ,

p is accepted and p is rejected whenever wp − wp > η, (4)

p and p are left undecided whenever |wp − wp | ≤ η. (5)

We will refer to such a decision as the decision of margin η associated
with the valuation w . In the case η = 0 we will call it the basic decision
associated with w . In tune with these definitions, the difference wp − wp
will be called the acceptability of p according to w . If the valuation w is
balanced, then the basic decision criterion is equivalent to the majority rule
of §1.2, namely accepting p and rejecting p whenever wp >

1
2
.
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2.3 Valuations are often an aggregate of several components (members of
a jury, decision criteria, etc.), i. e. an average of the form

vp =
∑

k

ak v
k
p , (6)

where vk are the component valuations, and ak are the corresponding relative
frequencies or weights, satisfying ak ≥ 0 for any k and

∑
k ak = 1. If the

component valuations have an all-or-none character, then vp is the fraction
of components where p is considered valid.

The doctrinal paradox points out the possibility that the average valua-
tion be not consistent with the doctrine even when all component valuations
are consistent with it.

2.4 Our main aim can be stated in the following way: Given a valuation v ,
build a revised one that is consistent with the doctrine while staying as near
as possible to v .

In the method presented below, consistency with the doctrine will happen
in the sense that the associated decision will be definitely consistent as defined
in § 2.2. This will be a consequence of the fact that the revised degrees of
belief will satisfy certain equations that are naturally associated with the
doctrine.

Generally speaking, we will obtain two revised valuations v∗ and ∗v
satisfying the inequalities ∗v ≤ v ≤ v∗ . We will call them respectively
the upper and lower revised valuations. For a balanced original valuation,
the upper and lower revised valuations give rise to exactly the same decision.
However, in the unbalanced case they can lead to different decisions.

For the moment, we will be concerned only with the upper revised valu-
ation v∗ , the lower one being introduced at the end by duality.

3 Construction and main results

3.1 The upper revised valuation will be obtained by means of an iterative
process whereby belief will be propagated along the implications contained
in the doctrine. More specifically, we will consider the implications (3) and
we will apply the following general principle:

(P) Consider an implication of the form p ← ∧
α∈Σ α with Σ ⊂ Π .

As soon as the right-hand side is satisfiable, this implication gives
to p at least the same degree of belief as the weakest of the con-
juncts α .
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In § 3.2 we will see that the hypothesis of satisfiability contained in this
principle amounts to requiring the conjunctive normal form that expresses the
doctrine to be a prime conjunctive normal form. However, for the moment we
need not be concerned with this question. In fact, principle (P) will be used
only to motivate certain definitions that can be applied to any conjunctive
normal form.

In contrast, the present subsection already makes use of the assumptions
(D1, D2, D3) adopted at the end of § 2.1.

Let us look at the consequences of applying principle (P) to the implica-
tions (3). Starting with the degrees of belief given by v , we infer that every
p ∈ Π should be believed at least in the degree v′p defined by

v′p = max
C∈D
C3p

min
α∈C
α 6=p

vα, (7)

where the max and min operators are ensured to deal with non-empty sets
of values as a consequence of assumptions (D2) and (D3).

Lemma 3.1. The transformation v 7→ v′ has the following properties:

(a) It is continuous.

(b) v ≤ w implies v′ ≤ w′ .

(c) v ≤ v′ .

(d) The image set of v′ is contained in that of v .

Proof. Part (a): Since max and min are continuous. Part (b): Since max
and min are monotone. Part (c): Because of the tertium non datur clauses
provided by (D3), one of the arguments of the max operator in the right-
hand side of (7) is vp . Part (d): Formula (7) entails that v′p coincides with
vα for some α ∈ Π .

As soon as we accept v′ as new degrees of belief, it makes sense to repeat
the same operation with v replaced by v′ , thus obtaining a still higher valu-
ation v′′ , and so on. By proceeding in this way, one obtains a non-decreasing
sequence of valuations v(n) (n = 0, 1, 2, . . . ) with the property that all of
them take values in the same finite set, namely { vα | α ∈ Π } . Obviously,
this implies that this sequence will eventually reach an invariant state v∗ .
This eventual valuation is, by definition, the upper revised valuation .

Theorem 3.2. The transformation v 7→ v∗ has the following properties:

(a) It is continuous.
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(b) v ≤ w implies v∗ ≤ w∗ .

(c) v ≤ v∗ .

(d) The image set of v∗ is contained in that of v .

Proof. Everything is an immediate consequence of Lemma 3.1.

The fact that v∗ is invariant by the transformation w 7→ w′ means that
it satisfies the equality

v∗′ = v∗, i. e. v∗p = max
C∈D
C3p

min
α∈C
α 6=p

v∗α (∀p ∈ Π ). (8)

This equality is saying that the degrees of belief given by v∗ are consistent
with principle (P) in connection with the implications (3) for all C ∈ D . This
property plays an essential role in the characterization given by the following
result:

Theorem 3.3. The upper revised valuation v∗ is the lowest of the valuations
w that lie above v and satisfy the equality w′ = w .

Proof. Theorem 3.2 ensures that v∗ satisfies the inequality v ≤ v∗ and we
have just seen that it satisfies also the equality v∗′ = v∗ . It remains to see
that v ≤ w together with w′ = w implies v∗ ≤ w . To this effect, it suffices
to use Theorem 3.2.b to see that the inequality v ≤ w entails v∗ ≤ w∗ , and
to combine this inequality with the equality w∗ = w , which follows from
w′ = w by the definition of w∗ .

The following result considers the case where the valuation v is a truth
assignment, i. e. a balanced valuation with values in {0, 1} :

Proposition 3.4. A truth assignment v is consistent with the doctrine
if and only if v∗ = v .

Proof. Let Φ be the conjunctive normal form that expresses the doctrine.

Let us begin by seeing that v being consistent implies v∗ = v . Since v∗

is defined by iterating the mapping v 7→ v′ , it suffices to show that v′ = v ,
i. e. v′p = vp for any p ∈ Π . When vp = 1, this is true because of parts (c)
and (d) of Lemma 3.1. When vp = 0, the truth of Φ requires that any
clause C that contains p must contain also some α 6= p with vα = 1 and
therefore vα = 0. By introducing this in (7) one gets v′p = 0.
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Let us see now that v not being consistent implies v∗ 6= v . The lack of
consistency of v means that there exists at least one clause C that is not
satisfied, i. e. such that vp = 0 for any p ∈ C . By taking one such p and
noticing that vα = 1 for any α ∈ C \ {p} —that exists because of (D2)—
one gets v′p = 1 > 0 = vp , which implies the same inequality for v∗ instead
of v′ .

According to part (c) of Theorem 3.2, vp = 1 implies v∗p = 1. The
following result shows that the converse implication holds when v is an ag-
gregate of consistent truth assignments. By an aggregate we mean a convex
combination of several components vk , as in (6).

Proposition 3.5. Assume that v is an aggregate of consistent truth as-
signments. In that case, having v∗p = 1 implies vp = 1.

Proof. We will proceed by induction on the iterates v(n) . More specifically,
we aim at showing that

For any p ∈ Π , the equality v(n)p = 1 implies vp = 1, (9n)

where we emphasize that the statement includes the quantifier “for all p∈Π ”.
For n = 0 this is trivially true since v(0) = v . For n ≥ 1, (9n ) can be
obtained from (9n−1 ) in the following way: Let us assume that v

(n)
p = 1.

If v
(n−1)
p = 1, the conclusion follows directly from (9n−1 ). Otherwise, the in-

equality v
(n)
p > v

(n−1)
p entails the existence of a proper clause C , i. e. a clause

different from the ones associated with the tertium non datur principle, such
that v

(n−1)
α = 1 for any α ∈ C \ {p} . Now, (9n−1 ) ensures that vα = 1.

In order to obtain the desired conclusion, namely that vp = 1, we must make
use of (6), where we can assume without loss of generality that ak > 0 for
any k . The fact that we are dealing with a convex combination allows to
infer that vkα = 1 for any k . Now, since the vk are truth assignments, it fol-
lows that vkα = 0. On the other hand, since they are consistent with the
doctrine, and the preceding conclusion is valid for any α ∈ C \{p} , it follows
that vkp = 1. Finally, this certainly implies vp = 1.

An important consequence of the preceding result is the following property
of respect for unanimity:

Theorem 3.6. Assume that v is an aggregate of consistent truth assign-
ments. In that case, having vp = 1 implies that p is accepted by the basic
decision associated with the upper revised valuation v∗ .
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Proof. We must show that v∗p > v∗p . In the present case we know that
v∗p = 1, so that the proof reduces to showing that v∗p < 1. This inequality
is easily obtained by contradiction. In fact, according to Proposition 3.5,
v∗p = 1 would imply vp = 1, that is incompatible with vp = 1 because
vp + vp = 1, which derives from the analogous equality satisfied by the
components vk .

Remark. The two preceding results and proofs remain true when the compo-
nent valuations vk are not necessarily valued in {0, 1} but they satisfy the
following properties in the place of balance and consistency: (a) vkp +vkp ≤ 1
for any p ∈ Π ; and (b)

∑
α∈C v

k
α ≥ 1 for any clause C .

The fact that v∗ satisfies (8), or more properly the inequality v∗′ ≤ v∗ ,
entails the following fundamental result:

Theorem 3.7. For any η in the interval 0≤η≤1, the decision of margin η
associated with the upper revised valuation is always definitely consistent.

Proof. According to the definition of definite consistency, we have to show
that for each C ∈ D and every p ∈ C , if all α ∈ C \ {p} are rejected, then
p is accepted. Assume the contrary: p is not accepted, that is

v∗p ≥ v∗p − η. (10)

From (8) it follows that
v∗p ≥ min

α∈C
α 6=p

v∗α = v∗q , (11)

for some q ∈ C \ {p} . Let us fix such a q . By combining (10) and (11) we
get

v∗p ≥ v∗q − η. (12)

Now, since q 6= p , the hypothesis that q is rejected is saying that

v∗q − η > v∗q . (13)

On the other hand, (8) entails that

v∗q ≥ min
α∈C
α 6=q

v∗α = min
(
v∗p , min

α∈C
α 6∈{p,q}

v∗α

)
, (14)

from which (12) and (11) —and the hypothesis that η ≥ 0— allow to con-
clude that

v∗q ≥ v∗q − η, (15)

in contradiction with (13).
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3.2 Which conjunctive normal form? In this subsection we look at
the effect of the conjunctive normal form Φ that expresses the doctrine.
In the following Φ̃ stands for an alternative conjunctive normal form (with
literals in the same set Π ) and we systematically use a tilde to denote the
objects associated with Φ̃ . In particular, v∗ and ṽ∗ mean the upper revised
valuations obtained from a given v by using respectively Φ and Φ̃ . For the
moment, Φ and Φ̃ need not be logically equivalent to each other.

If one has v∗ = ṽ∗ for any v we will say that Φ and Φ̃ are ∗-equivalent.

Proposition 3.8. ∗-Equivalence implies logical equivalence.

Proof. Φ and Φ̃ not being logically equivalent means that there exists a
truth assignment v that makes one of them, say Φ, true, and the other, Φ̃ ,
false. According to Proposition 3.4, this entails that v∗ = v but ṽ∗ 6= v ,
so that Φ and Φ̃ are not ∗-equivalent.

However, logical equivalence does not imply ∗-equivalence. As a simple ex-
ample, we can take Φ = (p∨ q)∧ (p∨ r) and Φ̃ = p∨ r , for which one easily
checks that ṽ∗q = vq < v∗q as soon as vp > vq . The following result can be
seen as a generalization of what happens in this example.

Proposition 3.9. If all clauses of Φ̃ are present also in Φ, i. e. D̃ ⊆ D,
then ṽ∗ ≤ v∗ .

Proof. We will proceed by induction along the iteration that eventually
gives the upper revised valuation v∗ . As in § 3.1, we denote the iterates
by v(n) . We aim at showing that ṽ(n) ≤ v(n) for any n ≥ 0. For n = 0 this
is satisfied as an equality, since we are starting from the same valuation v .
In order to go from n− 1 to n , it suffices to compare ṽ(n) and v(n) through
the valuation w defined by

wp = max
C∈D
C3p

min
α∈C
α6=p

ṽ
(n−1)
α , (16)

(with a tilde in ṽ(n−1) , but not in D). In fact, on the one hand, by comparing
the preceding expression with the one that defines ṽ(n) in terms of ṽ(n−1) ,
one easily sees that ṽ(n) ≤ w , since more clauses entail a higher maximum.
On the other hand, Lemma 3.1.b allows to derive that w ≤ v(n) from the
hypothesis that ṽ(n−1) ≤ v(n−1) .
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Let us look at the meaning of the hypothesis contained in principle (P),
namely the satisfiability of the conjunction

∧
α∈Σ α that implies p . Not

requiring this satisfiability would lead to such non-senses as giving a certain
degree of belief to any p just because of the tautological but ‘improper’
implication p ← (q ∧ q) (for an arbitrary q ). Now, the conjunction that
appears in (3) is

∧
α∈C,α6=p α , whose satisfiability must be understood in

connection with the doctrine under consideration. Its not being satisfiable
is equivalent to

∨
α∈C,α6=p α being always satisfied, in which case the clause∨

α∈C α could have been replaced by the stronger one
∨
α∈C,α6=p α . So, the

hypothesis that the right-hand side of (3) is satisfiable whenever p ∈ C ∈ D

amounts to say that every clause has the property that the corresponding set
C ∈ D has no proper subset C ′ with φ(C ′) =

∨
α∈C′ α already entailed by

the doctrine. Such clauses are called prime clauses (or prime implicates).
In [7, 17, 8 ] one uses the equivalent terminology of saying that C = {α |
α ∈ C } is a ‘minimal inconsistent set’, whereas in [20, 21 ] C is said to be a
‘critical family’. From now on we require the conjunctive normal form that
expresses the doctrine to be made of prime clauses; such conjunctive normal
forms will be referred to as prime conjunctive normal forms . As we
have seen at the beginning of this paragraph, they are the only ones that
propagate belief in a proper way, without making it up.

Among all the prime conjunctive normal forms equivalent to a given doc-
trine, we will take as a natural choice the Blake canonical form , so called
after Archie Blake, who introduced it in 1937 [2 ]. Given a formula f , the
Blake canonical form of f is the conjunctive normal form which is made of
all the prime clauses of f . The following statement gives its main property
in connection with the upper revised valuation v∗ :

Proposition 3.10. Among all the prime conjunctive normal forms logically
equivalent to a given doctrine, the Blake canonical form has the property of
giving the greatest possible upper revised valuation.

Proof. It follows immediately from the definitions by virtue of Proposi-
tion 3.9.

The next theorem gives a systematic method for obtaining the Blake
canonical form of a formula f . The procedure will start from any conjunctive
normal form Φ̃ logically equivalent to f —which is quite easy to obtain—
and it will apply repeatedly the two following operations, where φ, ψ stand
for generic disjunctions of literals:
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Absorption: replacing φ ∧ (φ ∨ ψ) by φ .

Resolution: replacing (φ ∨ p) ∧ (ψ ∨ p) by (φ ∨ p) ∧ (ψ ∨ p) ∧ (φ ∨ ψ)
under the proviso that φ and ψ do not contain respectively a literal
and its negation, and that φ∨ ψ is not absorbed by a clause already
present.

In the dual context of disjunctive normal forms, the operations analogous to
resolution and absorption are known respectively as consensus and subsump-
tion.

Theorem 3.11 (Blake, 1937; Samson, Mills, 1954; Quine, 1955–59; see
[3, 18 ]). In order to obtain the Blake canonical form of a formula f it suf-
fices to take any conjunctive normal form Φ̃ logically equivalent to f and
to transform it by applying repeatedly the operations of absorption and res-
olution until no further application is possible (which happens after a finite
number of steps).

Remarks

1. In order to check a given conjunctive normal form Φ̃ for its being
prime, it is a matter of deriving the Blake canonical form Φ by following the
procedure of absorption and resolution and checking whether Φ contains all
the clauses of Φ̃ ; in other words, checking that none of the original clauses
disappears by absorption in the process.

2. According to the special convention (D3) adopted at the end of § 2.1,
we systematically supplement the Blake canonical form with all the tertium
non datur clauses (which are neutral elements for the operation of resolution,
and are prime under the assumption (D2) of absence of unit clauses). The
context will always make clear whether we mean the standard Blake canonical
one or the supplemented one.

In some cases the Blake canonical form can be quite long. This raises the
question whether there are shorter prime conjunctive normal forms ∗-equiv-
alent to it. Generally speaking, it need not be so. A simple example is the
conjunctive normal form Φ̃ = (p∨q∨r)∧ (p∨r∨s), for which one can easily
check that the Blake canonical form is Φ = (p∨q∨r)∧(p∨r∨s)∧(p∨q∨s),
and that v∗p > ṽ∗p as soon as min(vq, vs) > max(vr, vr). Having said that,
the next results identify certain situations where shorter conjunctive normal
forms can be shown to be ∗-equivalent to the Blake canonical form. In this
connection, we will use the following terminology: A disjoint resolution
means a resolution operation as above but with φ and ψ having no literals
in common. A conjunctive normal form will be called disjoint-resolvable
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when a suitable choice of which clauses to resolve at every stage allows to
arrive at the Blake canonical form by only making use of disjoint resolution
and absorption.

Proposition 3.12. Let Φ and Φ̃ be prime conjunctive normal forms. If Φ
is obtained from Φ̃ by a single disjoint resolution operation, then v∗ = ṽ∗ .

Proof. Clearly, D̃ ⊆ D . So Proposition 3.9 ensures that ṽ∗ ≤ v∗ . In order
to prove the equality we will make use of the characterization of v∗ given by
Theorem 3.3: v∗ is the lowest valuation w that satisfies w′ = w ≥ v . So,
we will be done if we show that the latter conditions are satisfied when we
put w = ṽ∗ . From now on we fix w to mean ṽ∗ . What we know is that
w̃ ′ = w ≥ v , where in principle w̃ ′ differs from w′ in that they use different
conjunctive normal forms. So the problem reduces to showing that w′ = w̃ ′ .

Now, the two conjunctive normal forms in consideration differ only in
that D = D̃ ∪ {C∗} , where C∗ = (C̃1 \ {p}) ∪ (C̃2 \ {p}) with C̃1, C̃2 ∈ D̃

containing respectively p and p . Clearly, w′q cannot differ from w̃ ′q except
for q ∈ C∗ , in which case we have

w′q = max

(
w̃ ′q , min

α∈C∗
α 6=q

wα

)
. (17)

So we should show that

min
α∈C∗
α 6=q

wα ≤ w̃ ′q, ∀q ∈ C∗. (18)

The hypothesis of disjoint resolution means that either q ∈ C̃1 \ {p} or
q ∈ C̃2 \ {p} , but not both. The two cases are analogous to each other,
so we will consider only the second one. In order to obtain (18) we begin by
noticing that

min
α∈C∗
α6=q

wα = min

(
min
α∈C̃1

α 6=p
α 6=q

wα , min
α∈C̃2

α 6=p
α 6=q

wα

)
. (19)

Now, since we are assuming q /∈ C̃1 , we have

min
α∈C̃1

α 6=p
α 6=q

wα = min
α∈C̃1

α 6=p

wα ≤ w̃ ′p = wp, (20)
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where we used that w̃ ′ = w . Finally, by plugging (20) into (19) we get

min
α∈C∗
α 6=q

wα ≤ min

(
wp , min

α∈C̃2

α 6=p
α 6=q

wα

)
= min

α∈C̃2

α 6=q

wα ≤ w̃ ′q, (21)

as desired.

Corollary 3.13. Any disjoint-resolvable prime conjunctive normal form is
∗-equivalent to the Blake canonical form.

Proof. Let Φ and Φ̃ denote respectively the Blake canonical form and a
disjoint-resolvable prime conjunctive normal form. Since we can go from Φ̃
to Φ via disjoint resolution and absorption, Propositions 3.12 and 3.9 ensure
that v∗ ≤ ṽ∗ . On the other hand, the reverse inequality is guaranteed by
Proposition 3.10, since the disjoint resolvability of Φ̃ certainly ensures that
Φ̃ is logically equivalent to Φ.

Remark. Generally speaking, computing v∗ by means of the Blake canonical
form will require less steps than using a shorter ∗-equivalent prime conjunc-
tive normal form (if it exists). On the other hand, the Blake canonical form
may already require several steps.

3.3 Definite Horn doctrines. A conjunctive normal form Φ(D) is said
to have a definite Horn character when every clause C ∈ D contains
exactly one element of Π+ . This property is easily seen to be preserved by
the operations of absorption and resolution. As a consequence, it is inherited
by the corresponding Blake canonical form. So, the latter has a definite Horn
character if and only if there exists a logically equivalent conjunctive normal
form with the same property. In such a situation, we can say that we are
dealing with a definite Horn doctrine. As we will see, for such doctrines one
can arrive at consistent decisions by means of another criterion besides the
one given at the end of § 2.2.

For a definite Horn doctrine, the restriction of v∗ to Π+ is easily seen
to depend only on the restriction of v to Π+ . More generally, this happens
when every clause C ∈ D contains at most one element of Π+ , in which case
one speaks of a (simple) Horn character. In contrast, the properties below
require a definite Horn character.

Proposition 3.14. For a definite Horn doctrine one has

max
p∈Π+

v∗p ≤ max
q∈Π+

vq. (22)
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Proof. Since v∗ is obtained by iterating the transformation v 7→ v′ , it
suffices to show that this transformation has a property analogous to (22)
with v∗ replaced by v′ , i. e. that v′p ≤ maxq∈Π+

vq holds for any p ∈ Π+ .
This follows immediately from (7) because the definite Horn character ensures
that any of the clauses that contains p contains also some q ∈ Π+ .

For definite Horn doctrines, one can arrive at definitely consistent deci-
sions by considering only the restriction of v∗ to Π+ . For every η in the
interval 0 ≤ η ≤ 1 we define the unilateral decision of margin η in the
following way: For any p ∈ Π+ ,

p is accepted and p is rejected whenever v∗p > η, (23)

p is rejected and p is accepted whenever v∗p < η, (24)

p and p are left undecided whenever v∗p = η. (25)

Theorem 3.15. For a definite Horn doctrine, and any η in the interval
0 ≤ η ≤ 1, the unilateral decision of margin η associated with the upper
revised valuation is always definitely consistent.

Proof. According to the definition of definite consistency, we have to show
that for each C ∈ D and every p ∈ C , if all α ∈ C \ {p} are rejected, then
p is accepted. To this effect, we will show that assuming p not accepted and
all α ∈ C \ {p} rejected leads to contradiction. Now, for a definite Horn
doctrine all clauses have the form C = {r} ∪ S , with r ∈ Π+ and S ⊂ Π+ .
According to (8), one has

v∗r ≥ min
s∈S

v∗s (26)

In order to arrive at the desired contradiction we will distinguish two cases:
(a) p = r ; and (b) p ∈ S .

Case (a): p = r . In this case, p = r not accepted means that v∗r ≤ η , and
all α ∈ C \ {p} rejected means all s ∈ S accepted, i. e. v∗s > η . By plugging
these inequalities in (26) we arrive at the false conclusion that η > η .

Case (b): p ∈ S . In this case, r is rejected, so that v∗r < η , and the
s ∈ S are either accepted or not rejected, so that v∗s ≥ η . Therefore, we also
arrive at the false conclusion that η > η .

Compared with the bilateral decision criterion (4–5), the unilateral one
(23–25) leaves much less room for undecidedness. For the bilateral criterion,
increasing η has the effect of thickening the region of undecidedness. In con-
trast, for the unilateral criterion it has only the effect of moving the bound-
ary. This happens at the expense of disregarding the evidence in favour of p
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for p ∈ Π+ . So, the unilateral criterion may accept p in spite of a stronger
evidence in favour of p , or it may reject p in spite of p having a weaker evi-
dence than p . On the other hand, the extent of such discrepancies is limited
as stated in the following result:

Proposition 3.16. The unilateral decisions associated with a definite Horn
doctrine are related to the bilateral ones in the following ways: (a) For any
p ∈ Π+ satisfying vp + vp ≥ 1, if p is accepted [resp. not rejected ] by the
bilateral decision of margin η , then p is accepted [resp. not rejected ] by the
unilateral decision of margin (1+η)/2. (b) For any p ∈ Π+ , if p is accepted
[resp. not rejected ] by the unilateral decision of margin η ≥ η0 , then p is
also accepted [resp. not rejected ] by the bilateral decision of margin η − η0 ,
where η0 := maxq∈Π+

vq .

Proof. In order to obtain part (a) it suffices to notice that vp + vp ≥ 1
implies v∗p + v∗p ≥ 1 and therefore v∗p ≥ [ (v∗p−v∗p) + 1 ] / 2. Part (b) is a
consequence of the inequality v∗p − v∗p ≥ v∗p − η0 , which follows immediately
from (22).

3.4 Detachable sets. A set Σ ⊂ Π will be said to be detachable
for a conjunctive normal form Φ(D) when it has the following properties:
(a) Σ does not contain at the same time a literal p and its negation p ;
(b) for any clause C ∈ D , if C contains p for some p ∈ Σ , then C contains
also some q ∈ Σ . Again, this property is preserved by the operations of ab-
sorption and resolution (checking it is a little exercise). As a consequence, it
passes on to the corresponding Blake canonical form. So, Σ ⊂ Π is detach-
able for the latter if and only if it is detachable for some logically equivalent
conjunctive normal form. In such a situation, we can say simply that Σ is
detachable for the given doctrine.

For a definite Horn doctrine, Π+ is easily seen to be always a detachable
set. The following result is thus a generalization of Proposition 3.14:

Proposition 3.17. A detachable set Σ has the property that

max
p∈Σ

v∗p ≤ max
q∈Σ

vq. (27)

Proof. It is a straightforward extension of that of Proposition 3.14.
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Theorem 3.18. Assume that the original valuation satisfies

min
p∈Σ

vp − max
p∈Σ

vp > η, (28)

for some detachable set Σ and some η ∈ [0, 1). In that case, the decision of
margin η associated with the upper revised valuation accepts every proposition
in Σ .

Proof. By combining (27), (28) and part (c) of Theorem 3.2, it follows that

min
p∈Σ

v∗p − max
p∈Σ

v∗p > η, (29)

which implies v∗p − v∗p > η for any p ∈ Σ .

Theorem 3.19. Assume that the original valuation satisfies

vp = 1, vp = 0, for any p ∈ Σ , (30)

where Σ is a detachable set. In that case, the upper revised valuation has the
following properties: (a) For any p ∈ Σ one has also v∗p = 1 and v∗p = 0.
(b) For any q ∈ Π such that neither q nor q belongs to Σ , the upper revised
value v∗q coincides with the value which is obtained for a modified doctrine

that leaves out any clause that contains some element of Σ ∪Σ .

Proof. Part (a) is a direct consequence of Proposition 3.17 and part (c) of
Theorem 3.2. In order to prove part (b) it suffices to show that one can leave
out the clauses that contain some element of Σ ; in fact, by the definition of a
detachable set, those that contain an element of Σ are ensured to contain also
some element of Σ . The statement of part (b) will be obtained by showing
that it holds for all the iterates v

(n)
q with n ≥ 1. In this connection, we will

make use of the fact that v
(n)
p = 0 for any p ∈ Σ and any n ≥ 0, which

follows from part (a) because of the inequality v ≤ v(n) ≤ v∗ . Let us assume
that neither q nor q belongs to Σ . Recall that v

(n)
q is given by

v(n)q = max
C∈D
C3q

min
α∈C
α 6=q

v
(n−1)
α . (31)

We claim that the value that results from this formula is not altered if the
max operator of the right-hand side forgets about any clause C that contains
some p in Σ . In fact, we know that v

(n−1)
p = 0 and p 6= q (because of the

assumption that q 6∈ Σ ). Therefore, we get minα∈C,α6=q vα
(n−1) = 0, which

entails that claim.
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3.5 Monotonicity. In this subsection we look at the effect of raising the
original value of a particular literal p without any change in the others.
We aim at showing that in these circumstances the acceptability of p either
increases or stays constant.

Lemma 3.20. Consider the dependence of v∗q on vp when vα is kept con-
stant for all α 6= p. For any q ∈ Π , this dependence has the following form:
there exist a and b with 0 ≤ a ≤ b ≤ 1 such that

v∗q =





a, for 0 ≤ vp ≤ a,

vp, for a ≤ vp ≤ b,

b, for b ≤ vp ≤ 1.

(32)

Proof. According to part (d) Theorem 3.2, the graph of v∗q as a function
of vp is contained in the union of the horizontal lines v∗q = vα (α ∈ Π \ {p})
together with the diagonal one v∗q = vp . On the other hand, part (a) of that
theorem ensures that the function vp 7→ v∗q is continuous. These constraints
leave no other possibility than the pattern (32).

In order to analyse the effect of raising the value of vp we will use the
following notation and terminology: ṽ denotes a modified valuation that
differs from v only in that ṽp > vp . The objects associated with ṽ will be
referred to by means of a tilde. For any magnitude u that depends on vp ,
the statement “u stays constant ” means that there exists δ > 0 such
that for any ṽp in the interval vp ≤ ṽp ≤ vp + δ one has ũ = u ; similarly,
the statement “u increases ” means that there exists δ > 0 such that
for any ṽp in the interval vp < ṽp ≤ vp + δ one has ũ > u . Notice that these
definitions consider only values of ṽp at the right of vp .

Lemma 3.21. Let us allow vp to grow while vα is kept constant for α 6= p.
If there exists q ∈ Π such that v∗q increases, then v∗p = vp .

Proof. We will proceed by contradiction. Let us assume that v∗p 6= vp .
According to part (c) of Theorem 3.2, it must be v∗p > vp . This allows to
choose ṽp so that vp < ṽp < v∗p . The hypothesis that v∗q increases ensures
that v∗q < ṽ∗q (this is true not only for ṽp in a neighbourhood at the right
of vp , but also for any ṽp > vp , since part (b) of Theorem 3.2 ensures that
ṽ∗q is a non-decreasing function of vp ). Let us consider now the valuation
w that coincides with v for all literals except possibly p , for which we set
wp = v∗p . Since ṽp < v∗p , part (b) of Theorem 3.2 ensures that ṽ∗q ≤ w∗q . We
will arrive at contradiction by showing that w∗q = v∗q . In fact, by combining
this equality with some of the preceding inequalities, namely v∗q < ṽ∗q ≤ w∗q ,
one would arrive at the false conclusion that v∗q < v∗q .
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The claim that w∗q = v∗q is again a consequence of part (b) of Theorem 3.2:
Since v ≤ w ≤ v∗ , that result ensures that v∗ ≤ w∗ ≤ v∗∗ . On the other
hand, the invariance of v∗ by the transformation u 7→ u′ entails v∗∗ = v∗ .

Theorem 3.22. Let us allow vp to grow while vα is kept constant for α 6= p.
In these circumstances, the acceptability of p, that is the difference v∗p − v∗p ,
either increases or stays constant.

Proof. By part (b) of Theorem 3.2, v∗p and v∗p have the property that each
of them either increases or stays constant. When v∗p stays constant we are
done. Now, when v∗p increases, Lemma 3.21 ensures that v∗p = vp . Since
ṽ∗p ≥ ṽp > vp , it follows that v∗p increases too. However, according to
Lemma 3.20 the only possible way for both v∗p and v∗p to increase is by
having ṽ∗p = ṽ∗p = ṽp for any ṽp in an interval of the form vp ≤ ṽp ≤ vp + δ
with δ > 0, which entails that v∗p−v∗p stays constant (and equal to zero).

Corollary 3.23. Assume that the valuation v is modified into a new one
ṽ such that

ṽp > vp, ṽq = vq, ∀q ∈ Π \ {p}, (33)

and let η be any number in the interval 0 ≤ η ≤ 1. If p is accepted [resp. not
rejected ] in the decision of margin η associated with v∗ , then it is also ac-
cepted [resp. not rejected ] in the decision of margin η associated with ṽ∗ .

3.6 Duality. The lower revised valuation ∗v announced in § 2.4 is obtained
by means of a dual method —somehow it might be more appropriate to
say ‘codual’— which is based on the fact that the doctrine, i. e. (1) being
true, provides the following implications originated at p (which should be
compared to (3) ):

p →
∨

α∈C
α 6=p

α, (34)

for any C ∈ D such that p ∈ C . Such implications can be dealt with by
means of a principle dual to (P) that can be stated in the following way:

(Q) Consider an implication of the form p → ∨
α∈Σ α with Σ ⊂ Π .

As soon as the right-hand side is not always satisfied, this implication
restricts the degree of belief of p to be less than or equal to the
maximum degree of belief of the disjuncts α .
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This leads to a downward revision of the degrees of belief according to the
transformation v → ′v defined by the formula

′vp = min
C∈D
C3p

max
α∈C
α 6=p

vα, (35)

whose iteration leads to the lower revised valuation ∗v .

Equivalently, ∗v is given by the formula ∗vp = 1− v̂∗p , where v̂ is related
to v by the formula v̂p = 1 − vp ( v̂ believes p to the extent that v does
not believe p). This characterization allows to obtain the results for ∗v from
those for v∗ .

When v is a balanced valuation, then ∗vp = 1 − v∗p , so that ∗vp −∗vp =
v∗p − v∗p . Therefore, the upper and lower revised valuations lead then exactly
to the same decisions.

4 Application to specific domains

In this section we apply the preceding ideas and results to three specific
domains. Unfortunately, there is no space in this article for developing other
applications.

4.1 One proposition being equivalent to the conjunction of two
other ones. This is the problem with which we started the article, i. e. Π+ =
{p, q, t} with the doctrine t ↔ (p ∧ q). By rewriting the connective ↔ in
terms of ∧,∨,¬ , one easily arrives at the corresponding Blake canonical
form, which has a definite Horn character:

(p ∨ q ∨ t) ∧ (p ∨ t) ∧ (q ∨ t) (36)

The one-step revision transformation, which uses the clauses above and
also the tertium non datur ones, is given by

v′p = max (vp, vt), v′p = max (vp,min(vq, vt)), (37)

v′q = max (vq, vt), v′q = max (vq,min(vp, vt)), (38)

v′t = max (vt,min(vp, vq)), v′t = max (vt, vp, vq). (39)

One can show that v∗ = v′ whenever v is an aggregate of consistent truth
assignments, and v∗ = v′′ in the general case.
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As a particular example, let us consider the following aggregate of con-
sistent truth assignments:

(vp, vq, vt; vp, vq, vt) = .30 (1, 1, 1; 0, 0, 0) + .40 (1, 0, 0; 0, 1, 1) (40)

+ .25 (0, 1, 0; 1, 0, 1) + .05 (0, 0, 0; 1, 1, 1)

= (.70, .55, .30; .30, .45, .70).

As one can see, these collective degrees of belief result in the inconsistent
decision of accepting both p and q but rejecting t . In contrast, the corre-
sponding upper revised valuation, namely

(v∗p, v
∗
q , v

∗
t ; v

∗
p, v

∗
q , v

∗
t ) = (.70, .55, .55; .55, .70, .70), (41)

results in the consistent decision of accepting p and rejecting both q and t .
This decision holds up to a margin of .15, above which all three issues are left
undecided. The classical example of § 1.1 results in all upper revised values
being equal to exactly the same value, namely 2

3
, so that all three issues are

then undecided even for a vanishing margin. All of this is in agreement with
the concept of definite consistency defined in § 2.2.

4.2 Equivalence relation on a set A. Here the set of atomic proposi-
tions is Π+ = { exy | x, y ∈ A, x 6= y } , where exy stands for the proposition
‘x is equivalent to y ’. In order to follow the standard definition of an equiv-
alence relation, one should include also the propositions exx , and constrain
them to being true; however, this goes against our convention (D2) of avoid-
ing unit clauses, which is why the definition of Π+ considers only pairs xy
with x 6= y . The doctrine requires that for any pairwise different x, y, z ∈ A
one must have: exy ∧ eyz → exz (transitivity) and exy → eyx (symmetry).
This is equivalent to identifying exy with eyx and adopting the following
clauses:

exy ∨ eyz ∨ exz, for any pairwise different x, y, z ∈ A. (42)

This doctrine has a definite Horn character and has the following detachable
sets: Π+ itself; Π− = { exy | x, y ∈ A, x 6= y } ; Σa = { eax | x ∈ A, x 6= a }
for any a ∈ A .

We claim that this doctrine is disjoint-resolvable in the sense defined
in § 3.2, and that its Blake canonical form, with the tertium non datur clauses
included, consists of all clauses of the form

ex0x1 ∨ ex1x2 ∨ · · · ∨ exn−1xn ∨ ex0xn , (43)
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with n ≥ 1 and all xi (0 ≤ i ≤ n) pairwise different (which restricts n
to be less than or equal to the number of elements of A). In the following
we will refer to such sequences x0x1 . . . xn as non-cyclic paths from x0
to xn , and a generic non-cyclic path will be denoted by means of the greek
letter γ . In order to establish the preceding claim it suffices to check that:
(i) starting from (42) one can arrive at (43) for any non-cyclic path by using
only disjoint resolution; and (ii) any further resolution does not add any
new clause (i. e. the would-be new clause is absorbed by some clause of the
form (43) ).

The values of v∗(exy) can be obtained by considering all possible non-
cyclic paths γ from x to y and applying the formula

v∗(exy) = max
γ

min
0≤i<n

v(exixi+1
). (44)

These values are easily seen to satisfy

v∗(exz) ≥ min (v∗(exy), v
∗(eyz)) for any x, y, z . (45)

As one can easily check, this inequality is a necessary and sufficient condition
for the following binary relations Eη (0 ≤ η ≤ 1) to be equivalence relations:

xy ∈ Eη ≡ v∗(exy) ≥ η. (46)

These facts are closely related to the definite consistency of the unilateral
decisions of margin η considered in § 3.3. In fact, one can easily check that:
Eη coincides with the set of pairs xy such that exy is accepted by an unilat-
eral decision of margin smaller but near enough to η , and that this decision
is definitely consistent if and only if Eη is an equivalence relation. Obvi-
ously, the equivalence relations Eη become progressively finer as η grows
(i. e. η < ζ implies Eζ ⊆ Eη in the sense of subsets of A×A). What we are
obtaining is the so-called single-link method of cluster analysis [13 : 7.3 ]. This
method is usually formulated in terms of the “dissimilarities” dxy = 1−v(exy)
and d∗xy = 1 − v∗(exy). The inequality (45) corresponds to the inequal-
ity d∗xz ≤ max(d∗xy, d

∗
yz) that defines the so-called “ultrametric” distances.

The characterization given by Theorem 3.3 corresponds to the well-known
fact that the ultrametric distance given by the single-link method is char-
acterized by the property of being “subdominant” to the original dissimi-
larities d [13 : 8.3 ]. When looking at these correspondences, one must bear
in mind that in cluster analysis it is customary to consider the parameter
δ = 1− η rather than η .

However, all of this is achieved at the expense of disregarding any evidence
for exy , independently of its being stronger or weaker than the evidence
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for exy . In contrast, the bilateral criterion looks at the balance of these
evidences. The values of v∗(exy), which are required to this effect, can be
obtained by considering non-cyclic paths γ from x to y with the special
feature that exactly one of the links is marked as negative; the formula to be
applied is similar to (44) but v(exixi+1

) is replaced by v(exixi+1
) for the link

that is marked as negative:

v∗(exy) = max
γ

max
0≤k<n

min
0≤i<n

{
v(exixi+1

), if i 6= k;

v(exixi+1
), if i = k.

(47)

By the way, from (44) and (47) it is clear that having v(exy) < v(exy) for any
two different x, y ∈ A implies the same property for v∗ , which ensures that
the basic decision associated with v∗ accepts exy for all x, y ; this improves
upon the result contained in Theorem 3.18 for η = 0.

In contrast to the unilateral criterion, the bilateral one does not result in
a complete hierarchy of equivalence relations going all the way from a single
class of equivalence to as many classes as objects being classified. Instead,
one obtains a hierarchy where the coarsest equivalence (corresponding to
η = 0) may already be made of several classes.

This provides a form of cluster analysis where dissimilarity is not simply
the lack of similarity, but it plays its own role. In particular, this acts against
falling into the ‘stringy’ clusters typical of the unilateral single-link method.
Besides, this point of view is also especially suitable for dealing with missing
data.

4.3 Total order on a set A. Here, Π+ = { pxy | x, y ∈ A, x 6= y } , where
pxy stands for the proposition ‘x is preferred to y ’. The doctrine requires
that for any pairwise different x, y, z ∈ A one must have: pxy ∧ pyz → pxz
(transitivity), pxy → pyx (asymmetry) and pxy → pyx (completeness).
In normal form, they read as follows:

pxy ∨ pyz ∨ pxz, for any pairwise different x, y, z ∈ A; (48)

pxy ∨ pyx, for any two different x, y ∈ A; (49)

pxy ∨ pyx, for any two different x, y ∈ A, (50)

where the last one does not have a Horn character.

Similarly to the case of an equivalence relation, this doctrine is also dis-
joint–resolvable. Its Blake canonical form, with the tertium non datur clauses
included, consists of all clauses of the form

px0x1 ∨ px1x2 ∨ . . . ∨ pxn−1xn ∨ px0xn , (51)
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where x0x1 . . . xn is a non-cyclic path, together with all clauses that are ob-
tained from (51) by replacing one or more pxixi+1

by pxi+1xi , and/or replac-
ing px0xn by pxnx0 (i. e. by identifying pxy with pyx for any two different
x, y ∈ A).

In this case, our general method corresponds to the voting method in-
troduced in 1997 by Markus Schulze [23, 24 : p. 228–232 ], often called the
method of paths. For more details, we refer the reader to [4, 5 ]. Here
we will only draw attention to the detachable sets and their significance.
In fact, one can easily check the detachable character of any set of the form
Σ = { pxy | x ∈ X, y ∈ A\X } , where X is any proper subset of A . Applied
to such sets, Theorem 3.18 ensures that the method of paths satisfies the
following majority property (Theorem 10.1 of [4 ]): If for each member of X
and every member of A \X there are more than half of the individual votes
where the former is preferred to the latter, then the resulting social ranking
also prefers each member of X to every member of A \X .

5 Discussion and interpretation of the results

5.1 The variant that we have chosen as the main one is crucially based upon
the principle (P) stated in § 3.1: An implication of the form p← ∧

α∈Σ α with
a satisfiable right-hand side gives to p at least the same degree of belief as the
weakest of the conjuncts α . This principle goes back to ancient philosophy,
where it was stated by saying that peiorem semper conclusio sequitur partem.
In more recent times, this idea has been brought back by several authors in
connection with different theories of degrees of belief. For a recent overview
of the subject, we refer to [12 ] and the articles therein.

Assuming that the doctrine is specified by means of a prime conjunctive
normal form, the above-mentioned principle allows to replace any given belief
valuation v by at least the v′ given by the max-min formula (7). In this
connection, it must be emphasized that the max operator of (7) does not
hinge on the dual principle (Q) of § 3.6. Instead, it appears simply as a result
of having several implications leading to p : being greater than or equal to
several values certainly implies being greater than or equal to the greatest of
them.

The valuation v′ obtained in this way is greater than or equal to the orig-
inal one v because we have systematically included the implications p ← p
(through the tertium non datur clauses p∨ p). By iterating the transforma-
tion v 7→ v′ we arrive at an invariant valuation v∗ . For a fixed prime con-
junctive normal form, v∗ is characterized as the lowest one that lies above v
and satisfies the invariance equation v∗′ = v∗ (Theorem 3.3). On the other
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hand, when we consider different prime conjunctive normal forms, all of them
logically equivalent to a given doctrine, then v∗ is greatest when we take the
Blake canonical form, that is, the prime conjunctive normal form composed
of all prime clauses (Proposition 3.10). The fact that the revised valuation
v∗ satisfies the equality v∗′ = v∗ entails that the decisions based upon the
differences v∗p − v∗p are always consistent (Theorem 3.7).

The dual variant works in a similar way, but the non-decreasing trans-
formation v 7→ v′ is replaced by a non-increasing one v 7→ ′v . The resulting
lower revised valuation ∗v is characterized as the greatest one that lies be-
low v and satisfies the invariance equation ′∗v = ∗v . Somehow, it would be
appropriate for a skeptic believer, whereas the upper revised valuation would
correspond to an easy believer.

Many of the above underlying ideas can be found somewhere in the lit-
erature. Among the works closest to ours we can mention that of Nicholas
Rescher about plausible reasoning [22 ]. However, and making abstraction
of certain differences in the setup, that work can be seen as starting from a
valuation w that already satisfies the equality w′ = w (which follows from
[22 : p. 15, (P4) ] because of the tertium non datur clauses); even so, the con-
sistency of the decisions based upon the differences wp−wp = v∗p − v∗p is not
obtained as a theorem, but it forms part of an axiom [22 : p. 16, (P6) ]. On the
other hand, the transformation w → w′ is still used —[22 : p. 19 ]— but only
as a means for extending the initial valuation to any compound proposition
with a zero initial value (which extension is done in a single step).

In contrast to Rescher and other authors, the valuations considered in the
present work are defined only for the members of Π , i. e. the basic propo-
sitions and their negations. In so doing, we take the view that any issue of
interest is included in Π , as a pair formed by an atom and its negation, and
that its logical connection to the other issues is specified by suitable clauses
in the doctrine.

Since it involves only the max and min operators, the transformation
v → v′ , and therefore also the transformation v → v∗ , have a purely ordi-
nal character: The ordering of Π by v∗ depends only on its ordering by v .
In particular, the basic decision associated with v∗ is based wholly on com-
parisons. However, one cannot say the same about the decisions that involve
a positive margin. Such decisions make sense only for valuations that have a
cardinal character, as in the case of judgment aggregation, where vp means
the fraction of people who consider p true. Another result whose meaning-
fulness requires cardinal valuations is the property of continuity stated in
part (a) of Theorem 3.2. By the way, this property ensures that the ac-
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cepted propositions remain accepted when the valuation v undergoes slight
variations.

Besides its making sense in the aggregation of individual judgments,
belief adjustment may already be taking place to some extent within
every individual. This is somehow unavoidable if the individuals are required
to produce consistent judgments, as it is usually the case. In particular,
this means that the individuals are already allowing some issues to influence
the others. In view of this, it is quite reasonable to dispense the aggrega-
tion method from complying with the condition of issue-by-issue aggregation
considered in § 1.3.

Our method disregards the condition of issue-by-issue aggregation but
it complies with the condition of respect for unanimity: if a particular prop-
osition is accepted by every individual, and the individual judgments are
consistent, then that proposition is also accepted by the collective judgment.
Other interesting properties are those related to detachable sets and the
monotonicity given by Theorem 3.22.

5.2 Let us look back on the special problem of collegial courts with which
we started the article. As we did in § 1.1 and § 4.1, we take as archetype the
doctrine t↔ p ∧ q , where t means ‘being guilty’ of a certain offence.

The data are the fractions of the jury who adhere to each of the proposi-
tions in question and their respective negations. These numbers can certainly
be viewed as degrees of collective belief. The problem is that the decision
that is naturally associated to this valuation, namely accepting α , and reject-
ing α , whenever vα > vα , may be inconsistent with the doctrine. This may
happen even when each member of the jury is expressing a consistent opinion.
Thus, in the particular case of the doctrine t↔ p∧ q we have seen examples
of consistent individual judgments that result in having at the same time
vp > vp and vq > vq (guilty by the standard premise-based criterion) but
vt < vt (not guilty by the standard conclusion-based criterion).

In contrast, the revised valuation v∗ has the property that the associated
decision is always definitely consistent with the doctrine in the sense defined
in § 2.2. In particular, for the doctrine t ↔ p ∧ q one is ensured to have
v∗p > v∗p and v∗q > v∗q (guilty by the revised premise-based criterion) if and
only if v∗t > v∗

t
(guilty by the revised conclusion-based criterion).

Of course, it may well happen that v∗α = v∗α , which does not allow to
decide between α and α . Such equalities are somehow easier to happen
than the analogous ones for the original valuation v . However, they can be
ruled out in the case of a unanimous consistent belief in α (Theorem 3.6),
and also, by continuity, it if we are near enough to such unanimity.
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The process that leads from the original degrees of belief v to the revised
ones v∗ can be seen as a quantitative virtual deliberation in accordance with
the implications contained in the doctrine and with principle (P).

The suitability of a process of this kind in the context of law courts was
advocated by L. Jonathan Cohen in his celebrated book The Probable and
the Provable [6 ].

For the doctrine t↔ p∧ q , the process of deliberation goes not only from
p and q to t , but also the other way (which makes it somewhat inappropriate
to call p and q the ‘premises’ and t the ‘conclusion’). Letting the implica-
tions t → p and t → q to come in conforms to the point of view expressed
by Kornhauser and Sager in [16 ]: “In actual deliberation, our commitments
to outcomes may sometimes be more basic and fundamental than our com-
mitment to the ‘principles’ or ‘reasons’ that ostensibly support them.”

The existence of such a direct belief about t makes p and q not inde-
pendent from each other. Such a situation could be avoided by submitting
p and q to the consideration of two separate juries (so that vt = vt = 0). In
such a setting, if both juries have the same number of members and none of
the jurors abstains, then the basic decision according to v∗ can be seen to
coincide with the standard premise-based one.

Another aspect where our method matches the standard principles of law
is the fact that the decision about t is obtained from a balance between the
arguments for t and those for t . In fact, this is the main idea of the adver-
sarial system of justice that operates in most jurisdictions. More specifically,
our basic decision criterion, i. e. that of margin 0, would correspond to the
notion of “preponderance of evidence”, also known as “balance of proba-
bilities”, that defines the standard of proof usually adopted in civil cases.
In contrast, the standard of proof “beyond a reasonable doubt” typical of
criminal cases would correspond to a (perhaps unilateral) decision criterion
of margin η , with η near enough to 1.
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