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Abstract

We prove the convergence in law, in the space of continuous func#@fts 7']), of the Wiener
integral of a deterministic functiofi with respect to the fractional Brownian motion with Hurst
parameterH to the Wiener integral off with respect to the fractional Brownian motion with
parametet],, whenH tends toH, € (0, 1/2].

1 Introduction

Consider the laws ir¢’([0, T) of the family of processe$B, H € (0,1)}, where eachB? =
{Bf, t €]0,T]}is a fractional Brownian motion with Hurst paramefér It is easily seen that these
laws converge weakly to that @0, when H tends toH, € (0, 1) (for a proof of this result, see the
Introduction of [8]).

It is an interesting question to study if some important functionals of the fractional Brownian
motion conserve this property. That is, we ask if the law of the function&’bfemains near to that
of the same functional aBfo, whenH is near toH,. It is worth to mention that this kind of results
justify the use ofB¥ as a model in applied situations where the true value of the Hurst parameter is
unknown and is some estimation of it.

In the previous works [7] and [8], we have considered this problem for the functionals given by
the multiple fractional integrals with/ € (1/2, 1) and the local time, respectively.

In [7], as a first and easy step to prove the weak convergence of the multiple 1t6-Wiener and
Stratonovich integrals, we have proved the convergence in lag( iy 7)), of the family of Wiener
integrals of a deterministic function with respect®d with H € (3, 1), whenH — H,,.

In this note we study the weak convergence of the Wiener integrals When(0, ). We do not
consider the problem of the convergence of multiple integrals, because the domains and the norms
involved in the multiple integrals are much more complicated in this case (see [4], for instance).

We will prove in our main result (see Theorem 3.5) that fobelonging to the domain of the
Wiener integral with respect tB', with 0 < H' < H,, the Wiener integral of with respect taB3”,
with H € [H’,1/2] converges in law to the Wiener integral pfvith respect taB*o.

We have organized the paper as follows. In Section 2 we give some preliminaries about the Wiener
integral with respect to the fractional Brownian motion with Hurst paramiéter 1/2, following [4].

Using the characterization of the domain of the integral given in this last paper, we prove in Section
3 the result about the convergence in law of the Wiener integral of a function with respett ia
%([0,7]), whenH — H,.
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2 Preliminaries

Let B = {BF t € [0,T]} be a fractional Brownian motion with Hurst parametére (0, 1). That
is, B is a centered Gaussian process with covariance function given by

1
Ry(s,t) = E[BYB] = 5(t”’ + 21 — |t — s|?H).

Next, we introduce the Wiener integral with respectx8 and, from now on, we only consider
the cased < 1/2, althoughH, can be also equal tb/2. Consider the space of simple functiafin
[0,T] of the form

N
F =Y filip), where [a;b;) C[0,T].
i=1
The Wiener integral of as above with respect to the fractional Brownian motidhcan be defined

in the natural way as
N
H H
f)= Z fi(B,, —
=1

One can easily see thaf(f) does not depend on the particular representatiori aé a simple
function and thaf, is a linear map fron® into a subspace af?(Q).
For anyf, g € S one can define the following scalar product

H H

v, (f,9) = ElL (N (9)]:

The Wiener integral can be extended in a standard way to the gpateat is the completion aof
with respect to the inner produgt, . This completion is callethe domain of the Wiener integral
This space is well-known and can be characterized in terms of fractional derivatives (see, for instance,
[2], [5] or [9]).

Nevertheless, along this paper we will use another characterization of the domain proved in [4] be-
cause itis related in a more direct form with the usual fractional Sobolev spaces. This characterization
is based in the following result:

Lemma 2.1(Lemma 2.1., [4]) For allf, g € S, we have that

V. (f,g)==-H(1—2H) / / ;ﬁg(fg_ g(y)>d;cdy

—i—H/O f(z)g(x) leH + (T—i)le dx.

It can be given also a compact form of the above equality as follows (see [4]):

(f g) 1—2H //]R2 f (g( )_g(y»dwdy, (1)

II - yP 2

where _
flo) = { f(z), ifxel0,T]

0, otherwise.



For all measurabl¢ : [0, 7] — R, we can introduce the following, possibly infinite, quantity:

i1, = [ —2m [ [ GO0

1 1/2
- H/ <x1 T x)”H) dx} . 2)

In the following theorem (see Theorem 2.5, [4]) the characterization of the gBaeegiven.

Theorem 2.2(Theorem 2.5, [4]) The domain of the Wiener integkﬁlis given by
T={ferl?[0,1): [fll, <+oo}.

If we provide this space with the scalar product

V(9 =y —em [ [T UG IO 00,
L H /0 F()g(a) [w“H " (T_i)l—w} az, (3)

then the Wiener integral,” is an isometry betweefi’ and a closed subspace b%(02).

We recall also here the definition of the Sobolev spaces of fractionary order on an ifefval
Leta € R andp € (1,+o0), for any measurabl¢ : [0,7] — R define the following (possibly

infinite) quantity
for o\
= ————dxd . 4
I, = (ff S e @

Fora > 0, the Sobolev spadd **([0,T]) is defined as

W0, T1) = {f - 1 ooy + Ifllap < +003 (5)

This space provided with the norfif|[ ., ,,, + [Ifl..., is @ Banach space.
Whenp = 2, W*2(]0, T]) is a Hilbert space with scalar product defined by

<f g w2([0,T]) //OT ))(L(l}-s-fo)z_ ( ))d:rdy—i—(f g>L2(0T

In the following section we will work with the fractionary Sobolev spates” “*([0,77]) of order
a=1—H, thatis,

vens o (e pioan . [ @ F@PR
W ([O,T])_{feL([O,T]).//[OT2 i dady < + L (6)

Remark 2.3 Owing Theorem 2.2, we can give the following characterization of the domain of the
Wiener integral with respect to the fractional Brownian motion wheg (0,1/2):

g 1/2—H,2 . T 2 1 L
={few” " (0,1)): /0 f(z) <x12H+(T

)12H> dr < oo}

— X
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and, using the compact expressionlof given in (1), we have also this other characterization of the
H
spacel :

1/2—H,2

' ={fer*0.1): few

is the Sobolev space defined by

(R)},

whereW"*""*(R)

1/2—H,2 2
W R) = {f € LAR //R \x—y|2 ) dxdy<+oo}

We will need also the following Sobolev Embedding Theorem (see Theorem 5.4, [1]).
Theorem 2.4(Sobolev Embedding Theorem) Supposehata < 119 with p € (1, 400). Then,
Wer([0,T]) — LU([0,T7),

wherep < ¢ <

p
l—ap”

Applying the above Sobolev Embedding Theorem with: 2, « = ; — H andg = {2 =
obtain that
w0, 7)) < L7 (0, 7)),

and, as a consequence,
£ c L (o, 1)).

3 Convergence in law of the Wiener integral

3.1 Results in order to obtain Tightness

Along this section, we will denote by
I{_I(f) = {[{_I(f 1[0,t])7 te [OaT]}a

the Wiener integral of with respect taB” as a process.
Next, we state some technical results in order to prove the tightness of the family of laws of
{If(f)}H for H belonging to a neighborhood éf,. The first one, is a very simple inequality.

Lemma 3.1LetT, k > 0 positive real numbers, then for anyc R such thafz| < 7'and0 < a, <
o, < k, there exists a constant,,, (only depending ofi’ and k) for which we have
|z[%2 < Cp 2™
The following proposition is the main result of this section since it provides an estimation of the
second order moment of the incremeffy ) that will give the tightness of the family of laws of the
Wiener integral processes féf in a neighborhood of,.
Proposition 3.2Let f € £#" with H' € (0,1). Then, forH, € (H',1), there exists a positive

’2

constantC' = CH,thf’T, only depending ot/’, H,, f andT, such that
sup E|I (fLi)|” < Ot = )01, (7)
HE[H1,3)

forall 0 < s <t LT



Proof: Let H € [H;, %). In order to simplify the notations, and taking into account that we are
only interested on the possible dependencdionf the constants, from now on we will uge to
denote all the constants in this proof, except those that depeid on
Using expression (2) we have that for al ¢

H
E|Il (fl[S,t])|2 = Hfl[st H2

= d dy +/ / — 2 dxdy
</ / |$— \2 2H [OT]\[st \»T— ’2 2H
2 2Hd:cdy + H f ——15% dx.
.10 Js 17— yl (T fv)

(8)

Applying Holder’s inequality with measure(dz, dy) = (f(x) — f(y))*dx dy, takingp =
andgq its conjugate, we majorize the integral of the first term of (8) in the following way

1—H/1-H'
d d
/ / !sc—yl2 o </ / lx—yP QH’ >

H—H'/1—H'
([ fo-roran)™
SinceH > H,, we have that

L) — f)? L , ooy
< 15’
(/S /S = gt dxdy) max(1, || f]| s HIZ([OT])) 7

Since, due to the Sobolev Embedding Theorgme L”H,([O,T]), and applying again Hélder’s

inequality, withp = 577, ¢ = 7557, we obtain
</ / flx d:vdy) < (/ (/ If(z 1/H'd:c> (t_s)l—zH/dy>
H’(Iil 5/) ,
( / )l o) (t — )=
)Q(H H)

In this way, we have an upper bound for the first summand of (8) of the form
C(t — s)2H-H,

The remaining terms can be handled easily. In fact, the second and third summands of (8) can be
bounded in an analogous way. We next detail the steps of the treatment of the second one.
Computing the integral with respect toof the second term and making some simple majorizations,

t 2
/ / 7f(y)2_2Hd:pdy
[OT]\[st \33 -yl

1_2H |:/ f 2H 1_ 2H 1dy—|—/ f >2H 1 (T_y)QH—l)dy

S ([ sprans [ f<y>2<t—y>2H—1dy>_




Using again thaf € L'/#'(]0, T]), applying Holder’s inequality to each summand of the right-hand
side of the last inequality and using that the exporfé%% > —1, due to the factthatl > H, > H’',
we have that

2H' ' 1-2H'
/ f 2H ldy </ ’f 1/H’dy> (/ (y_ S)QH—l/l—QH’dy)

. , 1-2H'
<C (1 24 )> (t — s)2HH,

°2H — H'
t
</ (t o y)2H1/12H’dy>

[ swre—var< ([ 1rwra)

120"\ "
<Cgam) o

2H' 1-2H’

So, taking into account these inequalities and usingthat H’ > H, — H' > 0, we obtain that
1 ! 2 /
—H(1—- 2H)/ / %dwdy < Ot — s5)2H-HD,
2 0,T\[s,t] /s ‘JJ - y|

In a similar way we deal with the fourth summand of (8). Indeed, first usingﬁrEatL”H,([O, T))
and then applying in a convenient form Holder’s inequality, we obtain that

/ fla { 2 T 1>H]d
<( [ 1 ) ( /txZHl/lwldx)
( / |f(x 1/Hd:c> < /st(T—x)ZH—l/l—ZH’dx>

C[tQ(H H') _ 2(H-H') | (T — )Q(H H) (T_t)Z(HfH’)]. (9)

1-2H'

1-2H’

Since for0 < o < 1,

we have that:
o {2(H-H') _ 2(H-H') < (t _ S)Q(HfH’).
o (T — s)2H—H) _ (T _ )2H-H) L (; _ g)2(H-H"),
Therefore, the term (9) can be bounded by
Ot — S)Q(H_Hl).
Finally, using the above inequalities and Lemma 3.1, we deduce that
sup  B|I (fLia)” < Ot — )" < (1 — )00,

HE[H,,3)

with C' a positive constant.



3.2 Results for the convergence of the finite-dimensional distributions

An important tool in the proof of the convergence of the finite-dimensional distributions is the fol-
lowing general lemma, that we state in our particular setting.

Lemma 3.3Let (G, | - ||) be a normed space, and léf” ey, (WhereVs is an interval that con-
tains H,) be a family of linear maps defined @» and taklng values i(L°(2))™, the space of
m-dimensional finite a.s. random vectors. Denote bythe euclidian norm irfR™. Suppose that
there exists a positive constafitsuch that, for any € G,

(€) sup E1T ()| <C|I/]

HeVy

Suppose also that, for some dense subset G, we have that

H

TS g,  forall f € D, whenH — H,.

<z

Then, 7" (f) = J"(f), whenH — H,, forall f € G.

To check that our family of processes satisfies the condit©nof the above lemma we need the
inequality stated in the next lemma.

Lemma3.4Forany f € L* andH € [H', 1], there exists a constaxt

. (0nly depending off”
and H’) such that

2 2
1A% < Co I,
Proof: We distinguish the two casés< H < } andH = 1

1. CaseH € (0, 3):
As 0 <1—2H <1-2H'for H € [H',1), and applying Lemma 3.1 we obtain that:

° |x— |2—2H > CTH’| y‘2—2H”
o yl- 2H>CTH/ 1— 2H’7
o (T — )24 >CT,H,(T—:U)1_2H/.

Applying these inequalities to each summand of the expressiffi|of we have that:

T pT ) — 2 T
171, = 310 —21) / / deyw [P+ ]|
y))? T 1 1
// ’I— |2 2H’ S PRy T d +20TH//0 f (1’) [xl—ZH/ + (T—I)l_QH/] dx

From here, we deduce that

1115 < Cor I3,



2. CaseH = 3:
Given thatr = g is the minimum of the function

1 1
g(x) = p1—2H + (T — z) 20"

z € [0,7],
we have that

T, 2 T L 1
/0 (@) lwl dx </0 f(x) [I12H/ + (T—LE)lQH/] dx

or equivalently,

T 1T\ T 1 1
/0 [P (z)dz < 5 <2> /0 () [x12H’ + (T — :U)12H/] dx

So, taking into account this last inequality, we can obtain easily the bound

Hf”ig < CT,H/HfH?_I/'

3.3 Main result

We finally prove the convergence in law [0, T) of the processe§Z, (f)},,, whenH — H, €
(0, 3], forall f € £H', for someH’ < H,.

Theorem 3.5Let f € L7 with H' < Hy and H, € (0, 1]. Then, the family of processés,'(f)}
converges in law t@, " (f), in the spaces’ ([0, T]), whenH — Hj,.

He(H', )

Proof: The first step is to prove the existence of a continuous version of the Wiener integral
7, (f). Taking into account thaf, (f) is a centered Gaussian process, we only need to apply Propo-
sition 3.2 and the Kolmogorov’s continuity criterium.

Using again that the processBS( f) are centered and Gaussian, by Proposition 3.2 and Billings-
ley’s criterium (see [3, Theorem 12.3]) we obtain the tightness of the laws of the f&milif), H
[Hy,3)}in€([0,T]), forall0 < H' < H, < 3.

It only remains to show the convergence of the finite-dimensional distributions of the processes
7, (f). We prove this by applying Lemma 3.3 takifig= £:, endowed with the normi - || ,,, and

TG — (L)
f = ([f (fl[o,tl])V .- Jf (f1[07tm]))'

By Lemma 3.4, the7 " satisfy the conditior{C) of Lemma 3.3. Moreover, fof € S (that is a
dense subspace 6f), the convergence in law &' (f) to Z,°(f) is obtained from the fact that the
integralsl; (f1,,) are linear combinations of increments®f , andB” converges in law t&3",
asH — H,.
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