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Abstract. We propose a mixed finite element method for a class of nonlinear

diffusion equations, which is based on their interpretation as gradient flows in

optimal transportation metrics. We introduce an appropriate linearization of
the optimal transport problem, which leads to a mixed symmetric formulation.

This formulation preserves the maximum principle in case of the semi-discrete

scheme as well as the fully discrete scheme for a certain class of problems.
In addition solutions of the mixed formulation maintain exponential conver-

gence in the relative entropy towards the steady state in case of a nonlinear

Fokker-Planck equation with uniformly convex potential. We demonstrate the
behavior of the proposed scheme with 2D simulations of the porous medium

equations and blow-up questions in the Patlak-Keller-Segel model.

1. Introduction. In this paper we consider the numerical solution of the nonlinear
(and eventually nonlocal) diffusion equation

∂ρ

∂t
= div (ρ∇ (U ′ (ρ) + V + W ∗ ρ)) t > 0, x ∈ Rd, (1)

with ρ(x, 0) = ρ0(x). Here ρ is a time-dependent density, U : R+ → R an internal
energy, V : Rd → R is a given external potential, and W : Rd → R is an interaction
potential. By a density, we mean an L1(Rd) nonnegative function with a given mass
M , i.e., ρ/M is a probability density.

Equation (1) includes many well known equations like the heat equation with
U(ρ) = ρ log ρ − ρ and V = W = 0, the porous medium equation (PME) and fast
diffusion equation (FDE) with

U(ρ) =
1

m− 1
ρm, (2)
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where m > 0 and V = W = 0, or the linear Fokker Planck equation with

U(ρ) = ρ log ρ− ρ, (3)

a given potential V and W = 0. The Patlak-Keller-Segel (PKS) model, describing
the movement of cells in a chemoattractant, can also be interpreted in the formalism
of (5). The original PKS model, introduced by E.F. Keller and L.A. Segel in 1970
is given by

∂ρ

∂t
= div (∇ρ− χρ∇v) t > 0, x ∈ Rd, (4a)

∂v

∂t
= k∆v − αv + ρ t > 0, x ∈ Rd, (4b)

where ρ describes the density of cells, v the concentration of the chemical substrate
and χ the sensitivity of the cells to the chemoattractant. Since the chemical reaction
happens on a much faster time scale than the movement of cells, the term ∂v

∂t can
be neglected. If α = 0 we obtain the reduced PKS model where (4b) is replaced by
−∆v = ρ, see [25, 11, 10, 17] and the references therein for an updated state of the
results. This equation can be solved using the fundamental solution of the Poisson
equation in Rd, hence the reduced PKS model in spatial dimension two corresponds
to (1) with U = ρ log ρ− ρ, V = 0 and W = χ

2π log|x|.
Further examples can be found in modelling granular flows [6, 7], mathematical

biology (cf. [28, 36]), and more general aggregation phenomena (cf. [14, 15, 8]),
where W is an attractive interaction like in PKS (cf. [39] for the derivation from
a microscopic model with nonlocal attraction and local repulsion). Finally, also
electro-diffusion models can be put into the form (1), where W ∗ ρ corresponds to
the electric potential generated by the charge density. Due to the repulsive nature
of electrical forces, W has opposite sign as in the PKS model or in aggregation.
We finally mention that related numerical schemes have already been used for the
simulation of transport through ion channels (cf. [16]).

All these equations have the same underlying structure - they can be interpreted
as gradient flows with respect to the Wasserstein distance for the free energy or
relative entropy functional E. Jordan, Kinderlehrer and Otto [34] showed that so-
lutions of (1) in the linear Fokker-Planck case can be constructed using a variational
scheme, known as JKO scheme. The gradient flow interpretation was first studied
by Otto in the case of the PME [40] and later generalized to the family of equations
of the form (1) in [21]. The variational scheme was shown to be convergent for
this family of equations in [1] relating these schemes to the method of minimizing
movements introduced by DeGiorgi [23]. We refer to [46, 1] for further information
on the theory of optimal transportation problems and gradient flows.

A key ingredient of this gradient-flow interpretation of equations (1) is played by
the Benamou-Brenier formula [5]. In fact, this formula provides an alternative and
very useful way of writing the variational JKO schemes. For our purposes, we only
state that the main consequence of all this new gradient-flow approach. Equation
(1) can be interpreted as a limit of infinitesimal time increment in the optimality
condition of the following variational problem related to optimal transport: Given
a density ρk−1 of mass M at time t = tk−1, determine ρk at time t = tk of mass M ,
and an interpolating in time density ρ of mass M at each time and a velocity field
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u such that

inf
(ρ,ρk,u)∈A

{
E(ρk) +

1
2

∫ tk

tk−1

∫
Rd

ρ (x, t) |u (x, t)|2 dx dt

}
, (5a)

where A is the set of constraints given by the continuity equation with boundary
values:

∂ρ

∂t
+ div (ρu) = 0, (5b)

ρ(·, tk−1) = ρk−1, ρ(·, tk) = ρk.

Here the free-energy or entropy functional E(ρk) is given by

E (ρ) =
∫

Rd

U (ρ (x)) dx +
∫

Rd

V (x)ρ(x)dx

+
1
2

∫
Rd×Rd

W (x− y)ρ(x)ρ(y)dxdy.

(6)

This paper is concerned with the development of a numerical scheme that can be
applied to a very general class of problems, given by (1). Various numerical methods
for the PME or the PKS model have been introduced in literature, most capable of
dealing with one or the other equation. These methods include for example a finite
element approach of the one-dimensional PME by Jäger and Kačur [32], which
has been extended to spatial dimension two by Mikula in [38]. Finite difference
schemes to calculate the solution and/or the interface have been used in [43] or [24].
Westdickenberg and Wilkening presented a 1D variational particle scheme which is
based on the optimal transport formulation of the PME, cf. [47].

The reduced PKS model in spatial dimension two exhibits an interesting feature,
namely the finite time blow up of solutions under certain conditions on the initial
data. Numerical schemes for the PKS model have been proposed by Marrocco [37]
or Filbet in [27]. These methods have been used successfully to describe the behav-
ior of solutions before the chemotactic collapse. Up to the authors knowledge the
only methods capable of resolving blow up events have been developed by Blanchet,
Calvez, and Carrillo in 1D [9], by Budd et. al. in [13], by Haškovec and Schmeiser in
[29] and recently by Carrillo and Moll [18]. The last authors proposed a numerical
scheme based on the Lagrangian formulation of the nonlinear Fokker-Planck equa-
tion, being actually a reformulation of the JKO scheme, see [18]. This approach
has been used successfully for a very general class of partial differential equations,
which include the PME as well as the PKS model. However, it increases the com-
putational time. Our objective here is to propose a scheme in the Eulerian variables
based on more standard finite element techniques for the optimization problem (5).

This paper is organized as follows: in Section 2 we present a special lineariza-
tion of the optimal transportation formulation (5), the mixed finite element dis-
cretization, and discuss the mathematical analysis. The application of the linearized
scheme to the PME and the FDE is presented in Section 3. We are able to verify
a discrete maximum principle for the numerical scheme and present 2D numerical
simulations. In Section 4 we apply the numerical scheme to the PKS model and
illustrate the blow up behavior of solution with various numerical experiments. Fi-
nally, Section 5 presents an extension of the scheme to the case of external velocities
and discusses stabilization techniques for this sake.
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2. Discretization Approaches. In this Section we shall discuss our approach to
the discretization of the nonlinear diffusion equation (1). We start with a time
discretization arising from a linearization of the optimal transport formulation and
then proceed to a spatial discretization by mixed finite elements, which seems rather
natural for the arising optimality system.

2.1. Time-Stepping by Linearized Transport. In the introduction we dis-
cussed the reformulation of the nonlinear diffusion problem (1) as an optimal trans-
portation problem (5). Based on this optimal transport formulation we propose the
following linearization: Given a density ρk−1, find ρk, ρ and u such that

inf
ρ,ρk,u

{
E(ρk) +

1
2

∫ tk

tk−1

∫
Rd

ρk−1 (x) |u(x, t)|2 dxdt

}
,

under the constraint that
∂ρ

∂t
+ div (ρk−1u) = 0,

ρ(·, tk−1) = ρk−1, ρ(·, tk) = ρk,

is satisfied. This formulation corresponds to a quadratic expansion of the objective
functional and a linearization of the constraint around the feasible point ρ ≡ ρk−1,
u ≡ 0. The corresponding Lagrange functional L is given by

L = E(ρk) +
∫ tk

tk−1

∫
Rd

[
|u|2

2
ρk−1 −

∂µ

∂t
ρ− ρk−1(u · ∇µ)

]
dxdt

−
∫

Rd

[µ(x, tk−1)ρk−1 − µ(x, tk)ρk] dx,

where µ denotes the Lagrange parameter. Then the optimality conditions read as

u = ∇µ,
∂µ

∂t
= 0 and µ(tk) = −δE

δρ
(ρk). (7)

From (7) we deduce that µ is linear in time and obtain the following optimality
condition

ρk − ρk−1

τ
= div (ρk−1∇ (U ′ (ρk) + V + W ∗ ρk)) , (8)

with τ = tk − tk−1. Note that equation (8) can be interpreted as a semi-implicit
time-discretization of (1).

Finally, let us mention that the equation (1) can be studied in smooth bounded
domains Ω ⊂ Rd with no-flux boundary conditions. In order to do this, the func-
tional (6) has to be restricted to densities supported in Ω and the continuity equation
(5b) augmented with the boundary condition u · η = 0 with η the outwards unit
normal field to ∂Ω. As a consequence, we can also consider the initial boundary
value problem consisting of (1) with boundary condition

∇ (U ′ (ρ) + V + W ∗ ρ) · η = 0 (9)

on ∂Ω with Ω ∈ C2. For the rest of the paper we make the following assumptions.
(A1) Let Ω ⊂ Rd be a smooth, bounded domain.
(A2) The external potential V is locally convex and satisfies V ∈ W 1,1

loc (Ω).
(A3) U ′ : R+

0 → R is continuous, strictly increasing and U(0) = 0 with U ′(0+) =
−∞ or U ′(∞) = ∞.
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Existence and uniqueness of solutions for (8) can be shown under appropriate condi-
tions on U and W , which however need to be examined in several different cases and
are therefore omitted here. We are more interested in structural properties that are
preserved by the linearization, and we restrict ourselves to the simplification W ≡ 0
for the sake of this investigation.

Let ρs,M1 and ρs,M2 denote stationary solutions of (8) with masses M1 and M2

satisfying

ρk−1∇ (U ′(ρ) + V (x)) = 0 ,

∫
Ω

ρ dx = Mi for i = 1, 2. (10)

If ρk−1(x) > 0 for all x ∈ Ω, then the stationary solution ρs solves

U ′(ρ) + V (x) = c for all x ∈ Ω,

for some c ∈ R. Hence ρs = σ−1(c−V (x)), where σ denotes the generalized inverse
of U ′, given by

σ−1 =

{
0 if c− V (x) ≤ 0
(U ′)−1 if c− V (x) > 0.

The inverse function is well defined if U ′(0+) = −∞ and U ′(∞) = ∞. If U ′(0+) >
−∞ or U ′(∞) < ∞, then the range of the function c− V (x) may exceed the range
interval (U ′(0+), U ′(∞)). If assumption (A1)-(A3) hold, we can state the following
existence and uniqueness result.

Lemma 2.1. [20] Let (A1)-(A3) hold, then the stationary equation (10) together
with the boundary conditions (9) admits a unique solution.

Using the notion of stationary solutions we are able to verify the following max-
imum principle for the semi-implicit scheme (8).

Theorem 2.2. Let assumptions (A1)-(A3) hold, W ≡ 0, and ρk−1 ∈ L∞(Ω) with
0 < ρs,M1(x) ≤ ρk−1(x) ≤ ρs,M2(x) for all x ∈ Ω. Here ρs,M1 and ρs,M2 denote
the lower and upper stationary solution solving (10) together with (9). Then ρ(x),
solving the problem (8)-(9), satisfies

ρs,M1(x) ≤ ρ (x) ≤ ρs,M2(x) for all x ∈ Ω.

Proof. Since our main interest is on the fully discrete scheme to be analyzed later we
will here only give a sketch of proof trying to avoid technicalities needed to obtain
smooth approximations, but rather sketch the main lines, from which also some
insight for the fully discrete case is gained. Note that for the stationary solutions,
the potential µ = U ′(ρ)+V is constant, hence the above maximum principle can be
translated into a maximum principle for µk = U ′(ρk) + V , i.e. µk remains between
the same constants as µk−1. We approximate (8) by

ρk − ρε
k−1

τ
+ ερε

k−1 = div
(
ρε

k−1∇ (U ′
ε (ρk) + V ε)

)
, (11)

with ε > 0, ρε
k−1 and V ε being a smoothed version of ρk−1 and V , and U ε being a

smooth approximation of U with U ′
ε(0+) = −∞. The equation is supplemented by

homogeneous Neumann boundary conditions on ∂Ω, i.e.(
ρε

k−1∇ (U ′
ε (ρk) + V ε)

)
· η = 0.

The approximate problem is a uniformly elliptic equation, thus ρk ∈ C2(Ω̄) can be
obtained. Moreover due to standard convergence as ε → 0 it suffices to prove the
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maximum principle for this smoothed situation. For simplicity we also drop the
index ε in the following.

Let us assume that there exists and x̄ ∈ Ω̄ such that µk attains a maximum in x̄,
hence also U ′(ρ(x)) − U ′(ρs,M2(x)) attains its maximum at x̄. Now let us assume
that U ′(ρ(x̄))−U ′(ρs,M2(x̄)) > 0. Assumption (A3) implies that ρ(x̄) > ρs,M2(x̄). If
x̄ ∈ Ω, then from the standard properties of first and second derivatives for maxima
and from (11), we conclude

0 < ερk−1 ≤ ρk−1∆ (U ′
ε (ρk) + V ε)) = ρk−1∆µk ≤ 0,

a contradiction. For x̄ ∈ ∂Ω we use the Neumann boundary condition (9) to con-
clude that indeed ∇µk = 0, since all tangential derivatives to ∂Ω vanish due to the
maximum property. Hence, the Hessian matrix of ρk is negative semidefinite since
otherwise a simple Taylor expansion will contradict the maximum property. If c is
a lower bound on ρk−1, this can be used to show that

εc

2
<

ρk − ρε
k−1

τ
+ ερε

k−1 = div (ρk−1∇ (U ′
ε (ρk) + V ε)) <

εc

2
,

where the last inequality holds in a sufficiently small neighborhood of x̄ inside Ω
since ρk ∈ C2(Ω̄), ∇µk = 0 and the Hessian matrix being negative semidefinite, a
contradiction.

The same argument holds for the lower stationary solution ρs,M1 by replacing
maximum by minimum and appropriate simple changes.

Remark 1. In the PME/FD case, we can state the maximum principle in Theorem
2.2 in a much simpler manner: if 0 < c1 ≤ ρk−1(x) ≤ c2 for all x ∈ Ω and
c1, c2 ∈ R+, then the solution of the semi-implicit scheme (8) satisfies 0 < c1 ≤
ρk−1(x) ≤ c2. This is due to a maximum principle that actually holds for the
dual variable µ, Theorem 2.2 could be reformulated as follows (note that stationary
solutions correspond to constant dual variables µ): If 0 < c1 ≤ µ(0) ≤ c2, then
0 < c1 ≤ µ(t) ≤ c2 for all t > 0. In this form we shall also investigate maximum
principles for the discrete scheme.

Next we would like to study the long-time asymptotics of the semi-implicit scheme
in (8). In recent years, the long time behavior of nonlinear diffusion equations and
particularly the convergence of ρ(t) towards equilibration as t → ∞ has attracted
lots of attention. These convergence estimates are usually stated in terms of the
relative entropy (or relative free energy)

E(ρ|ρ∞) := E(ρ)− E(ρ∞), (12)

where ρ∞ denotes the stationary solution with the same mass M as ρ(t) satisfying
(10) and E is given by (6). The trend to equilibrium of the PME has been discussed
in [22, 45], for the nonlinear Fokker-Planck equation see e.g. [2]. All results are based
on functional inequalities and show exponential convergence towards the equilibrium
in the relative entropy (12). The long time behavior of an implicit time-discrete
linear Fokker-Planck equation has been studied by Arnold and Unterreiter (cf. [3]),
and by Carrillo et al. in case of an implicit time-discrete nonlinear diffusion equation
(cf. [19]). We are able to show that the proposed semi-implicit scheme preserves
the long time behavior of the nonlinear diffusion equation with uniformly convex
potentials V , i.e. the exponential decay of the relative energy functional (12).
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Theorem 2.3. Let all assumptions of Theorem 2.2 hold. Then ρk satisfies the
following estimate

E(ρk|ρ∞) ≤ (1 + λκτ)−kE(ρ0|ρ∞),

where λ is a positive constant and κ ∈ R+ depends on ‖ρs,M1‖L∞ and ‖ρs,M2‖L∞

only.

Proof. The relative entropy (12) can we written as

E(ρ|ρ∞) :=
∫

Ω

[U(ρ)− U(ρ∞)− U ′(ρ∞)(ρ− ρ∞)] dx,

and the energy production D(ρ) = − d
dtE(ρ) as

D(ρ) :=
∫

Ω

ρ|∇V + U ′′(ρ)∇ρ|2dx.

The generalized Log-Sobolev inequality [20] asserts that there exists an λ > 0 such
that

E(ρ|ρ∞) ≤ 1
2λ

D(ρ), (13)

using the uniform convexity of the potential V . Let ρk be the solution of (8), then
we obtain

E(ρk|ρ∞) ≥
∫

Ω

[U ′(ρk+1) (ρk − ρk+1) + U(ρk+1)− U(ρ∞)− U ′(ρ∞)(ρk − ρ∞)] dx

=
∫

Ω

[U(ρk+1)− U(ρ∞)− U ′(ρ∞)(ρk+1 − ρ∞)] dx

+
∫

Ω

[U ′(ρ∞)(ρk+1 − ρk) + U ′(ρk+1) (ρk − ρk+1)] dx

=E(ρk+1|ρ∞) +
∫

Ω

[U ′(ρ∞)− U ′(ρk+1)] (ρk+1 − ρk) dx

=E(ρk+1|ρ∞) + τ

∫
Ω

[U ′(ρ∞)− U ′(ρk+1)] div (ρk∇ (V + U ′(ρk+1))) dx

=E(ρk+1|ρ∞)− τ

∫
Ω

[∇ (V + U ′(ρk+1))] div (ρk∇ (V + U ′(ρk+1))) dx,

where convexity of U , the fact that ρ∞ > 0 under the assumptions of Theorem 2.2
and (8) were used. Integration by parts in the second term using (9) gives

−
∫

Ω

[∇ (V + U ′(ρk+1))] div (ρk∇ (V + U ′(ρk+1))) dx

=
∫

Ω

ρk|∇V + U ′′(ρk+1)∇ρk+1|2dx.

=
∫

Ω

ρk+1
ρk

ρk+1
|∇V + U ′′(ρk+1)∇ρk+1|2dx.

Now, the maximum principle in Theorem 2.2 implies that 0 < ρs,M1 ≤ ρk ≤ ρs,M2

for all k ≥ 1. This together with (13) yields to

(1 + 2λκτ) E(ρk+1|ρ∞) ≤ E(ρk|ρ∞),

for all k ≥ 0, where
κ := min

x∈Ω̄

ρs,M1

ρs,M2

> 0.
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Therefore we conclude that for all k ≥ 1

E(ρk|ρ∞) ≤ (1 + 2λκτ)−k
E(ρ0, ρ∞).

The essential prerequisite in Theorem 2.2 and 2.3 is the assumption that the initial
data ρk−1 is bounded from below and above by stationary functions which are
greater than zero. For some non-linear diffusion equations, like the FDE, i.e. (2)
with 0 < m < 1, this condition is not limiting since it is satisfied for all times. For
others like the PME, i.e. (2) with m > 1, this is not the case.

2.2. Finite Element Discretization. In the following we discuss the finite ele-
ment solution of (1), more precisely the spatial discretization of system (7). For
simplicity we restrict to a two-dimensional setting, but the extension to other di-
mensions is obvious. Let Th denote the regular partition of Ω into triangles T and
Eh the set of element interfaces E. We choose ρ and µ to be in Qh and j ∈ Vh given
by

Vh = {q ∈
[
L2 (Ω)

]2
: q |T ∈ RT0 (T ) for all T ∈ Th}, (14)

Qh = {v ∈ L2 (Ω) : v |T∈ P0 (T ) for all T ∈ Th}. (15)

Here Pj is the space of polynomials of degree ≤ j and RT0 denotes the lowest order
Raviart-Thomas element

RT0 = {q ∈
[
L2 (Ω)

]2
: q |T =

(
a

b

)
+ c

(
x

y

)
with a, b, c ∈ R;

q · η continuous across the element interface E}.

The fully discrete scheme can be written as: Given ρk−1 ∈ L1(Ω) with 0 < c1 ≤
ρk−1(x) ≤ c2, find ρk, µk ∈ Qh and jk ∈ Vh with jk · η = 0 on ∂Ω, such that∫

Ω

(U ′(ρk) + W ∗ ρk)w dx−
∫

Ω

µkw dx = −
∫

Ω

V w dx ∀w ∈ Qh (16a)

−
∫

Ω

ρk ξ dx +
√

τ

∫
Ω

div jk ξ dx = −
∫

Ω

ρk−1ξ dx ∀ξ ∈ Qh (16b)

√
τ

∫
Ω

µk div q dx +
∫

Ω

1
max(ρk−1, h)

jk · q dx = 0 ∀q ∈ Vh. (16c)

Note that we replace the term ρ−1
k−1 by max(ρk−1, h)−1, where h denotes the max-

imum mesh size, to ensure the stability. This stabilization allows us to use the
numerical scheme (16) for problems, where we cannot guarantee the strict positiv-
ity of solutions for all time steps. The existence and uniqueness is straight-forward
to show:

Theorem 2.4. Let 0 < c1 ≤ ρk−1 ≤ c2 almost everywhere in Ω, for some c1, c2 ∈
R+ . Then for W ≡ 0 there exists a unique solution of the mixed formulation (16),
which further conserves mass, i.e.∫

Ω

ρk dx =
∫

Ω

ρk−1 dx, (17)

for any τ > 0. If W 6= 0 and W ∈ L1(Rd) there exists a unique solution if τ is
sufficiently small.
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Proof. The chosen discretization (15), i.e. piecewise constant basis functions for ξ,
leads to an exact pointwise relation and allows us to eliminate the variable ρk in
(16b) . Then the rewritten system (16) is the optimality condition for the mini-
mization of

Jk(j) := E(ρk−1 +
√

τ div j) +
1
2

∫
Ω

1
max(ρk−1, h)

|j|2 dx, (18)

in the set j ∈ Vh where j · η = 0. Moreover, we see by divergence theorem that∫
Ω

ρk dx =
∫

Ω

ρk−1 dx +
√

τ

∫
Ω

div j dx =
∫

Ω

ρk−1 dx

due to the continuity of the Raviart Thomas elements (14) with j · η = 0.
Since U is nonnegative the internal energy is bounded below by zero, and since

ρk−1 is bounded we find

Jk(j) ≥ c

∫
Ω

(ρk−1 +
√

τ div j) V dx + C

∫
Ω

|j|2 dx

+
1
2

∫
Ω

(W ∗ (ρk−1 +
√

τ div j))(ρk−1 +
√

τ div j) dx.

Applying Young’s inequality to the first term and using the fact that the divergence
operator is bounded on the finite-dimensional subspace we further obtain

Jk(j) ≥ c

∫
Ω

|j|2 dx− c

∫
Ω

|V |2 dx

+
1
2

∫
Ω

(W ∗ (ρk−1 +
√

τ div j))(ρk−1 +
√

τ div j) dx,

which already yields a lower bound for W ≡ 0. From the properties of the convo-
lution we have for W 6= 0∫

Ω

(W ∗ (ρk−1 +
√

τ div j))(ρk−1 +
√

τ div j) dx

≥ −‖W‖L1‖ρk−1 +
√

τ div j‖2
L2 ≥ −C1 − C2τ

∫
Ω

|j|2 dx.

If C2τ < c, i.e. τ sufficiently small, then we conclude again a lower bound on Jk.
Since Jk is the sum of convex and a quadratic functional, it is lower semicontinuous
and we can conclude the existence of a minimizer.

If W ≡ 0, then Jk is a sum of convex terms, with the last one being strictly
convex, thus the minimizer is unique. For τ sufficiently small the term 1

2

∫
Ω
|j|2 dx

is again dominating in Jk and one hence obtains strict convexity, which implies the
uniqueness of the minimizer.

Remark 2. We mention that for problems with W 6= 0, one obtains a choice of τ of
the order of h2 in the proof of Theorem 2.4. This is however due to the very general
assumptions on the interaction term and the nonlinear diffusion, which includes
interactions that can lead to an effective behaviour like in a backward diffusion
problem or to finite time blow up. For most practical examples of interaction
kernels and nonlinear diffusions, the admissible order of τ to have existence and
uniqueness can be significantly increased.

The proof of Theorem 2.4 shows that we can compute the discrete solution by
solving a strictly convex variational problem in each time step, which can be realized
by a descent method or Newton’s method. In many cases even one step of Newton’s
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method, started at the values from the previous time step, is sufficient, as we shall
also see for the PME in the next Section.

Finally we are able to show that the maximum principle is conserved:

Theorem 2.5. Let ρk, µk ∈ Qh and jk ∈ Vh satisfy (16) with W ≡ 0, such that
0 < c1 ≤ µk−1|T ≤ c2 for all triangles T . Then

c1 ≤ µk|T ≤ c2 for all T.

Proof. Assume there exists a triangle T such that where µk is smaller than c1 and
minimal, i.e. µk(x) < c1 for all x ∈ T and µk|T ≤ µk|T̃ for all triangles T̃ . The
chosen discretization (15), i.e. piecewise constant basis functions w, leads to a
pointwise relation in (16a). Therefore we conclude with the monotonicity of U ′

that

div jk =
ρk − ρk−1

τ
=

(U ′)−1(µk − V )− (U ′)−1(µk−1 − V )
τ

< 0

in the triangle T . Let us now consider any adjacent T̃ and its common edge E and
midpoint M . We choose the Raviart-Thomas basis function satisfying

q · η =

{
1 for x ∈ E

0 elsewhere.

For q ∈ RT0 and µ being a piecewise constant function the following holds (due to
exactness of quadrature in the midpoints of the edges) for an appropriate weighted
harmonic mean ρ̄k−1 of max{ρk−1, h}:

jk · η
ρ̄k−1

|M = −
(∫

T

µ |T div q dx +
∫

T̃

µ |T̃ div q dx

)
= −

(
µ |T

∫
T

div q dx + µ |T̃
∫

T̃

div q dx

)
= −

(
µ |T

∫
∂T

q · η ds + µ |T̃
∫

∂T̃

q · η ds

)
= −

(
µ |T

∫
E

q · η ds− µ |T̃
∫

E

q · η ds

)
,

where the negative sign in the second term arises from the different orientation of
the normal to E on ∂T̃ . Thus,∫

E

jk · η ds = |E| jk · η |M= −c (µ |T −µ |T̃ ) ≥ 0.

Taking into account that the previous estimates are valid for all adjacent triangles
and if there are boundary edges they do not have contribution due to the boundary
condition jk · η = 0, we have ∫

∂T

jk · η ds ≥ 0.

But since div jk < 0

0 ≤
∫

∂T

jk · η ds =
∫

T

div jk dx < 0,

leading to a contradiction.
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3. Porous Medium and Fast Diffusion Equation. In this Section we apply
the proposed semi-implicit scheme to the PME and the FDE. The PME and FDE
on a bounded domain Ω ⊂ R2 are given by

∂ρ

∂t
= div (∇ρm) = div

(
m

m− 1
ρ∇ρm−1

)
(19)

ρ(x, 0) = ρ0(x) > 0,

with no flux boundary conditions. We reiterate that the PME equation can be
written in the formalism of (5) with the internal energy U given by (2). The
different names for m < 1 and m > 1 are motivated by the distinct behavior of
solutions in either case.

There are a number of physical applications, mainly to model fluid flow, heat
transfer or diffusion. One famous application is the description of an isentropic
gas through a porous medium independently published by Leibenzon and Muskat
around 1930. For an extensive overview on the theory of (19) we refer to the books
by Vazquez [45, 44]. A fundamental solution of (19) for m > 1 was obtained by
Zel’dovich, Kompaneets and Barenblatt [4] around 1950. The solution was subse-
quently found by Pattle in 1959, see [41]. This family of self-similar solutions is
given by

U(x, t) = t−α
(
C − k|x|2t−2β

) 1
m−1

+
, (20)

where u+ = max(u, 0) and

α =
d

d (m− 1) + 2
, β =

α

d
, k =

α (m− 1)
2md

. (21)

Solutions of the form (20) are often referred to as the Barenblatt-Pattle (BP) solu-
tions. The free parameter C > 0 can be chosen arbitrarily, but determines the total
mass M =

∫
Ω
Udx (or vice versa). The class of self-similar solutions can be easily

extended to the FDE, but only in the range mc < m < 1, cf. [35] with

mc = 0 for d = 1, 2 mc =
d− 2

d
for d ≥ 3.

In principle the formula is the same, except for m−1 and k being negative numbers.
More precisely we have

Um(x, t) = t−αF
(
xt

α
d

)
with F (ξ) =

(
C + κ1ξ

2
)− 1

1−m , (22)

with α given by (21) and κ1 = −κ = (1−m)α
2md . For m > 1 the BP profiles have a com-

pact support, for m < 1 the solutions are always positive and decay polynomially
at infinity.

3.1. Numerical Discretization. In section 2 we presented a semi-implicit time
discretization based on the optimal transport formulation of the nonlinear diffusion
problem (1). We will apply this approach to the PME (19) and perform an addi-
tional linearization step to obtain a symmetric linear scheme. Let ρk−1 denote the
solution at time t = tk−1. The Lagrange multiplier µ (7) is given by

µ =
m

m− 1
ρm−1

≈ m

m− 1

(
(ρk−1)

m−1 + (m− 1) (ρk−1)
2−m (ρ− ρk−1)

)
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and the flux j = ρk−1∇µ. This linearization results in the following symmetric
mixed formulation

m (ρk−1)
m−2

ρ− µ = −m(2−m)
m− 1

(ρk−1)
m−1 (23a)

−ρ +
√

τ div j = −ρk−1 (23b)

−
√

τ∇µ +
1

ρk−1
j = 0. (23c)

with time steps τ = tk − tk−1. The corresponding weak formulation is given by:
Find ρ, µ ∈ L2(Ω) and j ∈ H(div,Ω) such that∫

Ω

m (ρk−1)
m−2

ρω dx−
∫

Ω

µω dx = −
∫

Ω

fω dx ∀ω ∈ L2(Ω) (24a)

−
∫

Ω

ρξ dx +
∫

Ω

√
τ div jξ dx = −

∫
Ω

ρk−1ξ dx ∀ξ ∈ L2(Ω) (24b)∫
Ω

√
τµdiv q dx +

∫
Ω

1
ρk−1

j · q dx = 0 ∀q ∈ H(div,Ω), (24c)

with f = m(2−m)
m−1 (ρk−1)

m−1. Using the classical theory of mixed finite element
methods (cf. [12]) we can verify the following existence and uniqueness result:

Theorem 3.1. If 0 < c1 ≤ ρk−1(x) ≤ c2 for some c1, c2 ∈ R+, then mixed formu-
lation (24) has a unique solution.

Proof. System (24) can be written as (eliminating the variable ρ)

a(j,q) + b(q, µ) = 0 and b(j, ξ)− c(µ, ξ) = g(ξ) .

Under the assumption made above we can show that the bilinear form a is bounded
and coercive, b is bounded and satisfies the inf-sup condition,

∃ β1 > 0 sup
q∈H(div,Ω)

v 6=0

b(q, µ)
‖q‖H(div,Ω)

≥ β1‖µ‖L2(Ω) ∀µ ∈ L2(Ω),

and c is bounded and coercive. Therefore system (24) admits a unique solution.

System (24) can be discretized using the finite element discretization proposed in
Section 2.2. Given ρk−1 ∈ L2(Ω) with 0 < c1 ≤ ρk−1(x) ≤ c2, we look for ρk, µk ∈
Qh and jk ∈ Vh with jk · n = 0 on ∂Ω, such that∫

Ω

m (ρk−1)
m−2

ρkw dx−
∫

Ω

µkw dx =
∫

Ω

f(ρk−1)w dx ∀w ∈ Qh (25a)

−
∫

Ω

ρkξ dx +
√

τ

∫
Ω

div jkξ dx = −
∫

Ω

ρk−1ξ dx ∀ξ ∈ Qh (25b)

√
τ

∫
Ω

µk div q dx +
∫

Ω

1
ρk−1

jk · q dx = 0 ∀q ∈ Vh. (25c)

Existence and uniqueness is also guaranteed for the fully discrete scheme (25) We
reiterate that we replace the term ρ−1

k−1 by max(ρk−1, h)−1, where h denotes the
maximum mesh size to ensure the stability. In addition we are able to show the
following maximum principle in analogous way to Theorem 2.2.

Theorem 3.2. Let ρ, µ ∈ Qh and j ∈ Vh satisfying (25). Let all assumptions of
Theorem 3.1 hold. Then

c1 ≤ ρ(x) ≤ c2 for all x ∈ Ω.
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3.2. Numerical Experiments. Finally we would like to illustrate the behavior
of the proposed numerical scheme with computational experiments. All numerical
results in this and the next section are calculated using the finite element code
Netgen/NgSolve of J. Schöberl, cf. [42].

We choose Ω to be a circle of radius r = 2, which has been decomposed into
13010 triangles with maximum mesh size h = 0.05. The initial datum is set to the
Barenblatt-Pattle solution (20) at time t = τ . We reiterate that we replace ρk−1 in
ρ−1

k−1 and (ρk−1)
m−2 by max(ρk−1, h), where h equals the maximum mesh size.

As long as the solution support does not touch the boundary, the solution in the
bounded domain with Neumman boundary condition coincides with the self-similar
BP solution and thus, we can compare the approximated solution of our scheme to
the exact BP solution. The solution for m = 3 is illustrated in figure 1 as well as
the difference of the approximate solution ρh to the BP solution in the L∞-Norm.
Figure 2 shows the solution and the error for m = 5. Note that the approximate

(a) t = 10 (b) Difference of the approximated solution to
the BP solution in L∞-Norm

Figure 1. Density ρ at t = 10 and difference in L∞-Norm to the
BP solution for m = 3.

solution has a compact support and that the slope of the solution at the boundary
of its support is becoming steeper for greater values of m.
Next we consider the solution of the nonlinear Fokker-Planck equation (FPE)

∂ρ

∂t
= div(∇ρm + xρ) (26)

where m = 2. This equation is of particular interest since there exists a time
dependent scaling which transform (26) into the PME (19). One can easily check
that the compactly supported equilibrium solution of (26) coincides with the BP
solution (20) at time t = 1. The solution of the nonlinear FPE, as well as the
evolution of the difference between ρ and the BP-profile at t = 1 is depicted in
figure 3.
Our final example illustrates the behavior for solutions of fast diffusion equations.

Note that in case of fast diffusion, i.e. m < 1 the BP profiles do not have a
compact support. The presented numerical scheme is mass conserving, therefore
it is not possible to measure the difference of the approximated solution to the
Barenblatt solution on a bounded domain. The evolution of the solution for m = 0.8
is illustrated in figure 4. As implied by the name, the solutions of the fast diffusion
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(a) t = 50 (b) Difference of the approximated solution to
the BP solution in L∞-Norm

Figure 2. Density ρ at t = 50 and difference in L∞-Norm to the
BP solution for m = 5.

(a) t = 1.5 (b) Difference of the approximated solution to

the BP solution at t = 1in L∞-Norm

Figure 3. Density ρ at t = 1.5 and difference in L∞-Norm to the
BP solution for the nonlinear FPE (26).

equation spread out very fast and converge rapidly to a constant value due to the
Neumann boundary conditions.

4. Chemotaxis: The Patlak-Keller-Segel model. In this section we consider
the simplified PKS model on the bounded domain Ω ⊂ R2 (cf. [17]),

∂ρ

∂t
= div (κ∇ρ− χρ∇v) (27a)

−∆v = ρ− 〈ρ〉 (27b)

ρ(x, 0) = ρ0 ≥ 0,

with homogenous Neumann boundary conditions. The total mass of cells is con-
served through the evolution:

M :=
∫

Ω

ρ0 dx =
∫

Ω

ρ dx.
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(a) t = 1 (b) t = 3

Figure 4. Density ρ at t = 1 and t = 3 in case of the FDE with
m = 0.8.

This model is a gradient flow for the energy

E(ρ) = inf
v

∫
Ω

(
κ

χ
ρ log ρ +

1
2
|∇v|2 − ρv + 〈ρ〉v) dx (28)

It is well know that solution of the PKS system (27) may blow up in time, de-
pending on the spatial dimension and the total mass M . In spatial dimension one
solutions exist global in time. In spatial dimension two the total mass of the system
determines whether the solution exist global in time or blow up, in dimension three
the problem the solutions always blow up in finite time. In [33] Jäger and Luckhaus
presented first results, further results for the two-dimensional PKS system have
been derived for the whole domain R2 in [25, 11, 10, 26] and for bounded domains
Ω ⊂ R2 in [17, 30]. For a detailed presentation of various aspects and results for
the PKS model we refer to [31]. In case of the simplified PKS model (27), solutions
blows up in finite time if χM

κ > C with

C =

{
8π if Ω = R2

4π if Ω is a C2, bounded, connected domain,

cf. [17]. Theoretical results on the behavior of solution after blow-up have been
presented by Dolbeault and Schmeiser in [26]. Another interesting extension of the
PKS model has been studied in [17], namely a PKS system with nonlinear porous
medium type diffusion given by

∂ρ

∂t
= div (∇ρm − χρ∇v) (29a)

−∆v = ρ, (29b)

with the energy

E(ρ) = inf
v

∫
Ω

(
1

m + 1
ρm+1 +

1
2
|∇v|2 − ρv) dx (30)

Here solutions behave quite differently, with no finite time blow up occurring. We
will also observe this behavior in our numerical simulations.

We apply the linearization presented in section 2 to solve (27) and investigate
numerically the occurrence of blow up solutions. Following the notions of section
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2 we introduce the new variable µ = log ρ ≈ log ρk−1 + 1
ρk−1

(ρk − ρk−1) and j =
ρ∇µ and obtain the weak formulation of (27): Find v, ρk, µk ∈ L2(Ω) and e, jk ∈
H(div,Ω) such that∫

Ω

e · p dx−
∫

Ω

v div p dx = 0 ∀e ∈ H(div,Ω)

−
∫

Ω

div er dx +
∫

Ω

ρkr dx = −
∫

Ω

〈ρ0〉r dx ∀r ∈ L2(Ω)∫
Ω

χvw dx−
∫

Ω

ρk

ρk−1
w dx +

∫
Ω

µkw dx =
∫

Ω

fw dx ∀w ∈ L2(Ω)∫
Ω

ρkξ dx−
∫

Ω

√
τ div jkξ dx =

∫
Ω

ρk−1ξ dx ∀ξ ∈ L2(Ω)∫
Ω

√
τµk div q dx−

∫
Ω

1
ρk−1

jk · q dx = 0 ∀q ∈ H(div,Ω),

where f = (log ρk−1 + 1). We use the same discretization as in the previous section,
namely e and q in Vh and v, ρk and µk in Qh. Again existence and uniqueness can
be guaranteed for ρk−1(x) > 0. We will now illustrate the blow up behavior of the

(a) t = 0 (b) t = 0.4

(c) t = 0.8 (d) t = 1.5

Figure 5. Evolution of the density ρ with symmetric initial guess
and mass M = 10π.
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simplified PKS model (27) with various numerical examples. We choose a Gaussian
as initial distribution

ρ0(x, y) =
M√
2π

e−
(x−x0)2+(y−y0)2

2 ,

where M denotes the total initial mass. The test geometry is a square of size
[−5, 5] × [−5, 5] with a discretization of 10348 triangles. To increase the accuracy
of our method and observe the blow up behavior of the solution as long as possible,
we use an h-refinement technique at the corners of the domain, where we expect
the blow up to happen.
As a first example we choose a radially symmetric initial distribution with x0 =

(a) t = 0 (b) t = 0.4

(c) t = 0.8 (d) t = 1.4

Figure 6. Evolution of the density ρ with non symmetric initial
guess and mass M = 10π.

y0 = 0 and M = 10π. Figure 5 shows the expected blow up at the center of the
domain.
In case of a non radially symmetric initial Gaussian with x0 = 2.5, y0 = −2.5 and
M = 10π, the blow up happens at the boundary of the domain, see Figure 6. For
non radially symmetric initial masses which satisfies

4π < c < 8π
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the blow up has to happen at the boundary. Again we choose a Gaussian with
x0 = y0 = 2.5 and initial mass M = 5π as an initial guess. The expected blow
up behavior is depicted in Figure 7 . We would like to mention that in case of

(a) t = 0 (b) t = 0.5

(c) t = 1.5 (d) t = 2

Figure 7. Evolution of the density ρ with non symmetric initial
guess and mass M = 6π.

the simplified PKS system (27) with Dirichlet boundary conditions for v, the blow
up always happens in the center of mass. Our numerical simulations support this
statement and agree with the results by Filbet [27] and Morocco [37].

In our final example we consider the PKS model with degenerate diffusion (29)
where m = 3. The initial mass is set to one. Here the solution converges quickly
to a stationary profile, similar to the Barenblatt solution, see figure 8. Such an
equilibration result is not proved theoretically in the literature but expected for all
masses in the Cauchy problem without Neumann-boundary condition. In addition
we do not observe the blow-up behavior for large initial mass as in the case of the
simplified PKS model (27). The diffusion term is dominating, therefore solutions
flatten out quickly and go to a constant profile once they touch the boundary.

5. External Velocities and Stabilization. We finally want to comment on the
extension of the scheme to situations as in hydrodynamics, where an additional
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(a) t = 0 (b) t = 20

Figure 8. Evolution a density ρ with masses m = 1 with degen-
erate diffusion.

velocity field of non-gradient structure appears in the equation, i.e.,

∂ρ

∂t
= div (ρ∇ (U ′ (ρ) + V + W ∗ ρ) + ρu∗) t > 0, x ∈ Rd, (31)

In this case it is natural to split the energy term and the additional convective
one before carrying out the linearization of the transport problem and the spatial
discretization. Choosing an explicit time stepping for the convective part, we end
up with the linearized optimal transport problem Given a density ρk−1, find ρk, ρ
and u such that

inf
ρ,ρk,u

{
E(ρk) +

∫ tk

tk−1

∫
Rd

|u|2

2
ρk−1dxdt

}
,

under the constraint that

∂ρ

∂t
+ div (ρk−1(u− u∗)) = 0,

ρ(·, tk−1) = ρk−1, ρ(·, tk) = ρk,

is satisfied. The corresponding Lagrange functional L is given by

L = E(ρk) +
∫ tk

tk−1

∫
Rd

[
|u|2

2
ρk−1 (x)− ∂µ

∂t
ρ− ρk−1∇µ · (u− u∗)

]
dxdt

−
∫

Rd

[µ(x, tk−1)ρk−1 − µ(x, tk)ρk] dx,

and the optimality conditions remain the same as in Section 2.1, i.e. (7). Then we
simply obtain a semidiscrete scheme

ρk − ρk−1

τ
= div (ρk−1∇ (U ′ (ρk) + V ) + ρk−1u∗) , (32)

In the mixed finite element discretization (16) only (16b) needs to be changed to

−
∫

Ω

ρkξ dx +
√

τ

∫
Ω

div jkξ dx = −
∫

Ω

ρk−1ξ dx− τ`k,∗(ξ) ∀ξ ∈ Qh, (33)
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where `k,∗(ξ) is an appropriate approximation of∫
Ω

div(ρk−1u∗)ξ dx.

Noticing that ξ is a piecewise constant, we find∫
Ω

div(ρk−1u∗)ξ dx =
∑
T

ξ|T
∫

T

div(ρk−1u∗) dx.

Thus, the stabilization of this term is exactly the same problem as in any finite
volume scheme, a task which is very well understood.

As an example we only present a simple upwinding technique for the case of u∗
being defined in the triangle midpoints. For ρk−1 continuous one would have∑

T

ξ|T
∫

T

div(ρk−1u∗) dx =
∑
T

ξ|T
∫

∂T

ρk−1u∗ · η ds.

In order to rewrite the problem as an integration over edges, we choose an order for
each edge and its normal, and denote the triangle into which the normal points by
T+(E) and the second triangle adjacent to this edge by T−(E). Then∑

T

ξ|T
∫

∂T

ρk−1u∗ · η ds =
∑
E

∫
E

ρk−1u∗ · η ds(ξ|T−(E) − ξ|T+(E)).

For the piecewise constant discretization the value of ρk−1 in the integral over E
has to be approximated from the values in the adjacent triangles. We choose the
upwind direction based on the flow direction −u∗ · η, which gives

`∗(ξ) =
∑

E,u∗·η<0

∫
E

u∗ · η dsρk−1|T+(E)(ξ|T−(E) − ξ|T+(E))+

∑
E,u∗·η>0

∫
E

u∗ · η dsρk−1|T−(E)(ξ|T−(E) − ξ|T+(E)). (34)

(a) Without upwind (b) With upwind

Figure 9. Solution of (35) with no upwind (left) and upwind (right).
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In order to test this approach computationally, we investigate the example

∂ρ

∂t
= div(ε∇ρ + ρu∗) (35)

ρ(x, t) = 1 for all x ∈ ∂Ω

with ρ(x, 0) = 1, ε = 10−5 and u∗ = (x(x−1), y(y−1)) (satisfying u∗ ·η = 0 on the
boundary ∂Ω). The domain Ω = [0, 1] × [0, 1] is decomposed into 6972 triangles,
the time steps τ = 10−2. The solution at time t = 1 and the velocity field u∗ is
depicted in Figure 9. The proposed upwind scheme is mass preserving and resolves
the boundary layer much better than the standard discretization.
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