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NUMERICAL SIMULATION OF DIFFUSIVE AND AGGREGATION

PHENOMENA IN NONLINEAR CONTINUITY EQUATIONS BY

EVOLVING DIFFEOMORPHISMS

J. A. CARRILLO∗ AND J. S. MOLL†

Abstract. We propose a numerical algorithm for solving nonlinear continuity equations written
in Lagrangian coordinates. This transformation is intimately related to variational approaches for
the well-possedness of gradient flows of energy functionals with respect to the quadratic transporta-
tion distance in optimal transport theory. These schemes allow the numerical approximation of both
diffusive and aggregation regimes of different models. Positivity, energy decreasing and mesh adap-
tation are built-in in the numerical scheme and thus, we are capable of capturing blow-up densities
and of dealing with vacuum regions and merging of mass patches in a natural way.

Key words. Lagrangian coordinates, variational schemes, optimal transport, adaptive mesh,
diffusion, aggregation.
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1. Introduction. This work is devoted to propose an alternative numerical
method to solve nonlinear continuity equations of the form:

∂ρ

∂t
= −∇ · (ρu) := ∇ · [ρ∇ (U ′ (ρ) + V + W ∗ ρ)] , (1.1)

where the unknown ρ(t, ·) is a time-dependent probability density on R
d (d ≥ 1),

U : R
+ → R is a density of internal energy, V : R

d → R is a confinement potential
and W : R

d → R is an interaction potential. The symbol ∇ denotes the gradient
operator and will always be applied to functions, while ∇· stands for the divergence
operator, and will always be applied to vector fields or matrices. It is not restrictive
to require W to be symmetric, ∀z ∈ R

d, W (−z) = W (z).
Here, the velocity field of the equation is nonlinearly related to the probabil-

ity density itself and given by u = −∇ δF
δρ with F being the free-energy or entropy

functional:

F(ρ) =

∫

Rd

U(ρ) dx +

∫

Rd

V (x) ρ(x) dx +
1

2

∫

Rd×Rd

W (x − y) ρ(x) ρ(y) dx dy. (1.2)

Actually, this free-energy functional is dissipated along the trajectories of equation
(1.1) following the law:

d

dt
F(ρ)(t) = −D(ρ) ≡ −

∫

Rd

|u(t, x)|2 ρ(t, x) dx, (1.3)

where D is called the entropy dissipation functional.
Without interaction potential W = 0, this general family of equations contain

well-known models in mathematical physics such as the heat equation, U(s) = s log s
and V = 0, the porous-medium and fast-diffusion equations [56], U(s) = sm/(m − 1),
m > 0 and V = 0 and their Fokker-Planck counterparts, U(s) = s log s and V =
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|x|2/2, and U(s) = sm/(m − 1) and V = |x|2/2 respectively, see [28, 29, 50, 25] for
instance.

Models with interaction potential are ubiquitous in many fields ranging from
applications in Physics to Mathematical Biology. The equation with W = |x|3/3
and U = V = 0 was introduced in [10] as a simplified model of thermalization of
inelastic particle systems. Variations of this model with stochastic heating [11], W =
|x|3/3, U = s log s, and V = 0, and more general interaction potentials [55, 42],
W = |x|2+γ/(2+ γ), γ > −1, have also been considered in this particular application.

Another source of models with interaction potential appears in mathematical
biology. Cell movement by chemotaxis has been modeled by systems of equations
[51, 40]. Usually, one has an evolution of the density of cells ρ(t, x) coupled to a
reaction diffusion equation for the chemical substance k(t, x) that these cells react to:















∂ρ

∂t
(x, t) = ∆ρ(x, t) − χ∇·(ρ(x, t)∇k(x, t)) x ∈ R

2 , t > 0 ,

∂k

∂t
(x, t) − ∆k(x, t) = ρ(x, t) − αk(x, t) x ∈ R

2 , t > 0 .

However, it is assumed that the relaxation of chemical concentration happens faster
than for the cell density, and then, the time derivative of the concentration is neglected.
Assuming that α = 0 and expressing the solution of the equation −∆k = ρ in terms
of convolution with the Newtonian potential in R

2, we obtain the well-known Patlak-
Keller-Segel (PKS) system, see [31, 17, 24, 15, 16] for more information. Thus, the
PKS system corresponds to (1.1) with U = s log s, V = 0, and W = χ

2π log |x| in two
dimensions.

Mathematical modeling of swarms, flocks and collective motion of individuals
have also been treated by continuum models steaming from particle discrete models
[18, 53, 47, 54, 22, 48]. They lead to equations with W = −e−|x|, V = 0 with
or without linear or nonlinear diffusion, U(s) = s log s or U(s) = sm/(m − 1) with
m > 1, modeling local repulsive interaction [53, 23]. These continuity equations with
nonlocal interaction terms can be deduced from particle systems [34] and they can
lead to finite time aggregation of particles [12, 13].

All these continuity equations have a common underlying structure who was first
pinpointed in [50] for the porous medium equation. All these equations share the fact
that they can be considered as gradient flows with respect to the euclidean Wasserstein
distance of the free-energy functional F(ρ), see [26, 59, 3, 27]. Actually, this structure
shows that solutions can be constructed by the variational schemes introduced in
[39]. As a consequence, it seems natural to try to solve these variational schemes
numerically since they have a built-in positivity and free-energy decreasing property.

These numerical semidiscrete scheme involves in principle the numerical solution
of a quite challenging numerical problem, i.e., the Monge-Kantorovich optimal trans-
port map between measures. The numerical solution to this problem is quite costly
[9], although there are some recent developments in the field with applications to
image processing [7, 8, 38].

This variational scheme has already been used in the one-dimensional case by
the numerical community. Here, the reduction to one-dimension is essential since the
Wasserstein distance in this case reduces to an L2 distance of inverses of distribution
functions [59, 30]. Moreover, the variational scheme is nothing else than an implicit
Euler scheme for the PDE satisfied by the inverse of the distribution function asso-
ciated to the unknown density, [41] and see [15] for an application of this scheme to



Numerics of Diffusive and Aggregation Phenomena by Evolving Diffeomorphisms 3

the PKS system. Related schemes have been proposed for the interaction potential
equation and nonlinear diffusion keeping some contraction properties [35, 36].

In this work, we propose to solve numerically the system of PDEs satisfied by
the diffeomorphism representing the unknown density from constant distribution of
mass over the domain. This equation appeared in the study of weak solutions for a
very particular class of classical L2-gradient flows of functionals on diffeomorphisms
in [32] and then further analyzed in [4]. This system of PDEs to compute the evolving
diffeomorphism is the equivalent in higher dimensions to the equation satisfied by the
inverse distribution function of a density.

This representation has lots of numerical advantages. Since the transport map
from constant density sends more points to the places of larger mass concentration,
the uniform mesh adapts itself in a natural way to the shape of the mass distribution.
On the other hand, aggregation phenomena lead usually to the convergence towards
delta-Dirac distributions located at certain points, see the PKS system [57, 58, 16]
for instance or [12]. Therefore, this approach allows the tracking of the formation
of these singularities and their profile in a smooth natural mesh-adaptive manner.
Moreover, the formation of Delta-Diracs appear as a degeneration of the transport
maps to be diffeomorphisms which is numerically more tractable than the blow-up
of the density in original variables. Also, this method demonstrates good features
for the diffusive cases, since it allows the tracking of free boundaries and merging of
different mass patches in a natural way. These evolving diffeomorphisms can also be
thought as solving equation (1.1) in Lagrangian coordinates by particle methods since
the equation solved for the diffeomorphisms can be thought as finding the flow map
associated to the velocity field u.

Finally, let us mention that this approach can be recast in a more general setting
including equations deriving from free-energy minimization on variational schemes
involving optimal transport costs different from the euclidean. In fact, we can also
solve in this way, equations of the form:

∂ρ

∂t
= −∇ · (ρuc) := ∇ · {ρ∇c∗ [∇ (U ′ (ρ) + V + W ∗ ρ)]} , (1.4)

where c is the cost function in the variational scheme and c∗ its Legendre transform.
These equations lead to p-Laplacian equations or doubly nonlinear equations with the
choice V = W = 0, U(s) = s log s or U(s) = sm/(m − 1), and c(x) = |x|q/q with q the
conjugate exponent of p, see [49, 1, 2]. Even some flux-limited equations appearing in
relativistic flows can be numerically solved with this approach, see [5, 6, 46], in which
we want to solve

∂ρ

∂t
= ∇ ·

(

ρ
∇ρ

√

ρ2 + |∇ρ|2

)

= ∇ ·
(

ρ
∇ log ρ

√

1 + |∇ log ρ|2

)

. (1.5)

Here, the cost function is given by

c(x) =

{

1 −
√

1 − |x|2 if |x| ≤ 1
+∞ if |x| > 1.

,

for which c∗(x) =
√

1 + |x|2 − 1.
The plan of this paper is the following: in the next section, we will review the

main ideas from [32, 4] related to the variational schemes in [39] we need in this work.
Section 3 will be devoted to explain the numerical algorithm and the initialization of
it. Finally, section 4 will show the numerical experiments in the different situations
of aggregation and diffusion discussed in the introduction.
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2. Variational Approximations & Evolving Diffeomorphisms. Let µ, ν ∈
P(Rd) the space of probability measures in R

d, P2(R
d) the subset of probability

measures with finite second moment, Pac
2 (Rd) its subset formed by the absolutely

continuous measures with respect to Lebesgue and T be a measurable map T : R
d →

R
d. We say that T transports µ onto ν and we note ν = T#µ if for any measurable

set B ⊂ R
d, ν(B) = µ ◦ T−1(B), or equivalently

∫

Rd

ζ◦T (x) dµ(x) =

∫

Rd

ζ(y) dν(y) ∀ζ ∈ C0
b (Rd) . (2.1)

The euclidean Wasserstein distance dW between µ and ν, dW can be defined by

d2
W (µ, ν) := inf

T : ν=T#µ

∫

Rd

|x − T (x)|2 dµ(x) .

By Brenier’s theorem [19, 44, 45], see [59, Theorem 2.32, p.85] for a review, if µ is
absolutely continuous with respect to Lebesgue measure, then there is one measurable
map T such that ν = T#µ and T = ∇ϕ for some convex function ϕ. As a consequence,

d2
W (µ, ν) =

∫

Rd

|x −∇ϕ(x)|2 dµ(x) . (2.2)

The variational problem leading to the definition of the Wasserstein distance can be
relaxed to the linear programming problem:

d2
W (µ, ν) = inf

Π∈Γ

{
∫

Rd×Rd

|x − y|2 dΠ(x, y)

}

,

where Π runs over the set of transference plans Γ, that is, the set of joint probability
measures on R

d×R
d with marginals µ and ν. In fact, the infimum above is a minimum

by Kantorovich duality theorems [59, Chapter 1]. The optimal transference plan, in
case Brenier’s theorem applies, is given by Πo = (idRd ⊗∇ϕ)#µ.

Associated to this euclidean distance, a variational scheme for the doubly non-
linear equation and the heat equation was introduced in [49, 39], and consequently
generalized to all the equations of the form (1.1) in [1, 3]. This variational scheme
reads as:

ρn+1
∆t ∈ arg infρ∈K

{

1

2 ∆t
d2

W (ρn
∆t, ρ) + F(ρ)

}

, (2.3)

for a fixed time step ∆t > 0, an initial datum ρ0 ∈ Pac
2 (Rd) with

K :=

{

ρ ∈ L1
+(Rd) :

∫

Rd

ρ(x) = M, |x|2 ρ ∈ L1(Rd)

}

.

Here, M is the total mass of the initial data. Let us point out that the normalization
of unit total mass is not necessary at all since the total mass is preserved by the
continuity equations treated. For simplicity, our densities will be normalized to have
total mass M and the transport distance dW is defined analogously for these positive
measures with total mass M .

This steepest descent scheme can be understood [3] as a time discretisation of
an abstract gradient flow equation in the space of probability measures. We refer to
[50, 59, 3, 27] for a deeper discussion, the heuristics and the rigorous sense of the
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gradient flow structure. In [3], it is proved that suitably time interpolation of the
solutions of this variational scheme approach the solution of the limiting equations
(1.1) at first order in time in the Wasserstein sense.

More general equations (1.4) can be treated by allowing more general distances
induced by different cost functionals for the transport of mass from location x to
location y. Let us denote by c(x, y) : R

d × R
d −→ R

+ this cost function. Let us
assume that c is radially symmetric in the sense of c(x, y) = c(x − y) = c(|x − y|),
then the associated variational scheme to equation (1.4) is:

ρn+1
∆t ∈ arg infρ∈Kc

{

∆t inf
Π∈Γ(ρn

∆t
, ρ)

{
∫

Rd×Rd

c

(

x − y

∆t

)

dΠ(x, y)

}

+ F(ρ)

}

, (2.4)

where Γ(ρn
∆t, ρ) is the set of measures in the product space R

d × R
d with marginals

ρn
∆t and ρ respectively. This variational scheme was proven to be convergent in a very

general setting [1, 3, 46] including the p-laplacian equations, the doubly-nonlinear
equations and the relativistic heat equation.

Let us finally remark that the whole theory can be recast in a bounded domain
and the Cauchy problems obtained have to be complemented with no-flux boundary
conditions to keep the total mass constant. We will elaborate further below.

Recently, a connection between the theory of variational steepest descent schemes
with respect to the euclidean transport distance and the L2-gradient flows of polycon-
vex functionals on diffeomorphisms was obtained in [32]. Let Ω be a smooth, open,
bounded and connected subset of R

N and let Ω̃ be an open subset of R
N . Let us

consider the functionals of the form

I(Φ) =

∫

Ω

Ψ(detDΦ) dx

where Φ ∈ D, the set of diffeomorphisms from Ω onto Ω̃ which maps ∂Ω onto ∂Ω̃.
They showed that the classical L2-gradient flow:

Φn+1
∆t ∈ arg infΦ∈D

{

1

2 ∆t
‖Φn

∆t − Φ‖2
L2(Ω) + I(Φ)

}

, (2.5)

is well defined and it converges to a solution of the system of PDEs:

∂Φ

∂t
= ∇ ·

[

Ψ′(det DΦ)(cof DΦ)T
]

, (2.6)

where DΦ =
(

∂Φi

∂xj

)

is the Jacobian matrix of Φ, cof A is the cofactor matrix and
T is the transpose of a matrix, with vectors considered as columns. This result was
proved in these particular set of polyconvex functionals since they are related to the
variational scheme (2.3). Actually, taking an arbitrary diffeomorphism Φ ∈ D is
equivalent to give ρ ∈ K by setting ρ = Φ#LN

Ω. In fact, due to smoothness,
ρ = Φ#LN

Ω is equivalent to

ρ(Φ(x)) det(DΦ) = 1 on Ω, (2.7)

or equivalently ρ = det[(DΦ)−1]◦Φ−1. Using this change of variables on the definition
of the functional F(ρ) with V = W = 0, one recovers

F(ρ) =

∫

Ω̃

U(ρ) dx =

∫

Ω

U(ρ(Φ(x))) det(DΦ) dx =

∫

Ω

Ψ(det(DΦ)) dx
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with Ψ(s) = s U(1/s) for all s > 0. Also, if one performs this change of variables on
the definition of the transport distance, then

d2
W (ρn

∆t, ρ) := inf
T : ρ=T#ρn

∆t

∫

Ω̃

|x − T (x)|2ρn
∆t(x) dx

= inf
T : ρ=T#ρn

∆t

∫

Ω

|Φn
∆t(x) − T (Φn

∆t(x))|2 dx

= inf
Φ: ρ=Φ#χΩ

∫

Ω

|Φn
∆t(x) − Φ(x)|2 dx

where ρn
∆t = Φn

∆t#LN
Ω. These remarks suggest that both schemes are equivalent

modulo this change of variables, and this is what is shown in [32] and generalized and
improved in [4]. In fact, one can also directly perform the change of variables (2.7)
on the nonlinear diffusion equation

∂ρ

∂t
= ∇ · [ρ∇U ′ (ρ)]

to conclude (2.6).
Let us generalize this idea. Applying the change of variables (2.7) to (1.1), it is

easy to check that one obtains the following system for the evolving diffeomorsphisms
representing the solution ρ(t) = Φ(t)#LN

Ω at each time t > 0:

∂Φ

∂t
=∇·

[

Ψ′(det DΦ)(cof DΦ)T
]

−∇V ◦Φ−
∫

Ω

∇W (Φ(x)−Φ(y)) dy := u(t)⋆Φ, (2.8)

with a corresponding initial data Φo representing ρo = Φo#LN
Ω. In fact, equation

(2.8) is the Lagrangian coordinates representation of the original Eulerian formulation
(1.1).

This change of variables (2.7) can again be applied to the variational scheme (2.3)
to obtain the corresponding variational scheme for the diffeomorphisms of the form
(2.5) where

I(Φ) =

∫

Ω

Ψ(detDΦ) dx+

∫

Ω

V (Φ(x)) dx+
1

2

∫

Ω

∫

Ω

W (Φ(x)−Φ(y)) dx dy . (2.9)

This idea can be further generalized to variational schemes (2.4) and equations
of the form (1.4), giving

∇c

(

∂Φ

∂t

)

=∇ ·
[

Ψ′(detDΦ)(cof DΦ)T
]

−∇V ◦ Φ−
∫

Ω

∇W (Φ(x) − Φ(y)) dy . (2.10)

or in synthetic manner

∂Φ

∂t
= ∇c∗(u(t) ⋆ Φ) ,

with the associated free energy/entropy functional given by (2.9).
The equations of the form (1.1) and (1.4) when solved in a bounded domain have

to be complemented with no-flux boundary conditions:

u · η = 0 (uc · η = 0) on ∂Ω̃ (2.11)
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with η the outwards unit normal at the boundary of Ω̃, remember with our notation
u · η = uT η. This allows for the conservation of mass and the decay of the free-
energy/entropy for equations (1.1) and (1.4). It is easy to check that formally smooth
solutions of (1.1) should satisfy:

d

dt
F(ρ(t)) = −

∫

Ω̃

ρ(x, t)|u(t, x)|2 dx .

This decreasing property of the free energy functional is trivially preserved in the vari-
ational scheme (2.3), since by construction F(ρn+1

∆t ) ≤ F(ρn
∆t), for all n ∈ N. Thus,

this property is preserved for the variational scheme of the evolving diffeomorphisms
(2.5), giving I(Φn+1

∆t ) ≤ I(Φn
∆t), for all n ∈ N. This entropy decreasing property of

the variational scheme for (2.8) determines the boundary conditions naturally associ-
ated to the system. The boundary condition has to be such that the entropy I(Φ) is
decreasing along its evolution, and thus, by computing the time-derivative, we get

d

dt
I(Φ(t)) = −

∫

Ω̃

|u(t) ⋆ Φ|2 dx −
∫

∂Ω̃

Ψ′(det DΦ) ηT (cof DΦ)T ∂Φ

∂t
dx

from which, we conclude that the natural boundary condition for the system (2.8)
associated to the variational scheme (2.5) is:

ηT (cof DΦ)T ∂Φ

∂t
= (cof DΦ)η · ∂Φ

∂t
= 0 on ∂Ω̃. (2.12)

Analogously, the free-energy/entropy dissipation associated to equation (1.4) is:

d

dt
F(ρ(t)) = −

∫

Ω̃

ρ(x, t)u(t) · uc(t) dx

where u(t) · uc(t) = u(t) · ∇c∗[u(t)] ≥ c∗[u(t)] ≥ 0 by convexity of c∗. Therefore,
one finds that the boundary condition associated to the generalized diffeomorphisms
equation (2.10) is given again by (2.12).

Finally, let us point out that this change of variables (2.7) can be applied to any
equation in divergence form, i.e.

∂ρ

∂t
= ∇ · [a(x, ρ,∇ρ)], (2.13)

giving the following evolution system for the diffeomorphisms

∂Φ

∂t
= −a

{

Φ, det[(DΦ)−1], (∇det[(DΦ)−1])(DΦ)−1
}

det(DΦ). (2.14)

The main issue here is that there is no variational scheme behind this general kind
of equations and therefore, it is not clear what are the right boundary conditions to
impose.

3. Numerical methods. In this work, we will deal with the numerical solu-
tions of equations (1.1) and (1.4) in two dimensions. Our numerical method is based
on representing solutions in a squared geometry by the evolving diffeomorphisms or
Lagrangian coordinates Φ(t), and thus, we will fix in the sequel Ω̃ = [c, d]2 as the
physical domain and Ω = [a, b]2 as computational domain, which is not restrictive in
many practical applications.
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There have been many works in the literature devoted to the analysis of blow-
up of solutions for the Schrödinger equation [52], for formation of concentrated re-
gions in compressible flows by adaptive meshes [43], for the concentration problem
in chemotatic collapse [20] and for the blow-up problem in semilinear heat equations
[21]. The common goal of these works is to obtain a new mesh better adapted to the
solution’s profile by minimizing certain ad-hoc functional and solving the equations in
these new meshes. Let us point out that the closest literature to our present work has
been recently proposed in [21]. They suggest to construct moving meshes for blow-up
problems in semilinear heat equations by solving a Monge-Ampère equation for find-
ing the meshes. These new meshes fit better the mass distribution of the function to
be numerically obtained. In Figure 3.1, one can see the initial data of some tests, a
gaussian centered on the square domain [0, 1]2 and a cut parabola and their meshes,
the representing diffeomorphisms Φ0 of these initial data.

Our proposed algorithm also adapts itself in an automatic manner since we solve
for the diffeomorphism representing the solutions from constant distribution of mass.
However, we avoid finding a solution of the corresponding Monge-Ampère equation
as in [21] by solving directly the evolution of these diffeomorphisms. Therefore, the
solution of the diffeomorphism equations (2.10) and (2.14) adapt naturally to the
concentration or diffusion of mass. This is one of the great numerical advantages of this
method. As a drawback, we increase the computational cost of solving numerically
a single nonlinear PDE by solving an intrincate system of evolutionary nonlinear
PDEs. Nevertheless, we can continue solving in the original fixed cartesian mesh the
diffeomorphims equation which is of great computational advantage.

Concerning the boundary conditions (2.12) in a squared geometry they translate
to:

∂Φ1

∂t

∂Φ2

∂x2
− ∂Φ2

∂t

∂Φ2

∂x1
= 0 for x1 = a , x1 = b

and

−∂Φ1

∂t

∂Φ1

∂x2
+

∂Φ2

∂t

∂Φ1

∂x1
= 0 for x2 = a , x2 = b.

Since our diffeomorphism Φ will be mapping ∂Ω onto ∂Ω̃, we will restrict to the par-
ticular case in which the diffeomorphism maps each edge of ∂Ω onto the corresponding
one of ∂Ω̃ without rotation. As a consequence, we have

Φ1(t, x) = c, d for x1 = a , x1 = b and Φ2(t, x) = c, d for x2 = a , x2 = b,

respectively. Thus, ∂Φ1

∂t = 0 on x1 = a , x1 = b and ∂Φ2

∂t = 0 on x2 = a , x2 = b, from
which the boundary conditions above simplify to

∂Φ2

∂x1
= 0 for x1 = a or x1 = b and

∂Φ1

∂x2
= 0 for x2 = a or x2 = b, (3.1)

since there are no reasons why the other component should not depend on time to
adapt itself to the evolving mass in the boundary. This particular restriction in the
boundary mapping has also been used for solving Monge-Ampère equations in [21].

In summary, we will numerically solve the systems (2.8) or (2.10) posed on square
domains Ω̃ = [a, b]2 with the boundary conditions (3.1).

In order to build an initial diffeomorphism Φ0 corresponding to ρ0 for the systems
(2.8) or (2.10), we first choose a = 0 and b =

√
M , where M is the mass of ρ0. Then,
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we follow the algorithm proposed in [37] which basically consist on finding a solution
of a one-dimensional Monge-Kantorovich problem in the x1 direction followed by
the solution of a family of one-dimensional Monge-Kantorovich problems in the x2

direction. We define a function a : [0,
√

M ] → [c, d] by the equation

∫ a(x1)

c

∫ d

c

ρ0(η, x2) dx2 dη =
√

Mx1. (3.2)

Next, we consider b : [0,
√

M ]2 → [c, d]2 defined by

∫ b(x1,x2)

c

ρ0(a(x1), η) dη =
x2√
M

∫ d

c

ρ0(a(x1), η) dη, (3.3)

and set Φ0(x1, x2) := (a(x1), b(x1, x2)). After differentiating (3.2) with respect to x1

and (3.3) with respect to x2, we see that Φ0 ∈ D and ρ0 = Φ0#LN
Ω.

Let us point out that this choice of domains produces a lack of rotational sym-
metry for radially symmetric functions, as it can be seen in Figure 3.1, since we are
working with diffeomorphisms from a square onto a circle. The initialization proce-
dure gives these flat sides in the x1-direction due to the order of integration. We warn
the reader that this initial lack of symmetry is the origin of the lack of rotational
symmetry for some of the solutions below. A possible way to avoid this problem
could be to work in polar coordinates with circles as initial domain that we will study
elsewhere.

0.3
0.4

0.5
0.6

0.7

0.3

0.4

0.5

0.6

0.7

0

2

4

6

8

10

12

14

16

x
1

x
2

ρ

0,025 0,03 0,035 0,04 0,045 0.5 0,055 0,06 0,065 0,07 0,075

0,025

0,03

0,035

0,04

0,045

x
1

x 2

0.9
0.95

1
1.05

1.1
1.15

−1.1

−1.05

−1

−0.95

−0.9
0

0.2

0.4

0.6

0.8

1

x
1

x
2

ρ

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
−1.08

−1.06

−1.04

−1.02

−1

−0.98

−0.96

−0.94

−0.92

−0.9

x
1

x 2

Fig. 3.1. Initial data from two view points where we clearly observe the mesh adaptation. Top:
a Gaussian in [0, 1]2; bottom: a cut parabola.

The spatial discretization of this system of PDEs has been treated by simple
finite-differences approximations of the derivatives of the unknown Φ involved in the
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equation, if the diffusive term appears, together with a numerical composite quadra-
ture formula for the interaction potential integral (Simpson’s or trapezoid’s rule). Let
us precise more our discretization of the diffusive term

∇ ·
[

Ψ′(detDΦ)(cof DΦ)T
]

.

We first point out that in general ∇ ·
[

(cof DΦ)T
]

= 0, and thus depending on the
problem, one can decide to discretize the previous term or the equivalent:

(cof DΦ)T∇ [Ψ′(detDΦ)] .

It is interesting to keep in mind the particular case of linear diffusion for which
Ψ(s) = − log(s), so these terms are

−∇ ·
[

(DΦ)−1
]

= −(cof DΦ)T∇
[

1

detDΦ

]

.

Let us consider a discretization Φi,j on a uniform cartesian grid Ω = [a, b]2 of
Φ with mesh sizes ∆x1 = a/N1 and ∆x2 = b/N2 respectively. Let us introduce the
following notations

(D←Φ)i,j =
1

∆x1
(Φi,j − Φi−1,j) , (D→Φ)i,j =

1

∆x1
(Φi+1,j − Φi,j)

and

(D↓Φ)i,j =
1

∆x2
(Φi,j − Φi,j−1) , (D↑Φ)i,j =

1

∆x2
(Φi,j+1 − Φi,j),

for all grid points i = 1, . . . , N1 − 1, j = 1, . . . , N2 − 1.

-

- 6 6

? ?
�

�

Fig. 3.2. Schematic representation of the order of derivatives approximation with origin at xc.

Since we are aiming to treat densities ρ which are compactly supported or nearly,
then Φ will be a diffeomorphism from Ω onto Ω̃ but not at the boundary due to the
compact support of the target density. Therefore, we have to avoid the use of grid
points at the boundaries since detDΦ blows up there for compactly supported target
densities, see (2.7). This fact also appeared in the one-dimensional schemes developed
in [41, 35, 36, 15].

As a consequence, we first decide to choose and even number of discretization
points inside the domain, i.e., choose N1 and N2 to be odd numbers. We divide
the grid into four quadrants with origin at a point xc to be chosen and take the
approximation of the first derivatives appearing in the terms Ψ′(detDΦ)(cof DΦ)T

dictated by the arrows in each of the four quadrants in Figure 3.2.
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To perform the approximation of the divergence operator ∇·, we use the com-
plementary first derivative approximation in each of the quadrants, i.e., if D← was
used for the x1-derivative approximation, we now use D→ and so on. In this way, our
approximation gives standard stable centered finite-differences for second derivatives
in the same variable. The use of these complementary derivatives needs then some
values of the terms in Ψ′(det DΦ)(cof DΦ)T at the boundary. Let us discuss just one
of the four possibilities of needed values at the boundary, the rest are obtained by
symmetries. Let us consider the left two quadrants and the part of boundary x1 = a,
then the only derivative involved in Ψ′(detDΦ)(cof DΦ)T for which we need a value
at the boundary x1 = a is

Ψ′(detDΦ)
∂Φ2

∂x2
. (3.4)

In principle, we know that detDΦ → ∞ at the boundary and here we will assume that
Ψ′(∞) = 0, condition which is satisfied in all the cases mentioned on the introduction
and used in this paper. In this way, we assume that ∂Φ2

∂x2
at the boundary x1 = a is

such that Ψ′(det DΦ)∂Φ2

∂x2
at the boundary x1 = a goes to 0. Under these conditions we

then just take zero for the needed values of these terms. Actually, our computation
is performed evaluating directly the needed term at the boundary (3.4) with the
corresponding approximation of the first derivatives, and thus, we verify numerically
that these are really 0 values. In this way, the approximation is coherent too for
strictly positive densities. Let us remark that the condition Ψ′(∞) = 0 is equivalent
to f(0+) = 0 with f(s) = U(s) − sU ′(s).

Finally, let us discuss the choice of the point xc in which the approximation
of derivatives reverses the order. We first choose it as the center of one of the mesh
rectangles. In principle, we know that at this point there might be a larger discrepancy
between the values of the first derivatives approximations to either side of the point,
therefore we just choose it in such a way that this discrepancy is the smallest. The
global maximum is the natural candidate since there the first derivatives are zero and
their derivatives in any or axial directions will be of the same order. This situation
corresponds to an inflection point for the components of Φ in which we expect similar
values of the second derivative in the symmetry direction both from the left and right.

We proceed by an explicit time discretization of the problem with the explicit
Euler scheme as the default algorithm in case the diffusive term appears in the equa-
tion or with high-order explicit Runge-Kutta schemes in case that this diffusive term
is not present. This is due to the fact that if U = 0, the discretized diffeomorphisms
equations can be seen as a set of ODEs, actually a particle method, and thus we
want a numerical method with a larger absolute stability region to keep the long-time
asymptotics of the system better. Of course, the best would be to use an implicit
method but we avoided it in this work to speed up computations.

In case the diffusive term is present, we have a CFL-type condition. In fact, this
issue was already studied in the one-dimensional case [35], in which a CFL condition
is imposed to keep the diffeomorphism character of the map, an strictly increasing
function in their case, along the evolution. In our situation, this can be seen as a stan-
dard CFL condition for explicit discretizations of the second-order terms involved in
∇·
[

Ψ′(det DΦ)(cof DΦ)T
]

. In fact, all the four terms included in the two-dimensional

case of ∇ ·
[

Ψ′(detDΦ)(cof DΦ)T
]

are of the form

∂

∂xk

[

Ψ′(det DΦ)
∂Φi

∂xj

]
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where i, j, k = 1, 2. The reported spatial discretization of these terms leads to a CFL
condition of the type

‖Ψ′(detDΦ)‖L∞

∆t

∆x2
≤ 1

α

with α ≥ 2 where ∆x = max(∆x1, ∆x2). This condition reduces to the one in [35,
Lemma 3.1] checking it carefully. All the results reported in this work were performed
with α = 8.

4. Numerical Results. Here, we first start with some test problems for our
scheme: the heat equation U(s) = s log s, V = W = 0, and the linear Fokker-Planck
equation U(s) = s log s, V = |x|2/2 and W = 0, posed on square domains with Neu-
mann boundary conditions. Mass is preserved for both equations and their asymptotic
tendency is to equilibrate exponentially fast towards equilibrium, a constant density
for the heat equation and a gaussian density for the linear Fokker-Planck equation.
In Figures 4.1 and 4.2 we have the resulting evolution at different time-steps where
we observe the adaptation of the mesh to the mass distribution and the asymptotic
equilibration as described above validating the numerical solver for this problem. It
is remarkable that the entropy in both cases decays exponentially, up to consistency
error in log scale not shown in the figures, although the scheme has not been designed
with this purpose.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

2.5

3

3.5

x
1

x
2

ρ

0

0.5

1

0

0.5

1
0.5

1

1.5

2

x
1

x
2

ρ

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

F
(ρ

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

t

‖ρ
−

1
‖ ∞

Fig. 4.1. Evolution of the heat equation with the centered gaussian in [0, 1]2 as initial data:
top left at t = 0.02, top right at t = 0.05, bottom left shows the evolution of entropy F(ρ), bottom
right shows the difference to the constant state in L∞ norm.

Another set of test problems are purely aggregation equations with a given con-
fining potential. We choose then U(s) = 0, V = |x|2/2 and W = 0 in Figure 4.3 and
U(s) = 0, V = |x|3/3 and W = 0 in Figure 4.4. In both cases, the asymptotic behavior
is a Dirac delta with the whole mass of the system concentrated at the unique global
minimum of the potential, i.e. at the origin. The main difference is that the equili-
bration velocity depends on the convexity of the potential near the origin as proved
in [27]. More precisely, it is proved in [27] that given V (x) = kV |x|a+2/(a + 2) with
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in [−1, 1]2 as initial data: top left at t = 0.01, top right at t = 0.5, bottom left at t = 3.5, bottom
right shows the evolution of entropy F(ρ).

kV ≥ 0 and a ≥ 0, the Wasserstein L2 distance dt := d2(ρ1(t), ρ2(t)) between any two
solutions decays like

dt ≤
{

e−kV td0 a = 0

d0(1 + kV ta(d0/2)a)−1/a ∼ 2(kV ta)−1/a a > 0
(4.1)

In both Figures 4.3 and 4.4 we observe the convergence towards the unique sta-
tionary point, the Dirac delta at the origin, with the speeds theoretically proven.

Moreover, we discover an interesting feature of the cubic case, it seems that the
distribution has an intermediate asymptotic behavior before reaching the total mass
concentration. In fact, it seems to concentrate first along an sphere centered at the
origin in a self-similar way before final aggregation at the origin. Results of this type
are known for nonlinear friction equations with U = V = 0 and W = |x|3/3 but it
seems unreported for confining potentials. We numerically checked this behavior for
centered at the origin initial data. For not centered initial data this concentration on
a sphere seems to happen but it seems in a non uniform way, figures not included.

4.1. Numerical Results: Diffusion-type problems. Now, let us concentrate
in the family of particular diffusive problems of the form:











∂ρ

∂t
= ∇ ·

[

|∇ρm|p−2 ∇ρm
]

, x ∈ Ω ⊂ R
d, t > 0

ρ(t = 0) = ρ0 , x ∈ Ω ⊂ R
d

(4.2)

with no-flux boundary conditions if posed in a bounded domain and 1 < p < ∞,
m ≥ mc := d−p

d(p−1) . This family appears taking V = W = 0, the cost given by
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Fig. 4.3. Evolution of the confining potential case: U(s) = 0, V = |x|2/2 and W = 0 with a
cut parabola centered at (−1, 1) in [−10, 10]2 as initial data: top left at t = 1, top right at t = 10,
bottom left at t = 30, bottom right shows the evolution of square of the distance to the stationary
Dirac Delta at the origin in log scale.

c(x) = |x|q/q with q the conjugate exponent of p and the internal energy given by

U(s) =



















1

p − 1
s ln s if m =

1

p − 1

msγ

γ(γ − 1)
, γ = m +

p − 2

p − 1
if m 6= 1

p − 1
.

.

As particular cases, we have the porous medium equation and the p-Laplacian equa-
tions. Concerning their asymptotic properties we know that these diffusive equations
in bounded domains with Neumann boundary conditions equilibrate to the average of
the initial data while in the whole space they evolve towards self-similar states given
by Barenblatt-type profiles.

Moreover, the regularity at the boundary of their support/decay properties at
the boundary of the domain depend on both m and p and depending whether we
are in the finite speed of propagation range m(p − 1) > 1 or the fast-diffusion range
m(p − 1) < 1. Actually, the Barenblatt self-similar solution is given by

ρB(t, x) =
1

td/δp
uB

( x

t1/δp

)

, (4.3)

where δp := d(p − 1)(m − mc) > 0 and

uB(y) =



















1

σ
exp

(

−p− 1

q
|y|q
)

if m =
1

p − 1
(

D∗ −
m(p − 1) − 1

mp
|y|q
)

p−1
m(p−1)−1

+

if m 6= 1

p − 1
,

(4.4)
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Fig. 4.4. Evolution of the confining potential case: U(s) = 0, V = |x|3/3 and W = 0 with a
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and σ or D∗ are uniquely determined by the mass conservation: ‖uB‖L1(Rd) =
‖ρB(t)‖L1(Rd) = ‖ρ0‖L1(Rd) = 1.

In Figure 4.5 we see the evolution starting from a centered gaussian in [−100, 100]2

at different times and values of m and p. In all cases, the equilibration towards
constant values and the decay of the energy associated is found numerically in a
similar way to the heat equation. We can observe the different shapes of the profiles
similar to the ones assumed by the Barenblatt profiles in (4.4) before they are deformed
due to the Neumman boundary condition.

We can further check the evolution towards self-similarity in the porous medium
case m = 2 and p = 2 by taking a cut parabola −|x|2 centered at (−1, 1) in a large
domain such as [−10, 10]2. Since the solutions remain compactly supported with
growing supports in time, the evolution will not be affected by the Neumann boundary
conditions for large time intervals to observe the self-similar behavior. Indeed, in
Figure 4.6 we observe that evolution and the diameter of the support that increases
algebraically as t1/4 up to the time, after 106, in which the solution touches the
boundary and then is deformed to its average value. Moreover, the decay of the
maximum is shown to be as t−1/2 as theoretically expected.

We finally check the merging of different mass patches in the porous medium
equation with m = 1.5 and p = 2 by taking three different cut parabolas starting
with disjoint supports. The scheme is capable of resolving the evolution and merging
of the patches by the following procedure: we evolve each patch independently by its
corresponding diffeomorphism to an square domain; giving a ”touching” criteria, we
perform a merging of the meshes to initialize a new square domain with two joined
patches, this algorithm is repeated for each merging event. In this particular example
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the dimensions of the meshes of each patch were well prepared to avoid interpolation
in the merging step. The ”touching” criteria to join patches is a follows: we consider
two patches touch when the closest points in their independent evolution are below
certain tolerance.

Finally, we have solved numerically with this procedure the relativistic heat equa-
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tion

∂ρ

∂t
= ∇ ·

(

ρ
∇ρ

√

ρ2 + |∇ρ|2

)

= ∇ ·
(

ρ
∇ log ρ

√

1 + |∇ log ρ|2

)

.

with four picked gaussians as initial data in Figure 4.8. We observe the formation
and evolution of sharp profiles and the merging of the different mass packets into one
before the eventual relaxation towards constant density. Further properties of these
schemes for flux-limited diffusions will be analyzed elsewhere.

4.2. Numerical Results: Aggregation-type problems. In this subsection,
we will deal with cases in which the interaction potential plays a leading role. In
general, for the problem (1.1) with no diffusion U = 0, no confining V = 0 and
interaction potential of the form W (x) = kW |x|a+2/(a + 2) with kW ≥ 0 and a ≥ 0,
the Wasserstein L2 distance dt := d2(ρ1(t), ρ2(t)) between any two solutions of (1.1)
in the whole space decays like

dt ≤
{

e−kW td0 a = 0

d0(1 + kW ta(d0/
√

2)a)−1/a ∼
√

2(kW ta)−1/a a > 0,

provided the center of masses of the two solutions coincide at each point in time as
shown in [27]. Equal center of mass is ensured for example, by assuming reflection
symmetry Ω = −Ω and ρ0(x) = ρ0(−x) initially (and hence for all time).
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Fig. 4.8. Evolution of the relativistic heat equation in [−1, 1]2 with four-picked gaussians as
initial data: top left at initial time, top right at t = 0.5, bottom left at t = 0.1, bottom right at
t = 0.15.

This family of equations include the one dimensional model for granular media
introduced in [10] in which the external potential is chosen to be cubic, a = 1. In
this case, it is known that solutions will converge to a delta Dirac in their center of
mass with speed given by t−1 measured in Wasserstein distance d2. Moreover, in one
dimension it was shown [10] that the intermediate asymptotics of it is given by two
Delta dirac self-similar measure. Some results in higher dimension were obtained by
[14] where distributions concentrated in symmetric configurations around the origin
were considered as possible intermediate asymptotics of this problem. Actually, in
Figure 4.9, we observe this convergence towards a concentrated mass at the origin
with the right speed and the tendency of the distribution to concentrate on a self-
similar shrinking sphere before achieving the concentration at the origin.

As we discussed in the introduction, several mathematical models of swarms lead
to problems of the form (1.1) with W = −e−|x|, V = 0 with or without linear or
nonlinear diffusion, U(s) = s log s or U(s) = sm/(m − 1) with m > 1, modeling local
repulsive interaction [53, 23]. In the absence of diffusive terms, they have been proved
to produce finite time aggregation of particles [12, 13].

We conclude from Figure 4.10, that starting from a cut parabola centered at the
origin, the solution seems to have a blow-up behavior as a Delta Dirac at the origin
with still some mass left outside this Delta evolving smoothly towards the origin.
It is quite impressive that the decay of the Wasserstein distance towards the Delta
Dirac at the origin is linearly decreasing with unit speed as one should expect from
the behavior of the interaction potential W (x) ≃ |x| near the origin implying that
particles concentrate with unit speed towards the origin. Similar results for potentials
of the form W (x) = |x|a+1 with 0 < a < 1 were reported in [55, 42].
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Fig. 4.9. Evolution of the granular media equations with cubic interaction potential in [−10, 10]2

with a centered parabola at the origin as initial data: top left at t = 105, top right at t = 107, bottom
left at t = 2.5 107, bottom right the log-log plot of the evolution of the d2 distance towards the Dirac
Delta at the origin.

4.3. Numerical Results: Aggregation versus Diffusion problems. Now,
we will deal with problems in which there is a struggle between an aggregation and a
diffusive mechanism in the problems. For instance, we can start with the granular me-
dia model with cubic interaction potential. Introducing a heat bath in the system in
the form of an stochastic heating or thermostat between the inelastic interactions, one
can produce nontrivial stationary states on the system. This fact was proven in the
one-dimensional case in [11] and generalized to any dimension in [26]. More precisely,
it was proven that by introducing linear diffusion a non concentrated smooth sta-
tionary state is produced and convergence towards it happens exponentially fast [26].
This can be seen in Figure 4.11 where the asymptotic equilibration is demonstrated
and the exponential convergence speed is observed.

Concerning the swarming system, we can use our scheme adding linear or non-
linear diffusion to check if its anti-concentration mechanism overcomes that of the
aggregation or not. We have simulated the swarming model above with linear diffu-
sion U(s) = s log s or nonlinear diffusion U(s) = s2/2. The nonlinear diffusion with
m = 2 is the typical case considered in [53] since it comes from the limiting case of
localized repulsion effects. We observe in both cases that the diffusion mechanism
wins in the long run, and thus, the density becomes homogenized in the domain con-
verging towards its average value. This is shown in Figure 4.12 with linear diffusion
with initial value giving by the concentrated state obtained as the computed density
in the final time t = 26.58174281257 close to collapse in Figure 4.10.

Finally, let us consider the case of the parabolic-elliptic Patlak-Keller-Segel model
in chemotaxis corresponding to (1.1) with U = s log s, V = 0, and W = χ

2π log |x| in
two dimensions. In this problem, it is known that the condition χMc = 8π gives a
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critical mass Mc below which the diffusion wins and above which we have finite time
blow-up. We refer to [57, 31, 17, 16] for a deep explanation of this dichotomy result.
We show the results for a subcritical case in which χM = 7π and thus we observe the
evolved density at t = 500 clearly diffusing in space. We also observe a clear blow-up
for a supercritical case in which χM = 9π in which most of the mass is at center while
some mass is left outside. The asymmetry observed in the blow-up profile seems due
to the discussion done above in the initialization and the choice of the domain. We
will perform a deeper study of the results in the supercritical case elsewhere.

We finally show the results in the case of the chemotaxis problem in two dimen-
sions with nonlinear diffusion in Figure 4.14. In this case, it was proved in [24] that
solutions do not blow-up in finite time for any value of the mass if the nonlinear
diffusion is of porous-medium type m > 1. We observe this fact numerically but
furthermore, we observe a convergence towards seemingly stationary compactly sup-
ported solutions of the problem. This fact has been thoroughly checked for different
mass values and exponents. This asymptotic equilibration to steady distributions has
not been yet proven.
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Numerics of Diffusive and Aggregation Phenomena by Evolving Diffeomorphisms 23

−0.1
−0.05

0
0.05

0.1

−0.1
−0.05

0
0.05

0.1
0

0.5

1

1.5

x
1

x
2

ρ

−0.01
−0.005

0
0.005

0.01

−0.01
−0.005

0
0.005

0.01
0

0.5

1

1.5

x
1

x
2

ρ
−2

−1
0

1
2

−2

−1

0

1

2
0

0.05

0.1

0.15

0.2

x
1

x
2

ρ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−15

−10

−5

0

5

t
lo

g
(

F
(ρ

)−
F

(ρ
∞

)
F

(ρ
0
)−
F

(ρ
∞

)

)

Fig. 4.14. Evolution of the Patlak-Keller-Segel model with nonlinear diffusion (m = 2) in
[−10, 10]2 : top left: evolution of the initial data considered in Figure 4.13 for χM = 10π at
t = 0.002, top right: asymptotic profile achieved at t = 0.0034, bottom left: asymptotic profile of
the evolution of a centered gaussian for χM = π, achieved at t = 5 , bottom right: log-plot of the
evolution of the relative entropy in this latter case.

Nonlinear Anal. Real World Appl., 1 (2000), pp. 163–176.
[19] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions,

Comm. Pure Appl. Math. 44, (1991), pp. 375–417.
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