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MEASURE SOLUTIONS FOR SOME MODELS IN

POPULATION DYNAMICS

JOSÉ A. CAÑIZO, JOSÉ A. CARRILLO, AND SÍLVIA CUADRADO

Abstract. We give a direct proof of well-posedness of solutions to gen-
eral selection-mutation and structured population models with measures
as initial data. This is motivated by the fact that some stationary states
of these models are measures and not L1 functions, so the measures are
a more natural space to study their dynamics. Our techniques are based
on distances between measures appearing in optimal transport and com-
mon arguments involving Picard iterations. These tools provide a sim-
plification of previous approaches and are applicable or adaptable to a
wide variety of models in population dynamics.

1. Introduction

Selection-mutation equations are models for structured populations with
respect to continuous phenotypical evolutionary traits. They are usually
written as equations for densities on the parameter space of phenotypes
[3, 5, 19, 6], that is, they are usually formulated in L1 spaces. However, for
some of these models a more natural space to study the time evolution is
the space of positive measures, since it has been proven in some cases [5, 13]
that for a small mutation rate the steady states tend to concentrate in a
Dirac mass at the evolutionarily stable strategy value. More generally, the
need for a theory of well-posedness in measures for structured population
models was mentioned in [15, 14, 28].

Some efforts in this direction have been directed at particular models
in population dynamics: pure selection models for phenotypic traits in the
space of measures were recently studied in [1, 11], while in [4] a particular
case of a selection-mutation equation for a genetic trait in the space of
measures is analyzed. More recently in [10] the author shows well-posedness
and studies asymptotic behavior of a selection-mutation equation.

Our aim here is to give a simple and general proof of well-posedness in
the space of measures for a class of models that will include a wide range
of selection-mutation models as well as many classical nonlinear structured
population models [3, 14, 15, 22, 28, 27]. The basic model we consider is an
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abstract Cauchy problem of the form

∂tu+∇ · (F (x)u) = N(t, u), (1a)

u(0, x) = u0(x) (x ∈ Rd). (1b)

where u = u(t, x) is the unknown, which depends on t ≥ 0 and x ∈ Rd
(in any dimension d ≥ 1). Any differential terms in the equation should be
included in the term ∇· (F (x)u) (e.g., growth or aging terms), and the term
N(t, u) may include nonlinear birth and death rates and selection-mutation
interactions. Several examples in population dynamics are given in Section
3, where it is also shown how the abstract result may be applied to equations
whose domain is not the whole space Rd.

Our proof of well-posedness in the space of measures to (1) will be based
on techniques stemming from mass transportation and semigroup theory.
Similar ideas were already used for studying the mean-field limit of kinetic
equations such as the classical Vlasov equation [16] and more recently in
swarming models [8]. The main advantage of our approach is its simplicity,
coming from the use of techniques already well developed in other fields,
and its flexibility, which allows it to be adapted to a wide range of models
in population dynamics.

The well-posedness of measure solutions to some equations of the form
(1) has recently been analysed by different although related techniques in
[18, 17]. selection-mutation models were not included in their formula-
tion but Sharpe-Lotka-McKendrick-type models (age-structured models) in
which the boundary condition is introduced as a measure-valued right-hand
side of the equation are treated, see subsection 3.3 for related results.

A nonlinear semigroup approach using the splitting method for the trans-
port ∇ · (F (x)u) and the right-hand side N(t, u) terms was introduced in
the more recent paper [9] to treat equations of the form (1). Here, we give a
direct and simpler proof based on Picard iterations in the right metric space
to conclude existence, uniqueness, and continuous dependence without re-
sorting to the splitting method or nonlinear semigroup techniques.

The organization of the paper is as follows: in Section 2 we show that the
abstract Cauchy problem (1) is well posed for measures as initial data in the
so-called bounded Lipschitz distance under reasonable Lipschitz conditions
on F and N similar to the ones needed in [9]. Then, Section 3 is devoted to
the application of these results to more explicit examples, mainly some non-
linear selection-mutation models in subsections 3.1 and 3.2 where F = 0, but
also some mixed nonlinear structured population/selection-mutation mod-
els in subsection 3.3 and pure structured population models in subsection
3.4 where F 6= 0. These applications highlight the wide applicability of the
abstract theorem in Section 2 for this type of models, setting a possible func-
tional framework for stability and asymptotic convergence towards measure
solutions [1, 5].

2. Well-posedness theory

2.1. The bounded Lipschitz norm. Let us start with a quick summary
of the definition and properties of the bounded Lipschitz norm, also called
flat metric [23, 25]. We denote byM(Rd) the set of Radon measures in Rd,
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and consider the space of Lipschitz functions W 1,∞(Rd) endowed with the
norm ‖ψ‖1,∞ := ‖ψ‖∞ + Lip(ψ), with Lip(ψ) the Lipschitz constant of ψ.

Definition 2.1. Given a Radon measure µ ∈M(Rd) we define its bounded
Lipschitz norm ‖µ‖M(Rd), ‖µ‖ when there is no ambiguity, by

‖µ‖ := sup
ψ∈L

∣∣∣∣
∫

Rd

ψ dµ

∣∣∣∣ ,

where L is the set of bounded functions ψ : Rd → R with Lip(ψ) ≤ 1, i.e.,
L := {ψ ∈W 1,∞(Rd) | ‖ψ‖1,∞ ≤ 1}.

One sees from the definition that this is just the dual norm of W 1,∞(Rd),
and that by duality for any ψ ∈W 1,∞(Rd),

∫

Rd

ψ dµ ≤ ‖ψ‖1,∞‖µ‖.

We remark that on positive measures this can also be defined as a distance
of Kantorovich-Rubinstein, or Wasserstein, type: when µ, ν are positive
measures it holds that

‖µ− ν‖ = inf
σ∈Σ

∫

Rd×Rd

min{|x− y| , 1} dσ(x, y) ,

where Σ is the set of transference plans between µ and ν, that is, positive
Borel measures on Rd × Rd with marginals µ and ν [25].

We will need to use the following simple result on this distance:

Lemma 2.2. If b ∈W 1,∞(Rd) and µ ∈M(Rd), then bµ ∈M(Rd) and

‖bµ‖ ≤ ‖b‖1,∞‖µ‖.
Proof. It is clear that bµ ∈M(Rd), since b is a bounded continuous function.
We integrate against ψ ∈W 1,∞ with ‖ψ‖1,∞ ≤ 1 to find

∣∣∣∣
∫

Rd

bψ dµ

∣∣∣∣ ≤ ‖bψ‖1,∞‖µ‖ (2)

On the other hand, we have

‖bψ‖∞ ≤ ‖b‖∞‖ψ‖∞,
Lip(bψ) ≤ Lip(b)‖ψ‖∞ + ‖b‖∞ Lip(ψ),

so

‖bψ‖1,∞ = ‖bψ‖∞ + Lip(bψ) ≤ ‖b‖∞
(
‖ψ‖∞ + Lip(ψ)

)
+ Lip(b)‖ψ‖∞

≤ ‖b‖∞ + Lip(b) = ‖b‖1,∞.
Plugging this into eq. (2) finishes the proof. �

In the rest of this paper, we will work with measure solutions to some
evolution partial differential equations and therefore, we will work with the
space of bounded continuous curves on the set of measures BC(I;M(Rd))
depending on t ∈ I denoting the time variable, with I = [0, T ] for some
T > 0 or I = [0,∞). The continuity of the curves of measures t 7→ µ(t) is
always understood to be with respect to the bounded Lipschitz norm. We
warn the reader that elements in BC(I;M(Rd)) will often be denoted as if
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they were absolutely continuous densities with respect to Lebesgue with the
form dµ(t) = u(t, x) dx for the sake of simplicity.

The standard total variation norm for measures will be denoted by ‖ ‖TV .
We remark the natural necessity of the bounded Lipschitz distance (or simi-
lar distances between measures) to work with transport evolution equations,
as opposed to the total variation norm. In fact, take any injective contin-
uous path x : [0, T ] −→ Rd and take the curve of measures µ defined by
t −→ δx(t). It is easy to check that µ belongs to BC([0, T ];M(Rd)) while
‖µ(t)− µ(s)‖TV = 2 for all 0 ≤ t < s ≤ T .

Although all models in population dynamics study the evolution of posi-
tive measures (number density of individuals with respect to some variables),
let us mention that we need to use the bounded Lipschitz norm and not other
optimal transport distances since the total mass (total variation) of measure
solutions will typically not be preserved in time. We will denote by BBL(R),
resp. BTV (R), the ball of radius R centered at 0 in the Bounded Lipschitz
norm and in the total variation norm resp. Finally, let us point out that
balls BTV (R) in M(Rd) with respect to the total variation norm are closed
in the bounded Lipschitz norm by simple weak convergence arguments.

2.2. An abstract result. We consider the abstract evolution equation for
measures given in (1), which we recall here:

∂tu+∇x · (F (x)u) = N(t, u),

u(0, x) = u0(x) (x ∈ Rd).

Here u = u(t, x) is the unknown, which depends on t ≥ 0 and x ∈ Rd, under
the following hypotheses on F , N and u0:

(H1) u0 ∈M(Rd).
(H2) F : Rd → Rd is a bounded Lipschitz map.
(H3) N : [0,+∞)×M(Rd)→M(Rd) is a continuous function both in t

and u.
(H4) N is locally Lipschitz in its second variable, i.e., for every bounded

set K ⊆ [0,+∞)×M(Rd) there exists LN = LN (K) > 0 such that

‖N(t, u1)−N(t, u2)‖ ≤ LN‖u1 − u2‖ ∀ (t, u1), (t, u2) ∈ K.
(H5) N carries bounded sets in the total variation norm to bounded sets

in the total variation norm: for each R > 0 there exists CR ≥ 0
such that ‖N(t, u)‖TV ≤ CR for all t ≥ 0 and u ∈ M(Rd) with
‖u‖TV ≤ R.

Definition 2.3. Assume Hypotheses (H1)-(H5), and take T ∈ (0,+∞]. We
say u ∈ BC([0, T );M(Rd)) is a solution of equation (1) on [0, T ) with initial
condition u0 when, for every φ ∈ C∞0 ([0, T )× Rd),

−
∫ T

0

∫

Rd

∂tφ(t, x)u(t, x) dx−
∫

Rd

φ(0, x)u0(x) dx

−
∫ T

0

∫

Rd

F (x)∇φ(t, x)u(t, x) dx dt =

∫ T

0

∫

Rd

φ(t, x)N(t, u)(x) dx dt.
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Theorem 2.4 (Well-posedness of the abstract equation). Assume Hypothe-
ses (H1)-(H5). There exists a maximal time T > 0 such that there is a
unique solution u ∈ B([0, T );M(Rd)) of equation (1). In addition:

(i) Either T = +∞ or limt→T ‖u(t)‖TV = +∞.
(ii) This solution depends continuously on the initial condition u0 in the

bounded Lipschitz norm: take two solutions u1, u2 of equation (1)
on [0, T ) with initial conditions u0

1, u0
2, respectively. Assume also

that

‖u1(t)‖, ‖u2(t)‖ ≤ R (t ∈ [0, T )),

and take LN to be the Lipschitz constant of N with respect to the
second variable on the set [0, T ) × BBL(R) ⊆ [0,+∞) ×M(Rd).
Then,

‖u1(t)− u2(t)‖ ≤ e(LF +LN )t‖u0
1 − u0

2‖ (t ∈ [0, T )).

Remark 2.5. If there is no drift term present in equation (1) (this is, F = 0)
and Ω ⊆ Rd is an open set, then the result holds if one changes M(Rd)
byM(Ω). The modifications needed in the proof below are straightforward
and we omit them.

Proof of Theorem 2.4. Define Xt : Rd → Rd as the flow at time t of the
characteristic equations

dX

dt
= F (X).

By standard arguments in the theory of ordinary differential equations we
have that LXt , the Lipschitz constant of the flow Xt at time t, satisfies

LXt ≤ eLF t (t ≥ 0),

where LF is the Lipschitz constant of F .
We will prove existence by a fixed point argument in the set

MT := {u ∈ BC([0, T ];BTV (R)) | u(0) = u0},
of radius R := 2‖u0‖TV . We choose

T := min{‖u0‖TV /CR, 1/LF , 1/(3LN )}, (3)

where CR and LN are given in Hypotheses (H1)-(H5) with K = [0, T ) ×
BBL(R). We endow MT with the standard norm

|||u||| := sup
t∈[0,T ]

‖u(t)‖ .

As noticed before MT is a closed subset of the space BC([0, T ];BTV (R)).
Hence MT is complete and we may apply the Banach fixed point theorem
in it. Define the map Γ :MT →MT as

Γ(u)(t) := Xt#u
0 +

∫ t

0
Xt−s#N(s, u(s)) ds , (4)

with # denoting the push-forward of a measure through a map. It is easy
to check that a fixed point of this map is in fact a solution to equation (1).
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Step 1: Γ is well-defined.- Let us first show that t 7→ Xt#u
0 and

s 7→ Xt−s#N(s, u(s)) (for t ∈ [0, T ] fixed) are continuous maps. For the
first one, taking any test function φ ∈ L and any t, τ ∈ [0, T ],

∫

Rd

φ
(
Xt#u

0 −Xτ#u0
)
dx =

∫

Rd

(φ(Xt(x))− φ(Xτ (x)))u0(x) dx

≤
∫

Rd

|Xt(x)−Xτ (x)| |u0|(x) dx

≤ |t− τ | ‖F‖∞‖u0‖TV ,
which shows continuity. As for the second one, we take φ as before, fix
t ∈ [0, T ] and take any τ, s ∈ [0, t]. Denoting N(s, u(s)) as Ns for short, we
have∫

Rd

φ
(
Xt−s#Ns −Xt−τ#Nτ

)
dx

=

∫

Rd

φ
(
Xt−s#Ns −Xt−s#Nτ

)
dx+

∫

Rd

φ
(
Xt−s#Nτ −Xt−τ#Nτ

)
dx

=

∫

Rd

(φ ◦Xt−s) (Ns −Nτ ) dx+

∫

Rd

(
φ(Xt−s(x))− φ(Xt−τ (x))

)
Nτ (x) dx

≤ LXt−s‖Ns −Nτ‖+ |τ − s| ‖F‖∞‖Nτ (x)‖TV
≤ e(t−s)LF ‖Ns −Nτ‖+ CR‖F‖∞|τ − s| .

This proves continuity, as s 7→ N(s, u(s)) is continuous due to (H3). Hence,
the integral in (4) makes sense, Γ(u) is continuous from [0, T ] to M(Rd) in
the bounded Lipschitz norm, and we only need to see that its image is inside
BTV (R):

‖Γ(u)(t)‖TV ≤
∥∥Xt#u

0
∥∥
TV

+

∫ t

0
‖Xt−s#N(u(s))‖TV ds

≤
∥∥u0
∥∥
TV

+

∫ t

0
‖N(u(s))‖TV ds

≤
∥∥u0
∥∥
TV

+ CRT ≤ 2
∥∥u0
∥∥
TV

= R .

Step 2: Γ is contractive.- Take u, v ∈ MT . Using similar arguments
we estimate

‖Γ(u)(t)− Γ(v)(t)‖ ≤
∫ t

0
‖Xt−s#N(s, u(s))−Xt−s#N(s, v(s))‖ ds

≤
∫ t

0
LXt−s‖N(s, u(s))−N(s, v(s))‖ ds

≤ eLFTLN

∫ t

0
‖u(s)− v(s)‖ ds.

By taking the maximum over t ∈ [0, T ] this implies

|||Γ(u)− Γ(v)||| ≤ eLFTLNT |||u− v||| < L |||u− v|||,
for some L < 1, due to the choice of T made in (3). An application of the
Banach fixed point theorem together with usual arguments on the extension
of solutions finishes the proof of point i) of the theorem.
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Step 3: Continuous dependence.- We estimate the difference of the
two solutions as follows:

‖u(t)− v(t)‖

≤ ‖Xt#u
0 −Xt#v

0‖+

∫ t

0
‖Xt−s#N(s, u(s))−Xt−s#N(s, v(s))‖ ds

≤ LXt‖u0 − v0‖+

∫ t

0
LXt−s‖N(s, u(s))−N(s, v(s))‖ ds

≤ eLF t‖u0 − v0‖+ LN

∫ t

0
eLF (t−s)‖u(s)− v(s)‖ ds.

Gronwall’s Lemma then implies the result. �
Remark 2.6. Theorem 2.4 is a generalization of ideas in the theory of linear
evolution semigroups [21, 2], since equation (1) is the sum of a linear term,
and a locally Lipschitz perturbation. However, a small modification of the
argument is needed: this comes from the fact that one cannot work in the
dual space [W 1,∞(Rd)]∗. Actually, the proof above shows that by restricting
to measures in BTV (R) we are able to prove the continuity of the transport
semigroup. This continuity is not evident in BBL(R).

Finally, we point out that we are usually interested in positive measures
as initial condition, even if Theorem 2.4 does not require positivity.

3. Application to particular models

In this section we will apply Theorem 2.4 to show well-posedness of four
particular models in population dynamics. The first one is a simple selection-
mutation equation for a phenotypic variable inspired by the “continuum of
alleles model” introduced by Crow and Kimura (see [12] and also [4]) in the
field of population genetics in order to explain the maintenance of genetic
variation due to the balance effect of selection and mutation. The second
one, introduced in [6], is a modification of the first one in which it is assumed
that the nonlinear term modelling the competition between individuals for
resources is infinite-dimensional. The third model we consider was studied
in [7] and it is a selection-mutation model for an age-structured population.
The last model we present is an age- and size-structured model that was
introduced in [26].

3.1. A simple selection-mutation equation. Let us consider the follow-
ing selection-mutation equation:

∂u

∂t
(t, x) = (1− ε)b(x)u(t, x)−m(x, P (t))u(t, x)

+ ε

∫

Ω
b(y)γ(x, y)u(t, y) dy := N(u(t, ·))(x) (5)

for the density u(t, x) of individuals at time t ≥ 0 with respect to an (ab-
stract) evolutionary variable x in an open set Ω ⊆ Rd. P (t) denotes the
total population at time t

P (t) :=

∫

Ω
u(t, x) dx
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and m is the trait-specific death rate which depends in an increasing way
on the total population P (t) at time t. The inflow of non-mutant newborns
will be given by (1−ε)b(x)u(t, x) where b(x) is the trait-specific fertility and
ε stands for the probability of mutation. The inflow of mutant newborns
will be given by the integral operator ε

∫
Ω b(y)γ(x, y)u(t, y) dy where γ(x, y)

is the density of probability that the trait of the mutant offspring of an
individual with trait y is x.

We may apply Theorem 2.4 to equation (5) under the following conditions:

Theorem 3.1. Assume (H1) and also that b, m and γ satisfy the following:

(i) b : Ω→ R is in W 1,∞ (i.e., it is bounded and Lipschitz).
(ii) m : Ω × R → R satisfies that for each p ∈ R, m(·, p) ∈ W 1,∞, and

for each R > 0 there exists L > 0 such that

‖m(·, p1)−m(·, p2)‖1,∞ ≤ L|p1 − p2| for all p1, p2 ∈ [−R,R]. (6)

(iii) For each y ∈ Ω, γ(·, y) is a positive probability measure on Ω and
there exists L > 0 such that

‖γ(·, y)− γ(·, z)‖ ≤ L|y − z| for all y, z ∈ Ω. (7)

Then the operator N in equation (5) satisfies the hypotheses of Theorem 2.4.
Consequently, equation (5) is well-posed in the sense of Theorem 2.4.

Proof. We need to check that assumptions (H4) and (H5) are satisfied, as
(H1) is included in the statement, (H2) is trivial here since F = 0, and
(H3) is a consequence of (H4) since the operator N in equation (5) does not
depend on time. We point out that due to Remark 2.5 we may use Theorem
2.4 in M(Ω), as we have no drift term here (F = 0).

For (H4) we need to prove that given R > 0 there exists a constant L > 0
such that

‖N(µ)−N(ν)‖ ≤ L‖µ− ν‖
for all µ, ν ∈M with ‖µ‖, ‖ν‖ ≤ R. For the first term in (5),

‖bµ− bν‖ = ‖b(ν − µ)‖ ≤ ‖b‖1,∞‖ν − µ‖. (8)

For the second,

‖m(·, P (µ))µ−m(·, P (ν))ν‖
= ‖
(
m(·, P (µ))−m(·, P (ν))

)
µ‖+ ‖m(·, P (ν))(µ− ν)‖

≤ ‖m(·, P (µ))−m(·, P (ν))‖1,∞‖µ‖+ ‖m(·, P (ν))‖1,∞‖µ− ν‖
≤ |P (µ)− P (ν)|‖µ‖+ C‖µ− ν‖ ≤ ‖µ− ν‖(C + ‖µ‖), (9)

where C is a constant such that ‖m(·, p)‖1,∞ ≤ C for all p ∈ [−R,R] finite
due to (6). Finally, in order to estimate the third term we notice that, for
all ψ ∈ L, ∥∥∥

∫
γ(x, ·)ψ(x) dx

∥∥∥
1,∞
≤ C, (10)

for some C > 0. Indeed,
∫
γ(x, y)ψ(x) dx is uniformly bounded for y ∈ Ω

due to the fact that γ(·, y) is a probability measure, and it is also Lipschitz
in y since∣∣∣∣

∫
(γ(x, y)− γ(x, z))ψ(x) dx

∣∣∣∣ ≤ ‖γ(·, y)− γ(·, z)‖ ≤ L|y − z|
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for all y, z ∈ Ω, due to (7). Hence, (10) holds and we can estimate the third
term in (5) by integrating against a function ψ ∈ L:∣∣∣∣

∫ ∫
b(y)γ(x, y)(µ(y)− ν(y))ψ(x) dy dx

∣∣∣∣ (11)

=

∣∣∣∣
∫

(µ(y)− ν(y))b(y)

∫
γ(x, y)ψ(x) dx dy

∣∣∣∣

≤ ‖µ− ν‖ ‖b‖1,∞
∥∥∥∥
∫
γ(x, ·)ψ(x) dx

∥∥∥∥
1,∞
≤ C ‖µ− ν‖ ‖b‖1,∞ .

Putting together (8), (9), and (11) we conclude that (H4) holds. Finally,
(H5) is easily seen to hold using that b is bounded and γ(·, y) is a probability
measure. �

In the general abstract theorem we do not show conservation of positiv-
ity for solutions. Since L1(Ω) is dense in M(Ω) in the bounded Lipschitz
distance, this is a straightforward consequence of the result of conservation
of positivity of L1 solutions, which is already available for all of the models
mentioned here. We show positivity of solutions for this model for the sake
of completeness, but this will be skipped for the rest of the models of the
paper, to which analogous arguments are applicable.

Lemma 3.2. Every solution of (5) with positive initial condition u0 is pos-
itive.

Proof. We begin by showing positivity of local solutions of (5) in L1(Rd).
The initial value problem can be written as{

∂u
∂t = Au+ f(u)

u(0) = u0
(12)

where

Au(t, x) := (1− ε)b(x)u(t, x) + ε

∫

Ω
b(y)γ(x, y)u(t, y) dy,

and f(u)(t, x) := −m(x, P (t))u(t, x). The operator A is the generator of a
positive semigroup T (t). Let λ be a constant bigger than the bound of m.
If we add and subtract λu to (12) we get

∂u

∂t
=
(
A− λI

)
u+ f(u(t)) + λu(t),

The mild solutions of this new initial value problem, and therefore also those
of problem (12), can be constructed by iterating a suitable variation of con-
stants formula [21, 2]. More precisely, they are limits of the sequence (zn)n≥0

of functions defined on [0, tmax) for some tmax > 0, recursively defined by
the formula

zn+1(t) = T̃ (t)z0 +

∫ t

0
T̃ (t− s)

(
f(zn(s)) + λzn(s)

)
ds,

where T̃ (t) is the semigroup generated by the operator A − λI, that is

T̃ (t) = e−λtT (t).

Since z0 is positive, the semigroup T̃ (t) is positive and since λ is larger
than the bound of m, we obtain that z1 is positive. By induction over n
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we have that (zn)n≥0 is positive. Finally, since the cone of the positive
functions of L1 is closed, we obtain that z(t) is positive. Positivity of local
solutions implies positivity of global solutions by a standard connectedness
argument. Finally, using Theorem 2.4, the density of L1(Ω) inM(Ω) in the
bounded Lipschitz distance gives us conservation of positivity in the space
of measures. �

3.2. A selection-mutation model with infinite-dimensional environ-
ment. Another example of a selection-mutation equation is

∂u

∂t
(t, x) =

(
(1− ε)b(x)− d0(x)−

∫

Ω
d(x, y)u(t, y) dy

)
u(t, x)

+ ε

∫

Ω
b(y)γ(x, y)u(t, y) dy =: N(u(t, ·))(x).

(13)

for the density of individuals u(t, x) with respect to an (abstract) evo-
lutionary trait x ∈ Ω. The difference with (5) is that here the trait-
specific per capita death rate is given by the sum of the terms d0(x) and∫

Ω d(x, y)u(t, y) dy. The latter one models the interaction between individu-
als through competition for resources, and is the only nonlinear term in the
equation (whose nonlinearity in this case is infinite dimensional).

This model was presented in [6], where the authors prove existence of
steady states and also that their asymptotic profile when the mutation rate
ε → 0 is a Cauchy distribution. Our well-posedness result in the space of
measures for equation (13) is the following:

Theorem 3.3. Assume (H1), points (i) and (iii) in Theorem 3.1, and also
that d0 and d are nonnegative functions satisfying

d0 : Ω→ R is in W 1,∞(Ω), (14)

and d : Ω× Ω→ R with d ∈W 1,∞(Ω;W 1,∞(Ω)); that is, there exists L > 0
such that

‖d(x, ·)‖W 1,∞(Ω) ≤ L for all x ∈ Ω. (15)

‖d(x, ·)− d(z, ·)‖W 1,∞(Ω) ≤ L|x− z| for all x, z ∈ Ω. (16)

Then the operator N in equation (13) satisfies the hypotheses of Theorem
2.4. Consequently, equation (13) is well-posed in the sense of Theorem 2.4.

Proof. As remarked in the proof of Theorem 3.1, we only need to check (H4)
and (H5). As the other terms have the same form as the terms in (5) since
(14) is satisfied, we only need to check (H4) and (H5) for the term which
involves d.

First we notice that due to (15)–(16) the term
∫

Ω d(x, y)u(y) dy is in

W 1,∞(Ω) for any u ∈M(Ω), as for all x ∈ Ω,
∣∣∣∣
∫

Ω
d(x, y)u(y) dy

∣∣∣∣ ≤ ‖d(x, ·)‖W 1,∞(Ω) ‖u‖ ≤ L‖u‖.

and for any x, z ∈ Ω,
∣∣∣∣
∫

Ω
(d(x, y)− d(z, y))u(y) dy

∣∣∣∣ ≤ ‖d(x, ·)−d(z, ·)‖W 1,∞(Ω) ‖u‖ ≤ L|x− z| ‖u‖.
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Actually, we have proved that for any w ∈M(Ω),

∥∥∥∥
∫

Ω
d(·, y)w(y) dy

∥∥∥∥
W 1,∞(Ω)

≤ L‖w‖. (17)

In order to prove (H4) for the term involving d, take two measures u, v in
M(Ω). Then,

∥∥∥∥u
∫

Ω
d(·, y)u(y) dy − v

∫

Ω
d(·, y)v(y) dy

∥∥∥∥

≤
∥∥∥∥(u− v)

∫

Ω
d(·, y)u(y) dy

∥∥∥∥+

∥∥∥∥v
∫

Ω
d(·, y)(u(y)− v(y)) dy

∥∥∥∥

≤ ‖u− v‖
∥∥∥∥
∫

Ω
d(·, y)u(y) dy

∥∥∥∥
1,∞

+ ‖v‖
∥∥∥∥
∫

Ω
d(·, y)(u(y)− v(y)) dy

∥∥∥∥
1,∞

≤ L‖u− v‖‖u‖+ L‖v‖‖u− v‖,

where we used (17) for the last step. This proves (H4). On the other hand,
(H5) is easily proved since, in particular,

∣∣∫
Ω d(x, y)u(y) dy

∣∣ ≤ L‖u‖TV for
all x ∈ Ω. �

3.3. A selection-mutation model with age structure. Let us consider
the following equation

∂u

∂t
(t, a, x) +

∂u

∂a
(t, a, x) =−m(a, x, P (t), Q(t))u(t, a, x) (18a)

u(t, 0, x) = (1− ε)
∫ ∞

x
b(a, x)u(t, a, x) da (18b)

+ ε

∫ ∞

0

∫ ∞

y
γ(x, y)b(a, y)u(t, a, y) da dy (18c)

u(0, a, x) = u0(a, x) (18d)

where u(t, a, x) is the density of individuals with age a ≥ 0 and matu-
ration age x ≥ 0 (the evolutionary variable) at time t. P (t) and Q(t)
denote, respectively, the total population of juveniles and adults, that is
P (t) =

∫∞
0

∫ x
0 u(t, a, x) da dx, Q(t) =

∫∞
0

∫∞
x u(t, a, x) da dx, m is the mor-

tality rate, b is the fertility rate and γ(x, y) is the probability density that
the maturation age of the mutant offspring of an individual with matura-
tion age y is x. As in the previous examples, ε stands for the probability of
mutation.

This model is a slightly modified version of the one studied in [7], where
the only difference is in the term of inflow of newborns. The difference
of this model with the ones in the previous sections is that here, fixing
the evolutionary variable, we still have an infinite-dimensional model, more
precisely, an age-structured population model. In [7] well-posedness of the
model was proved in the Banach space L1(R2

+) (denoting R2
+ = [0,+∞) ×
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[0,+∞)), and also the existence of steady states. In order to show well-
posedness in the space of measures we rewrite (18) as follows:

∂tu+ ∂au = N1(u) (19a)

u(t, 0, x) = n2(u) (19b)

u(0, a, x) = u0(a, x) (19c)

where we call Ω := R2
+ and define, for u ∈M(Ω),

N1(u) := −m(a, x, P (u), Q(u))u,

n2(u)(x) := (1− ε)
∫ ∞

x
b(a, x)u(a, x) da

+ ε

∫ ∞

0

∫ ∞

y
γ(x, y)b(a, y)u(t, a, y) da dy.

The model may be rewritten in the form (1) by extending it to an equation
on R2, with an additional independent term. Let us be precise about the
intended solutions:

Definition 3.4. Take T ∈ [0,+∞]. We say a continuous function u :
[0, T )→M(Ω) is a solution of equation (19) on [0, T ) with initial condition
u0 when, for every φ ∈ C∞0 ([0, T )× Ω),

−
∫ T

0

∫

Ω
u∂tφdx da dt−

∫

Ω
φ(0, x, a)u0(x, a) dx da

−
∫ T

0

∫

Ω
u∂aφdx da dt−

∫ T

0

∫ ∞

0
n2(u(t))φ(t, x, 0) dx dt

=

∫ T

0

∫

Ω
N1(u(t))φdx da dt.

(When the variables of φ or u are not specified, it is understood that they
are (t, a, x)).

We now take a suitable extension of the functions m, b and γ to all of R2

(for definiteness, by mirror symmetry first in x and then in a) and consider
the following equation, posed in the whole set of (a, x) ∈ R2:

∂u

∂t
+
∂u

∂a
= N1(u) + n2(u)δa=0, (20a)

u(0) = u0. (20b)

Equation (20) is of the form (1). Now, observe that a solution of (20), in the
sense of Definition 2.3, is also a solution to (19) in the sense of Definition
3.4 when restricted to R2

+, provided it is zero on the set R2 \R2
+. Hence, we

just need to give conditions on m, b and γ so that (20) satisfies Hypotheses
(H1)–(H5) and its solutions are supported on R2

+.

Theorem 3.5. We assume the following:

(i) b ∈W 1,∞(Ω), and it is nonnegative.
(ii) m : Ω×R×R→ R is a nonnegative function satisfying a condition

similar to the one in Theorem 3.1: for each p, q ∈ R, m(·, p, q) ∈



MEASURE SOLUTIONS FOR SOME MODELS IN POPULATION DYNAMICS 13

W 1,∞, and for each R > 0 there exists L > 0 such that

‖m(·, p1, q1)−m(·, p2, q2)‖1,∞ ≤ L(|p1 − p2|+ |q1 − q2|)
for all p1, p2, q1, q2 ∈ [−R,R].

(iii) For each y ∈ R, γ(·, y) is a positive probability measure on R and
there exists L > 0 such that

‖γ(·, y)− γ(·, z)‖ ≤ L|y − z| for all y, z ∈ R.

Then the initial value problems (20) and (18) are well-posed in the sense of
Theorem 2.4.

Proof. As remarked in the proof of Theorem 3.1, we only need to prove (H4)
and (H5), and we can do it separately for each term.

The term N1(u) can be treated in a similar way to the term m(x, P )u in
(5), and we omit the details. For the term n2(u)δa=0 we have

‖(n2(u)− n2(v))δa=0‖M(R2) = ‖n2(u)− n2(v)‖M(R) .

The term in n2(u) which involves γ is of a similar form to the one in (5) and
can be treated analogously. For the other term, taking any test function
φ ∈W 1,∞(R) with ‖φ‖1,∞ ≤ 1,
∫

R

∫

R
φ(x)b(a, x)(u(a, x)− v(a, x)) da dx

≤ ‖u− v‖ ‖φ b‖1,∞ ≤ ‖u− v‖ ‖b‖1,∞,
which shows that∥∥∥∥

∫

R
b(a, ·)(u(a, ·)− v(a, ·)) da

∥∥∥∥ ≤ ‖u− v‖ ‖b‖1,∞,

hence proving (H4) for this term. Condition (H5) for this term is easily seen
to hold by using that b is bounded.

The above allows us to apply Theorem 2.4 to equation (20). We deduce
that the problem (20) is well-posed, and we only have to show that its
solutions have support on R2

+, so that they are also solutions to (18). In
order to do this, we take any time T > 0 and any test function φT ∈ C∞(R2)
with compact support on R2/R2

+ and consider φ : [0, T ]×R×R→ R to be
the solution to

∂φ

∂t
− ∂φ

∂a
= 0 on (0, T )× R× R, (21)

with φ(T, a, x) = φT (a, x) for a, x ∈ R. Then,

d

dt

∫

R

∫

R
φu da dx =

∫

R

∫

R
φ(−∂au+N1(u) + n2(u)δa=0) da dx

+

∫

R

∫

R
u∂aφda dx =

∫

R

∫

R
φ(N1(u) + n2(u)δa=0) da dx = 0,

since for all t ∈ [0, T ], φ(t, ·, ·) has support contained in R2/R2
+, which can

easily be seen since the solution to (21) is explicit. Hence, since the initial
data is supported in R2

+, then
∫

R

∫

R
φT (a, x)u(T, a, x) da dx =

∫

R

∫

R
φ(0, a, x)u0(a, x) da dx = 0 ,
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and since φT was arbitrary we deduce that at time T , u has support con-
tained in R2

+. �

3.4. An age-size structured model. Let us consider the following age-
size structured model from [26]:

∂u

∂t
+
∂u

∂a
+

∂

∂x
(g(x)u) = −m(a, x, P (t))u (22a)

for a ∈ (0, a1), x ∈ (x0, x1), t > 0 (22b)

u(t, 0, x) =

∫ a1

0

∫ x1

x0

β(a, x̂, x)u(t, a, x̂) dx̂ da (22c)

for x ∈ (x0, x1), t > 0 (22d)

u(0, a, x) = u0(a, x) for a ∈ (0, a1), x ∈ (x0, x1), (22e)

where u = u(t, a, x) denotes the density of individuals with age a, with
0 ≤ a ≤ a1 ≤ ∞ and size x with 0 ≤ x0 ≤ x ≤ x1 ≤ ∞. Size increases
with time, in the same way for all individuals of the population, and the
growth rate is given by the function g(x) which is assumed not to depend
on environmental factors. Moreover it satisfies g(x) ≥ 0 and g(x0) = 0.
m denotes the mortality rate and β(a, x̂, x) denotes the average number
of offspring of size x produced per unit of time by an individual of age a
and size x̂ and P (t) =

∫ a1
0

∫ x1
x0
u(t, a, x) dx da. Here, we denote by Ω =

(0, a1)× (x0, x1) the domain of definition of the equation.
Many versions of the model (22), both linear and nonlinear, have been

studied, for instance in [20] and also in [24] where a more general nonlinear
model containing an arbitrary number of structured variables is considered.
The usual space to study these models is L1(Ω). By using essentially the
same ingredients as in the previous subsection, one can prove the following
theorem that we state without proof.

Theorem 3.6. We assume the following:

(i) m : Ω × R → R is a nonnegative function satisfying a condition
similar to the one in Theorem 3.1: for each p ∈ R, m(·, p) ∈W 1,∞,
and for each R > 0 there exists L > 0 such that

‖m(·, p1)−m(·, p2)‖1,∞ ≤ L|p1 − p2|
for all p1, p2 ∈ [−R,R].

(ii) g ∈W 1,∞([x0, x1]) with g(0) = 0 and g(x1) > 0.
(iii) The map β : Ω→M([x0, x1]) assigns (a, x̂) 7→ β(a, x̂, ·) and verifies

that W 1,∞(Ω,M([x0, x1])), i.e, it is bounded and there exists L > 0
such that

‖β(a1, x̂1, ·)− β(a2, x̂2, ·)‖ ≤ L(|a1 − a2|+ |x̂1 − x̂2|)
for all (a1, x̂1), (a2, x̂2) ∈ Ω.

Then the initial boundary value problem to (22) is well-posed in the sense of
Remark 3.7.

Remark 3.7. Let us mention that the extension outside the realistic domain
Ω to R2 of the model ingredients m, β, and g while meeting the conditions in
Theorem 2.4 may be done in many different ways. Once one has an extended
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equation in R2, Theorem 2.4 applies, and all solutions to the extended equa-
tions lead to the same solution once restricted to Ω. This is due to the fact
that the characteristics associated to the transport field (1, g(x)) for the age
and size variables (a, x) are not incoming at the boundaries: a = a1, x = x0,
and x = x1. A similar argument as in the proof of Theorem 3.5 shows that
if the solutions for these extended systems are zero initially in the set of
a < 0, then they remain so for all times.
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