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Abstract

We prove the convergence in law, in the space of continuous functionsC ([0, T ]), of the Wiener
integral of a deterministic functionf with respect to the fractional Brownian motion with Hurst
parameterH to the Wiener integral off with respect to the fractional Brownian motion with
parameterH0, whenH tends toH0 ∈ (0, 1/2].

1 Introduction

Consider the laws inC ([0, T ]) of the family of processes{BH , H ∈ (0, 1)}, where eachBH =
{BH

t , t ∈ [0, T ]} is a fractional Brownian motion with Hurst parameterH. It is easily seen that these
laws converge weakly to that ofBH0, whenH tends toH0 ∈ (0, 1) (for a proof of this result, see the
Introduction of [8]).

It is an interesting question to study if some important functionals of the fractional Brownian
motion conserve this property. That is, we ask if the law of the functional ofBH remains near to that
of the same functional ofBH0, whenH is near toH0. It is worth to mention that this kind of results
justify the use ofBĤ as a model in applied situations where the true value of the Hurst parameter is
unknown andĤ is some estimation of it.

In the previous works [7] and [8], we have considered this problem for the functionals given by
the multiple fractional integrals withH ∈ (1/2, 1) and the local time, respectively.

In [7], as a first and easy step to prove the weak convergence of the multiple Itô-Wiener and
Stratonovich integrals, we have proved the convergence in law, inC ([0, T ]), of the family of Wiener
integrals of a deterministic function with respect toBH with H ∈ (1

2
, 1), whenH → H0.

In this note we study the weak convergence of the Wiener integrals whenH ∈ (0, 1
2
). We do not

consider the problem of the convergence of multiple integrals, because the domains and the norms
involved in the multiple integrals are much more complicated in this case (see [4], for instance).

We will prove in our main result (see Theorem 3.5) that forf belonging to the domain of the
Wiener integral with respect toBH′

, with 0 < H ′ < H0, the Wiener integral off with respect toBH ,
with H ∈ [H ′, 1/2] converges in law to the Wiener integral off with respect toBH0.

We have organized the paper as follows. In Section 2 we give some preliminaries about the Wiener
integral with respect to the fractional Brownian motion with Hurst parameterH < 1/2, following [4].
Using the characterization of the domain of the integral given in this last paper, we prove in Section
3 the result about the convergence in law of the Wiener integral of a function with respect toBH , in
C ([0, T ]), whenH → H0.
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2 Preliminaries

Let BH = {BH
t , t ∈ [0, T ]} be a fractional Brownian motion with Hurst parameterH ∈ (0, 1). That

is, BH is a centered Gaussian process with covariance function given by

RH(s, t) = E[BH
s BH

t ] =
1

2
(t2H + s2H − |t− s|2H).

Next, we introduce the Wiener integral with respect toBH and, from now on, we only consider
the caseH < 1/2, althoughH0 can be also equal to1/2. Consider the space of simple functionsS in
[0,T] of the form

f =
N∑

i=1

fi1[ai,bi), where [ai, bi) ⊂ [0, T ].

The Wiener integral off as above with respect to the fractional Brownian motionB
H

can be defined
in the natural way as

I
H

1 (f) =
N∑

i=1

fi(B
H

bi
−B

H

ai
).

One can easily see thatI
H

1 (f) does not depend on the particular representation off as a simple
function and thatI

H

1 is a linear map fromS into a subspace ofL2(Ω).
For anyf, g ∈ S one can define the following scalar product

Ψ
H
(f, g) = E[I

H

1 (f)I
H

1 (g)].

The Wiener integral can be extended in a standard way to the spaceLH
that is the completion ofS

with respect to the inner productΨ
H

. This completion is calledthe domain of the Wiener integral.
This space is well-known and can be characterized in terms of fractional derivatives (see, for instance,
[2], [5] or [9]).

Nevertheless, along this paper we will use another characterization of the domain proved in [4] be-
cause it is related in a more direct form with the usual fractional Sobolev spaces. This characterization
is based in the following result:

Lemma 2.1 (Lemma 2.1., [4]) For allf, g ∈ S, we have that

Ψ
H
(f, g) =

1

2
H(1− 2H)

∫ T

0

∫ T

0

(f(x)− f(y))(g(x)− g(y))

|x− y|2−2H
dxdy

+ H

∫ T

0

f(x)g(x)

[
1

x1−2H
+

1

(T − x)1−2H

]
dx.

It can be given also a compact form of the above equality as follows (see [4]):

Ψ
H
(f, g) =

1

2
H(1− 2H)

∫∫
R2

(f̄(x)− f̄(y))(ḡ(x)− ḡ(y))

|x− y|2−2H
dxdy, (1)

where

f̄(x) =

{
f(x), if x ∈ [0, T ]

0, otherwise.
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For all measurablef : [0, T ] → R, we can introduce the following, possibly infinite, quantity:

‖f‖
H

=

[
1

2
H(1− 2H)

∫ T

0

∫ T

0

(f(x)− f(y))2

|x− y|2−2H
dxdy

+ H

∫ T

0

f(x)2

(
1

x1−2H
+

1

(T − x)1−2H

)
dx

]1/2

. (2)

In the following theorem (see Theorem 2.5, [4]) the characterization of the spaceLH is given.

Theorem 2.2(Theorem 2.5, [4]) The domain of the Wiener integralI
H

1 is given by

LH = {f ∈ L2([0, T ]) : ‖f‖
H

< +∞}.

If we provide this space with the scalar product

Ψ
H
(f, g) =

1

2
H(1− 2H)

∫ T

0

∫ T

0

(f(x)− f(y))(g(x)− g(y))

|x− y|2−2H
dxdy

+ H

∫ T

0

f(x)g(x)

[
1

x1−2H
+

1

(T − x)1−2H

]
dx, (3)

then the Wiener integralI
H

1 is an isometry betweenLH and a closed subspace ofL2(Ω).

We recall also here the definition of the Sobolev spaces of fractionary order on an interval[0, T ].
Let α ∈ R andp ∈ (1, +∞), for any measurablef : [0, T ] −→ R define the following (possibly
infinite) quantity

‖f‖α,p =

(∫∫
[0,T ]2

|f(x)− f(y)|p

|x− y|1+αp
dxdy

)1/p

. (4)

Forα > 0, the Sobolev spaceWα,p([0, T ]) is defined as

Wα,p([0, T ]) = {f : ‖f‖
Lp([0,T ]

+ ‖f‖α,p < +∞}. (5)

This space provided with the norm‖f‖
Lp([0,T ])

+ ‖f‖α,p is a Banach space.
Whenp = 2, W α,2([0, T ]) is a Hilbert space with scalar product defined by

〈f, g〉
Wα,2([0,T ])

=

∫∫
[0,T ]2

(f(x)− f(y))(g(x)− g(y))

|x− y|1+2α
dxdy + 〈f, g〉

L2([0,T ])
.

In the following section we will work with the fractionary Sobolev spacesW
1/2−H,2

([0, T ]) of order
α = 1

2
−H, that is,

W
1/2−H,2

([0, T ]) =
{

f ∈ L2([0, T ]) :

∫∫
[0,T ]2

(f(x)− f(y))2

|x− y|2−2H
dxdy < +∞

}
. (6)

Remark 2.3 Owing Theorem 2.2, we can give the following characterization of the domain of the
Wiener integral with respect to the fractional Brownian motion whenH ∈ (0, 1/2) :

LH = {f ∈ W
1/2−H,2

([0, T ]) :

∫ T

0

f(x)2

(
1

x1−2H
+

1

(T − x)1−2H

)
dx < ∞}
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and, using the compact expression ofΨH given in (1), we have also this other characterization of the
spaceLH

T
:

LH

= {f ∈ L2([0, T ]) : f̄ ∈ W
1/2−H,2

(R)},

whereW
1/2−H,2

(R) is the Sobolev space defined by

W
1/2−H,2

(R) =
{

f ∈ L2(R) :

∫∫
R2

(f(x)− f(y))2

|x− y|2−2H
dxdy < +∞

}
.

We will need also the following Sobolev Embedding Theorem (see Theorem 5.4, [1]).

Theorem 2.4(Sobolev Embedding Theorem) Suppose that0 < α < 1
p

with p ∈ (1, +∞). Then,

Wα,p([0, T ]) ↪→ Lq([0, T ]),

wherep 6 q 6 p
1−αp

.

Applying the above Sobolev Embedding Theorem withp = 2, α = 1
2
− H andq = p

1−αp
= 1

H
, we

obtain that
W

1/2−H,2

([0, T ]) ↪→ L
1/H

([0, T ]),

and, as a consequence,
LH ⊂ L

1/H

([0, T ]).

3 Convergence in law of the Wiener integral

3.1 Results in order to obtain Tightness

Along this section, we will denote by

IH
1 (f) = {IH

1 (f 1[0,t]), t ∈ [0, T ]},

the Wiener integral off with respect toBH as a process.
Next, we state some technical results in order to prove the tightness of the family of laws of

{IH

1 (f)}
H

for H belonging to a neighborhood ofH0. The first one, is a very simple inequality.

Lemma 3.1LetT, k > 0 positive real numbers, then for anyx ∈ R such that|x| 6 T and0 < α1 <
α2 6 k, there exists a constantC

T,k
(only depending onT andk) for which we have

|x|α2 6 C
T,k
|x|α1 .

The following proposition is the main result of this section since it provides an estimation of the
second order moment of the incrementsIH

1 (f) that will give the tightness of the family of laws of the
Wiener integral processes forH in a neighborhood ofH0.

Proposition 3.2Let f ∈ LH′
with H ′ ∈ (0, 1

2
). Then, forH1 ∈ (H ′, 1

2
), there exists a positive

constantC = C
H′,H1,f,T

, only depending onH ′, H1, f andT , such that

sup
H∈[H1, 1

2
)

E|IH

1 (f1[s,t])|2 6 C(t− s)2(H1−H′), (7)

for all 0 6 s 6 t 6 T .
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Proof: Let H ∈ [H1,
1
2
). In order to simplify the notations, and taking into account that we are

only interested on the possible dependence onH of the constants, from now on we will useC to
denote all the constants in this proof, except those that depend onH.
Using expression (2) we have that for alls 6 t

E|IH

1 (f1[s,t])|2 = ‖f1[s,t]‖2
H

=
1

2
H(1− 2H)

(∫ t

s

∫ t

s

(f(x)− f(y))2

|x− y|2−2H
dxdy +

∫ t

s

∫
[0,T ]\[s,t]

f(y)2

|x− y|2−2H
dxdy

+

∫
[0,T ]\[s,t]

∫ t

s

f(x)2

|x− y|2−2H
dxdy

)
+ H

∫ t

s

f(x)2

[
1

x1−2H
+

1

(T − x)1−2H

]
dx.

(8)

Applying Hölder’s inequality with measureµ(dx, dy) = (f(x) − f(y))2dx dy, takingp = 1−H′

1−H
> 1

andq its conjugate, we majorize the integral of the first term of (8) in the following way:∫ t

s

∫ t

s

(f(x)− f(y))2

|x− y|2−2H
dxdy 6

(∫ t

s

∫ t

s

(f(x)− f(y))2

|x− y|2−2H′ dxdy

)1−H/1−H′

×
(∫ t

s

∫ t

s

(f(x)− f(y))2dxdy

)H−H′/1−H′

.

SinceH > H1, we have that(∫ t

s

∫ t

s

(f(x)− f(y))2

|x− y|2−2H′ dxdy

)1−H/1−H′

6 max(1, ‖f‖2

W1/2−H′,2([0,T ])
)

(1−H1)

1−H′ .

Since, due to the Sobolev Embedding Theorem,f ∈ L
1/H′

([0, T ]), and applying again Hölder’s
inequality, withp = 1

2H′ , q = 1
1−2H′ , we obtain

(∫ t

s

∫ t

s

f(x)2dxdy

)H−H′
1−H′

6

(∫ t

s

(∫ t

s

|f(x)|1/H′
dx

)2H′

(t− s)1−2H′
dy

)H−H′
1−H′

=

(∫ t

s

|f(x)|1/H′
dx

)2H′
“

H−H′
1−H′

”
(t− s)2(H−H′)

6 C(t− s)2(H−H′).

In this way, we have an upper bound for the first summand of (8) of the form
C(t− s)2(H−H′).
The remaining terms can be handled easily. In fact, the second and third summands of (8) can be
bounded in an analogous way. We next detail the steps of the treatment of the second one.
Computing the integral with respect tox of the second term and making some simple majorizations,∫ t

s

∫
[0,T ]\[s,t]

f(y)2

|x− y|2−2H
dxdy

=
1

1− 2H

[∫ t

s

f(y)2((y − s)2H−1 − y2H−1)dy +

∫ t

s

f(y)2((t− y)2H−1 − (T − y)2H−1)dy

]
6

1

1− 2H

(∫ t

s

f(y)2(y − s)2H−1dy +

∫ t

s

f(y)2(t− y)2H−1dy

)
.
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Using again thatf ∈ L1/H′
([0, T ]), applying Hölder’s inequality to each summand of the right-hand

side of the last inequality and using that the exponent2H−1
1−2H′ > −1, due to the fact thatH > H1 > H ′,

we have that

• ∫ t

s

f(y)2(y − s)2H−1dy 6

(∫ t

s

|f(y)|1/H′
dy

)2H′ (∫ t

s

(y − s)2H−1/1−2H′
dy

)1−2H′

6 C

(
1− 2H ′

2(H −H ′)

)1−2H′

(t− s)2(H−H′).

• ∫ t

s

f(y)2(t− y)2H−1dy 6

(∫ t

s

|f(y)|1/H′
dy

)2H′ (∫ t

s

(t− y)2H−1/1−2H′
dy

)1−2H′

6 C

(
1− 2H ′

2(H −H ′)

)1−2H′

(t− s)2(H−H′).

So, taking into account these inequalities and using thatH −H ′ > H1 −H ′ > 0, we obtain that

1

2
H(1− 2H)

∫
[0,T ]\[s,t]

∫ t

s

f(x)2

|x− y|2−2H
dxdy 6 C(t− s)2(H−H′).

In a similar way we deal with the fourth summand of (8). Indeed, first using thatf ∈ L
1/H′

([0, T ])
and then applying in a convenient form Hölder’s inequality, we obtain that∫ t

s

f(x)2

[
1

x1−2H
+

1

(T − x)1−2H

]
dx

6

(∫ t

s

|f(x)|1/H′
dx

)2H′ (∫ t

s

x2H−1/1−2H′
dx

)1−2H′

+

(∫ t

s

|f(x)|1/H′
dx

)2H′ (∫ t

s

(T − x)2H−1/1−2H′
dx

)1−2H′

6 C[t2(H−H′) − s2(H−H′) + (T − s)2(H−H′) − (T − t)2(H−H′)]. (9)

Since for0 < α < 1,
xα − yα 6 (x− y)α,

we have that:

• t2(H−H′) − s2(H−H′) 6 (t− s)2(H−H′).

• (T − s)2(H−H′) − (T − t)2(H−H′) 6 (t− s)2(H−H′).

Therefore, the term (9) can be bounded by

C(t− s)2(H−H′).

Finally, using the above inequalities and Lemma 3.1, we deduce that

sup
H∈[H1, 1

2
)

E|IH

1 (f1[s,t])|2 6 C(t− s)2(H−H′) 6 C(t− s)2(H1−H′),

with C a positive constant.
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3.2 Results for the convergence of the finite-dimensional distributions

An important tool in the proof of the convergence of the finite-dimensional distributions is the fol-
lowing general lemma, that we state in our particular setting.

Lemma 3.3Let (G, ‖ · ‖) be a normed space, and let{J H}
H∈V0

(whereV0 is an interval that con-
tains H0) be a family of linear maps defined onG and taking values in(L0(Ω))m, the space of
m-dimensional finite a.s. random vectors. Denote by| · | the euclidian norm inRm. Suppose that
there exists a positive constantC such that, for anyf ∈ G,

(C) sup
H∈V0

E|J H

(f)| 6 C‖f‖.

Suppose also that, for some dense subsetD ⊂ G, we have that

J H

(f)
L−→ J H0 (f), for all f ∈ D, whenH → H0.

Then,J H
(f)

L−→ J H0 (f), whenH → H0, for all f ∈ G.

To check that our family of processes satisfies the condition(C) of the above lemma we need the
inequality stated in the next lemma.

Lemma 3.4For anyf ∈ LH′
andH ∈ [H ′, 1

2
], there exists a constantC

T,H′ (only depending onT
andH ′) such that

‖f‖2
H

6 C
T,H′‖f‖2

H′ .

Proof: We distinguish the two cases0 < H < 1
2

andH = 1
2
.

1. CaseH ∈
(
0, 1

2

)
:

As 0 < 1− 2H 6 1− 2H ′ for H ∈
[
H ′, 1

2

)
, and applying Lemma 3.1 we obtain that:

• |x− y|2−2H > C
T,H′ |x− y|2−2H′

,

• x1−2H > C
T,H′x

1−2H′
,

• (T − x)1−2H > C
T,H′ (T − x)1−2H′

.

Applying these inequalities to each summand of the expression of‖f‖
H

we have that:

‖f‖2
H

=
1

2
H(1− 2H)

∫ T

0

∫ T

0

(f(x)− f(y))2

|x− y|2−2H
dxdy + H

∫ T

0

f 2(x)

[
1

x1−2H
+

1

(T − x)1−2H

]
dx

6 C
T,H′

∫ T

0

∫ T

0

(f(x)− f(y))2

|x− y|2−2H′ dxdy +
1

2
C

T,H′

∫ T

0

f 2(x)

[
1

x1−2H′ +
1

(T − x)1−2H′

]
dx

From here, we deduce that
‖f‖2

H
6 C

H′,T
‖f‖2

H′ .
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2. CaseH = 1
2
:

Given thatx = T
2

is the minimum of the function

g(x) =
1

x1−2H′ +
1

(T − x)1−2H′ , x ∈ [0, T ],

we have that∫ T

0

f 2(x)

[
2(

T
2

)1−2H′

]
dx 6

∫ T

0

f 2(x)

[
1

x1−2H′ +
1

(T − x)1−2H′

]
dx

or equivalently,∫ T

0

f 2(x)dx 6
1

2

(
T

2

)1−2H′ ∫ T

0

f 2(x)

[
1

x1−2H′ +
1

(T − x)1−2H′

]
dx

So, taking into account this last inequality, we can obtain easily the bound

‖f‖2
1|2

6 C
T,H′‖f‖2

H′ .

3.3 Main result

We finally prove the convergence in law inC([0, T ]) of the processes{IH

1 (f)}
H

, whenH → H0 ∈
(0, 1

2
], for all f ∈ LH′

, for someH ′ < H0.

Theorem 3.5Letf ∈LH′
withH ′<H0 andH0∈(0, 1

2
]. Then, the family of processes{IH

1 (f)}
H∈(H′, 12 ]

converges in law toIH0

1 (f), in the spaceC ([0, T ]), whenH → H0.

Proof: The first step is to prove the existence of a continuous version of the Wiener integral
IH

1 (f). Taking into account thatIH

1 (f) is a centered Gaussian process, we only need to apply Propo-
sition 3.2 and the Kolmogorov’s continuity criterium.

Using again that the processesIH

1 (f) are centered and Gaussian, by Proposition 3.2 and Billings-
ley’s criterium (see [3, Theorem 12.3]) we obtain the tightness of the laws of the family{IH

1 (f), H ∈
[H1,

1
2
)} in C ([0, T ]), for all 0 < H ′ < H1 < 1

2
.

It only remains to show the convergence of the finite-dimensional distributions of the processes
IH

1 (f). We prove this by applying Lemma 3.3 takingG = LH′

T
endowed with the norm‖ · ‖

H′ , and

J H

:G −→ (L0(Ω))m

f 7→ (I
H

1 (f1[0,t1]),. . . ,I
H

1 (f1[0,tm])).

By Lemma 3.4, theJ H
satisfy the condition(C) of Lemma 3.3. Moreover, forf ∈ S (that is a

dense subspace ofG), the convergence in law ofIH

1 (f) to IH0

1 (f) is obtained from the fact that the
integralsI

H

1 (f1[0,tj ]) are linear combinations of increments ofB
H

, andB
H

converges in law toB
H0 ,

asH → H0.
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