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Abstract

We consider well-posedness of the aggregation equation ∂tu + div(uv) = 0, v = −∇K ∗ u with initial
data in P2(Rd)∩Lp(Rd), in dimensions two and higher. We consider radially symmetric kernels where the
singularity at the origin is of order |x|α, α > 2−d, and prove local well-posedness in P2(Rd)∩Lp(Rd) for
sufficiently large p > ps. In the special case of K(x) = |x|, the exponent ps = d/(d− 1) is sharp for local
well-posedness, in that solutions can instantaneously concentrate mass for initial data in P2(Rd)∩Lp(Rd)
with p < ps. We also give an Osgood condition on the potential K(x) which guaranties global existence
and uniqueness in P2(Rd) ∩ Lp(Rd).

1 Introduction

1.1 Background

The multidimensional aggregation equation

∂u

∂t
+ div (uv) = 0, (1.1)

v = −∇K ∗ u, (1.2)
u(0) = u0, (1.3)

arises in a number of models for biological aggregation [11, 14, 15, 23, 28, 37, 36, 38, 39] as well as problems in
materials science [24, 25] and granular media [3, 17, 18, 31, 40]. The same equation with additional diffusion
has been considered in [7, 9, 13, 20, 27, 29, 30, 32] although we do not consider that case in this paper.
For the inviscid case, much work has been done recently on the question of finite time blowup in equations
of this type, from bounded or smooth initial data [10, 6, 4, 5]. A recent study [16] proves well-posedness
of measure solutions for semi-convex kernels. Global existence (but not uniqueness) of measure solution
has been proven in [33, 21] in 2 space dimension when K is exactly the Newtonian Potential. Moreover,
numerical simulations [26], of aggregations involving K(x) = |x|, exhibit finite time blowup from bounded
data in which the initial singularity remains in Lp for some p rather than forming a mass concentration at
the initial blowup time. These facts together bring up the very interesting question of how these equations
behave in general when we consider initial data in Lp, that may be locally unbounded but does not involve
mass concentration. This work serves to provide a fairly complete theory of the problem in Lp, although
some interesting questions remain regarding critical p exponents for general kernels and for data that lives
precisely in Lps for the special kernel K(x) = |x|.

The Lp framework adopted in this paper allows us to make two significant advances in the understanding
of the aggregation equation. First, it allows us to consider potentials which are more singular than the one
which have been considered up to now (with the exception of [33, 21], where they consider the Newtonian
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potential ). In previous works, the potential K was often required to be at worst Lipschitz singular at the
origin, i.e. K(x) ∼ |x|α with α ≥ 1 (see [28, 6, 5, 16]). In our Lp framework it is possible to consider
potentials whose singularity at the origin is of order |x|α with α > 2 − d. Such potentials might have a
cusp (in 2D) or even blow up (in 3D) at the origin. Interestingly, in dimension d ≥ 3, |x|2−d is exactly the
Newtonian potential. So we can rephrase our result by saying that we prove local existence and uniqueness
when the singularity of the potential is “better” than that of the Newtonian potential.

The second important results proven in this paper concerns the specific and biologically relevant potential
K(x) = |x|. For such a potential, a concept of measure solution is provided in [16]. In the present paper
we identify the critical regularity needed on the initial data in order to guaranty that the solution will stay
absolutely continuous with respect to the Lebesgue measure at least for short time. To be more specific,
we prove that solutions whose initial data are in P2(Rd) ∩ Lp(Rd) remain in P2(Rd) ∩ Lp(Rd) at least for
short time if p > d/(d − 1). Here P2(Rd) denotes probability measure with bounded second moment. On
the other hand for any p < d/(d− 1) we are able to exhibit initial data in P2(Rd)∩Lp(Rd) for which a delta
Dirac appears instantaneously in the solution – the solution loses its absolute continuity with respect to the
Lebesgue measure instantaneously.

1.2 Main results of the paper

Below we state the main results of this paper and how they connect to previous results in the literature.

Theorem 1 (well-posedness). Consider 1 < q < ∞ and p its Hölder conjugate. Suppose ∇K ∈ W 1,q(Rd)
and u0 ∈ Lp(Rd) ∩ P2(Rd) is nonnegative. Then there exists a time T ∗ > 0 and a nonnegative function
u ∈ C([0, T ∗], Lp(Rd)) ∩ C1([0, T ∗],W−1,p(Rd)) such that

u′(t) + div
(
u(t) v(t)

)
= 0 ∀t ∈ [0, T ∗], (1.4)

v(t) = −u(t) ∗ ∇K ∀t ∈ [0, T ∗], (1.5)
u(0) = u0. (1.6)

Moreover the second moment stays bounded and the L1 norm is conserved. Furthermore, if ess sup ∆K <
+∞, then we have global well-posedness.

Theorem 1 is proved in sections 2 and 3. The fact that W 1,q1
loc (Rd) ⊂ W 1,q2

loc (Rd) for q1 ≤ q2 allows us to
make the following definition:

Definition 2 (critical exponents qs and ps). Suppose ∇K(x) is compactly supported (or decays exponentially
fast as |x| → ∞) and belongs to W 1,q(Rd) for some q ∈ (1,+∞). Then there exists an exponent qs ∈ (1,+∞]
such that ∇K ∈ W 1,q(Rd) for all q < qs and ∇K /∈ W 1,q(Rd) for all q > qs. The Hölder conjugate of this
exponent qs is denoted ps.

The exponent qs quantifies the singularity of the potential. The more singular the potential, the smaller
is qs. For potentials that behave like a power function at the origin, K(x) ∼ |x|α as |x| → 0, the exponents
are easily computed:

qs =
d

2− α
, and ps =

d

d− (α− 2)
, if 2− d < α < 2, (1.7)

qs = +∞, and ps = 1, if α ≥ 2. (1.8)

We obtain the following picture for power like potentials:

Theorem 3 (Existence and uniqueness for power potential). Suppose ∇K is compactly supported (or decays
exponentially fast at infinity). Suppose also that K ∈ C2(Rd\{0}) and K(x) ∼ |x|α as |x| → 0.

(i) If 2−d < α < 2 then the aggregation equation is locally well posed in P2(Rd)∩Lp(Rd) for every p > ps.
Moreover, it is not globally well posed in P2(Rd) ∩ Lp(Rd).
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(ii) If α ≥ 2 then the aggregation equation is globally well posed in P2(Rd) ∩ Lp(Rd) for every p > 1.

As a consequence we have existence and uniqueness for all potentials which are less singular than the
Newtonian potential K(x) = |x|2−d at the origin. In two dimensions this includes potentials with cusp
such as K(x) = |x|1/2. In three dimensions this includes potentials that blow up such as K(x) = |x|−1/2.
From [5, 16] we know that the support of compactly supported solutions shrinks to a point in finite time,
proving the second assertion in point (i) above. The first part of (i) and statement (ii) are direct corollary
of Theorem 1, Definition 2 and the fact that α ≥ 2 implies ∆K bounded.

In the case where α = 1, i.e. K(x) ∼ |x| as |x| → 0, the previous Theorem gives local well posedness in
P2(Rd) ∩ Lp(Rd) for all p > ps = d

d−1 . The next Theorem shows that it is not possible to obtain local well
posedness in P2(Rd) ∩ Lp(Rd) for p < ps = d

d−1 .

Theorem 4 (Critical p-exponent to generate instantaneous mass concentration). Suppose K(x) = |x| in a
neighborhood of the origin, and suppose ∇K is compactly supported (or decays exponentially fast at infinity).
Then, for any p < ps = d

d−1 , there exists initial data in P2(Rd) ∩ Lp(Rd) for which a delta Dirac appears
instantaneously in the measure solution.

In order to make sense of the statement of the previous Theorem, we need a concept of measure solution.
The potentials K(x) = |x| is semi-convex, i.e. there exist λ ∈ R such that K(x) − λ

2 |x|
2 is convex. In

[16], Carrillo et al. prove global well-posedness in P2(Rd) of the aggregation equation with semi-convex
potentials. The solutions in [16] are weak measure solutions - they are not necessarily absolutely continuous
with respect to the Lebesgue measure. Theorems 3 and 4 give a sharp condition on the initial data in order
for the solution to stay absolutely continuous with respect to the Lebesgue measure for short time. Theorem
4 is proven in Section 4.

Finally, in section 5 we consider a class of potential that will be referred to as the class of natural
potentials. A potential is said to be natural if it satisfies that

a) it is a radially symmetric potential, i.e.: K(x) = k(|x|),

b) it is smooth away from the origin and it’s singularity at the origin is not worse than Lipschitz,

c) it doesn’t exhibit pathological oscillation at the origin,

d) its derivatives decay fast enough at infinity.

All these conditions will be more rigorously stated later. It will be shown that the gradient of natural
potentials automatically belongs to W 1,q for q < d, therefore, using the results from the sections 2 and 3,
we have local existence and uniqueness in P2(Rd) ∩ Lp(Rd), p > d

d−1 .
A natural potential is said to be repulsive in the short range if it has a local maximum at the origin

and it is said to be attractive in the short range if it has a local minimum at the origin. If the maximum
(respectively minimum) is strict, the natural potential is said to be strictly repulsive (respectively strictly
attractive) at the origin. The main theorem of section 5 is the following:

Theorem 5 (Osgood condition for global well posedness). Suppose K is a natural potential.

(i) If K is repulsive in the short range, then the aggregation equation is globally well posed in P2(Rd) ∩
Lp(Rd), p > d/(d− 1).

(ii) If K is strictly attractive in the short range, the aggregation equation is globally well posed in P2(Rd)∩
Lp(Rd), p > d/(d− 1), if and only if

r 7→ 1
k′(r)

is not integrable at 0. (1.9)
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By globally well posed in P2(Rd) ∩ Lp(Rd), we mean that for any initial data in P2(Rd) ∩ Lp(Rd) the
unique solution of the aggregation equation will exist for all time and will stay in P2(Rd) ∩ Lp(Rd) for all
time.Notice that the exponent d/(d− 1) is not sharp in this theorem.

Condition (1.9) will be refered as the Osgood condition. It is easy to understand why the Osgood
condition is relevant while studying blowup: the quantity

T (d) =
∫ d

0

dr

k′(r)

can be thought as the amount of time it takes for a particle obeying the ODE Ẋ = −∇K(X) to reach the
origin if it starts at a distance d from it. For a potential satisfying the Osgood condition, T (d) = +∞, which
means that the particle can not reach the origin in finite time. The Osgood condition was already shown
in [5] to be necessary and sufficient for global well posedness of L∞-solutions. Extension to Lp requires Lp

estimates rather than L∞ estimates. See also [43] for an example of the use of the Osgood condition in the
context of the Euler equations for incompressible fluid.

The “only if” part of statement (ii) was proven in [5] and [16]. In these two works it was shown that
if (1.9) is not satisfied, then compactly supported solutions will collapse into a point mass – and therefore
leave Lp – in finite time. In section 5 we prove statement (i) and the ’if’ part of statement (ii).

2 Existence of Lp-solutions

In this section we show that if the interaction potential satisfies

∇K ∈W 1,q(Rd), 1 < q < +∞, (2.10)

and if the initial data is nonnegative and belongs to Lp(Rd) (p and q are Hölder conjugates) then there exists
a solution to the aggregation equation. Moreover, either this solution exists for all times, or its Lp-norm
blows up in finite time. The duality between Lp and Lq guarantees enough smoothness in the velocity field
v = −∇K ∗ u to define characteristics. We use the characteristics to construct a solution. The argument
is inspired by the existence of L∞ solutions of the incompressible 2D Euler equations by Yudovich [44] and
of L∞ solutions of the aggregation equation [4]. Section 3 proves uniqueness provided u ∈ P2. We prove in
Theorem 18 of the present section that if u0 ∈ P2 then the solution stays in P2. Finally we prove that if in
addition to (2.10), we have

ess sup ∆K < +∞, (2.11)

then the solution constructed exists for all time.
Most of the section is devoted to the proof of the following theorem:

Theorem 6 (Local existence). Consider 1 < q < ∞ and p its Hölder conjugate. Suppose ∇K ∈ W 1,q(Rd)
and suppose u0 ∈ Lp(Rd) is nonnegative. Then there exists a time T ∗ > 0 and a nonnegative function
u ∈ C([0, T ∗], Lp(Rd)) ∩ C1([0, T ∗],W−1,p(Rd)) such that

u′(t) + div
(
u(t) v(t)

)
= 0 ∀t ∈ [0, T ∗], (2.12)

v(t) = −u(t) ∗ ∇K ∀t ∈ [0, T ∗], (2.13)
u(0) = u0. (2.14)

Moreover the function t→ ‖u(t)‖p
Lp is differentiable and satisfies

d

dt
{‖u(t)‖p

Lp} = −(p− 1)
∫

Rd

u(t, x)p div v(t, x) dx ∀t ∈ [0, T ∗]. (2.15)

The choice of the space

Yp := C([0, T ∗], Lp(Rd)) ∩ C1([0, T ∗],W−1,p(Rd))

is motivated by the fact that, if u ∈ Yp and ∇K ∈W 1,q, then the velocity field is automatically C1 in space
and time:
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Lemma 7. Consider 1 < q <∞ and p its Hölder conjugate. If ∇K ∈W 1,q(Rd) and u ∈ Yp then

u ∗ ∇K ∈ C1
(
[0, T ∗]× Rd

)
and ‖u ∗ ∇K‖C1([0,T∗]×Rd) ≤ ‖∇K‖W 1,q(Rd) ‖u‖Yp

(2.16)

where the norm ‖·‖C1([0,T∗]×Rd) and ‖·‖Yp
are defined by

‖v‖C1([0,T∗]×Rd) = sup
[0,T∗]×Rd

|v|+ sup
[0,T∗]×Rd

∣∣∣∣∂v∂t
∣∣∣∣+ d∑

i=1

sup
[0,T∗]×Rd

∣∣∣∣ ∂v∂xi

∣∣∣∣ , (2.17)

‖u‖Yp
= sup

t∈[0,T∗]

‖u(t)‖Lp(Rd) + sup
t∈[0,T∗]

‖u′(t)‖W−1,p(Rd) . (2.18)

Proof. Recall that the convolution between a Lp-function and a Lq-function is continuous and supx∈Rd |f ∗
g(x)| ≤ ‖f‖Lp ‖g‖Lq Therefore, since ∇K and ∇Kxi are in Lq, the mapping

f 7→ ∇K ∗ f

is a bounded linear transformation from Lp(Rd) to C1(Rd), where C1(Rd) is endowed with the norm

‖f‖C1 = sup
x∈Rd

|f(x)|+
d∑

i=1

sup
x∈Rd

| ∂f
∂xi

(x)|.

Since u ∈ C([0, T ∗], Lp) it is then clear that u ∗∇K ∈ C([0, T ∗], C1). In particular w(t, x) = (u(t) ∗ ∇K) (x)
and ∂w

∂xi
(t, x) are continuous on [0, T ∗] × Rd. Let us now show that ∂w

∂t (t, x) exists and is continuous on
[0, T ∗]× Rd. Since u′(t) ∈ C([0, T ∗],W−1,p) and ∇K ∈W 1,q, we have

∂w

∂t
(t, x) = − (u′(t) ∗ ∇K) (x) = −〈u′(t), τx∇K〉

where 〈 , 〉 denote the pairing between the two dual spaces W−1,p(Rd) and W 1,q(Rd), and τx denote the
translation by x. Since x 7→ τx∇K is a continuous mapping from Rd to W 1,q it is clear that ∂w

∂t (t, x) is
continuous with respect to space. The continuity with respect to time come from the continuity of u′(t) with
respect to time. Inequality (2.16) is easily obtained.

Remark 8. Let us point out that (2.12) indeed makes sense, when understood as an equality in W−1,p .
Since v ∈ C([0, T ∗], C1(Rd)) one can easily check that uv ∈ C([0, T ∗], Lp(Rd)). Also recall that the injection
i : Lp(Rd) → W−1,p(Rd) and the differentiation ∂xi

: Lp(Rd) → W−1,p(Rd) are bounded linear operators.
Therefore it is clear that both u and div(uv) belong to C([0, T ∗],W−1,p(Rd)). Equation (2.12) has to be
understand as an equality in W−1,p.

The rest of this section is organized as follows. First we give the basic a priori estimates in subsection 2.1.
Then, in subsection 2.2, we consider a mollified and cutted-off version of the aggregation equation for which
we have global existence of smooth and compactly supported solutions. In subsection 2.3 we show that the
characteristics of this approximate problem are uniformly Lipschitz continuous on [0, T ∗]×Rd, where T ∗ > 0
is some finite time depending on ‖u0‖Lp . In subsection 2.4 we pass to the limit in C([0, T ∗], Lp). To do this
we need the uniform Lipschitz bound on the characteristics together with the fact that the translation by
x, x 7→ τxu0, is a continuous mapping from Rd to Lp(Rd). In subsection 2.5 we prove three theorems. We
first prove continuation of solutions. We then prove that Lp-solutions which start in P2 stay in P2 as long
as they exist. And finally we prove global existence in the case where ∆K is bounded from above.

2.1 A priori estimates

Suppose u ∈ C1
c ((0, T ) × Rd) is a nonnegative function which satisfies (2.12)-(2.13) in the classical sense.

Suppose also that K ∈ C∞c (Rd). Integrating by part, we obtain that for any p ∈ (1,+∞):

d

dt

∫
Rd

u(t, x)pdx = −(p− 1)
∫

Rd

u(t, x)p div v(t, x)dx ∀t ∈ (0, T ). (2.19)
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As a consequence we have:

d

dt
‖u(t)‖p

Lp ≤ (p− 1)‖div v(t)‖L∞‖u(t)‖p
Lp ∀t ∈ (0, T ), (2.20)

and by Hölder’s inequality:
d

dt
‖u(t)‖p

Lp ≤ (p− 1)‖∆K‖Lq‖u(t)‖p+1
Lp . (2.21)

We now derive L∞ estimates for the velocity field v = −∇K ∗ u and its derivatives. Hölder’s inequality
easily gives

|v(t, x)| ≤ ‖u(t)‖Lp‖∇K‖Lq ∀(t, x) ∈ (0, T )× Rd, (2.22)∣∣∣∣∂vj

∂xi
(t, x)

∣∣∣∣ ≤ ‖u(t)‖Lp

∥∥∥∥ ∂2K

∂xidxj

∥∥∥∥
Lq

∀(t, x) ∈ (0, T )× Rd. (2.23)

Since ∂v
∂t = −∇K ∗ ∂u

∂t = ∇K ∗ div(uv) = ∆K ∗ uv we have∣∣∣∣∂v∂t (t, x)
∣∣∣∣ ≤ ‖u(t)v(t)‖Lp‖∆K‖Lq ≤ ‖u(t)‖Lp‖v(t)‖L∞‖∆K‖Lq ,

which in light of (2.22) gives∣∣∣∣∂v∂t (t, x)
∣∣∣∣ ≤ ‖u(t)‖2

Lp‖∇K‖Lq‖∆K‖Lq ∀(t, x) ∈ (0, T )× Rd. (2.24)

2.2 Approximate smooth compactly supported solutions

In this section we deal with a smooth version of equation (2.12)-(2.14). Suppose u0 ∈ Lp(Rd), 1 < p < +∞,
and ∇K ∈W 1,q(Rd). Consider the approximate problem

ut + div(uv) = 0 in (0,+∞)× Rd, (2.25)

v = −∇Kε ∗ u in (0,+∞)× Rd, (2.26)
u(0) = uε

0, (2.27)

where Kε = JεK, u
ε
0 = Jεu0 and Jε is an operator which mollifies and cuts-off, Jεf = (fMRε) ∗ ηε where

ηε(x) is a standard mollifier:

ηε(x) =
1
εd
η
(x
ε

)
, η ∈ C∞c (Rd), η ≥ 0,

∫
Rd

η(x)dx = 1,

and MRε(x) is a standard cut-off function: MRε(x) = M( x
Rε

), Rε →∞ as ε→ 0,

M ∈ C∞c (Rd),

 M(x) = 1 if |x| ≤ 1,
0 < M(x) < 1 if 1 < |x| < 2,
M = 0 if 2 ≤ |x|.

Let τx denote the translation by x, i.e.:
τxf(y) := f(y − x).

It is well known that given a fixed f ∈ Lr(Rd), 1 < r < +∞, the mapping x 7→ τxf from Rd to Lr(Rd)
is uniformly continuous. In (iv) of the next lemma we show a slightly stronger result which will be needed
later.

Lemma 9 (Properties of Jε). Suppose f ∈ Lr(Rd), 1 < r < +∞, then

6



(i) Jεf ∈ C∞c (Rd),

(ii) ‖Jεf‖Lr ≤ ‖f‖Lr ,

(iii) limε→0 ‖Jεf − f‖Lr = 0,

(iv) The family of mappings x 7→ τxJεf from Rd to Lr(Rd) is equicontinuous, i.e.: for each δ > 0, there is
a η > 0 independent of ε such that ‖τxJεf − τyJεf‖Lr ≤ δ if |x− y| ≤ η.

Proof. Statements (i) and (ii) are obvious. If f is compactly supported, one can easily prove (iii) by noting
that fMRε

= f for ε small enough. If f is not compactly supported, (iii) is obtained by approximating f by
a compactly supported function and by using (ii). Let us now turn to the proof of (iv). Using (ii) we obtain

‖τxJεf − Jεf‖Lr ≤ ‖(τxMRε
)(τxf)−MRε

f)‖Lr

≤ ‖τxMRε
−MRε

‖L∞‖τxf‖Lr + ‖MRε
‖L∞‖τxf − f‖Lr .

Because x 7→ τxf is continuous, the second term can be made as small as we want by choosing |x| small
enough. Since ‖τxMRε

−MRε
‖L∞ ≤ ‖∇MRε

‖L∞ |x| ≤ 1
Rε
‖∇M‖L∞ |x|, the first term can be made as small

as we want by choosing |x| small enough and independently of ε.

Proposition 10 (Global existence of smooth compactly-supported approximates). Given ε, T > 0, there
exists a nonnegative function u ∈ C1

c ((0, T )× Rd) which satisfy (2.27) in the classical sense.

Proof. Since uε
0 and Kε belong to C∞c (Rd), we can use theorem 3 p. 1961 of [28] to get the existence of a

function uε satisfying

uε ∈ L∞(0, T ;Hk), uε
t ∈ L∞, (0, T ;Hk−1) for all k, (2.28)

uε
t + div (uε(−∇Kε ∗ uε)) = 0 in (0, T )× Rd, (2.29)
uε(0) = uε

0, (2.30)

uε(t, x) ≥ 0 for a.e. (t, x) ∈ (0, T ),×Rd. (2.31)

Statement (2.28) implies that uε ∈ C((0, T );Hk−1). Using the continuous embedding Hk−1(Rd) ⊂ C1(Rd)
for k large enough we find that uε and uε

xi
, 1 ≤ i ≤ d, are continuous on (0, T )× Rd. Finally, (2.29) shows

that uε
t is also continuous on (0, T )×Rd. We have proven that uε ∈ C1((0, T )×Rd). It is then obvious that

vε = −∇Kε ∗ uε ∈ C1((0, T )× Rd). Note moreover that

|vε(x, t)| ≤ ‖uε‖L∞(0,T ;L2)‖∇Kε‖L2

for all (t, x) ∈ (0, T ) × Rd. This combined with the fact that vε is in C1 shows that the characteristics are
well defined and propagate with finite speed. This proves that uε is compactly supported in (0, T ) × Rd

(because uε
0 is compactly supported in Rd).

2.3 Study of the velocity field and the induced flow map

Note that Kε and uε are in the right function spaces so that we can apply to them to the a priori estimates
derived in section 2.1. In particular we have:

d

dt
‖uε(t)‖Lp ≤ (p− 1)‖∆K‖Lq‖uε(t)‖p+1

Lp ,

‖uε(0)‖Lp ≤ ‖u0‖Lp .

Using Gronwall inequality and the estimate on the supremum norm of the derivatives derived in section 2.1
we obtain:
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Lemma 11 (uniform bound for the smooth approximates). There exists a time T ∗ > 0 and a constant
C > 0, both independent of ε, such that

‖uε(t)‖Lp ≤ C ∀t ∈ [0, T ∗], (2.32)
|vεt, x)|, |vε

xi
(t, x)|, |vε

t (t, x)| ≤ C ∀(t, x) ∈ [0, T ∗]× Rd. (2.33)

From (2.33) it is clear that the family {vε} is uniformly Lipschitz on [0, T ∗]×Rd, with Lipschitz constant
C. We can therefore use the Arzela-Ascoli Theorem to obtain the existence of a continuous function v(t, x)
such that

vε → v uniformly on compact subset of [0, T ∗]× Rd. (2.34)

It is easy to check that this function v is also Lipschitz continuous with Lipschitz constant C. The Lipschitz
and bounded vector field vε generates a flow map Xε(t, α), t ∈ [0, T ∗], α ∈ Rd:

∂Xε(t, α)
∂t

= vε(Xε(t, α), t),

Xε(0, α) = α,

where we denote by Xt
ε : Rd → Rd the mapping α 7→ Xε(t, α) and by X−t

ε the inverse of Xt
ε .

The uniform Lipschitz bound on the vector field implies uniform Lipschitz bound on the flow map and
its inverse (see for example [4] for a proof of this statement) we therefore have:

Lemma 12 (uniform Lipschitz bound on Xt
ε and X−t

ε ). There exists a constant C > 0 independent of ε
such that:

(i) for all t ∈ [0, T ∗] and for all x1, x2 ∈ Rd

|Xt
ε(x1)−Xt

ε(x2)| ≤ C|x1 − x2| and |X−t
ε (x1)− x−t

ε (x2)| ≤ C|x1 − x2|,

(ii) for all t1, t2 ∈ [0, T ∗] and for all x ∈ Rd

|Xt1
ε (x)−Xt2

ε (x)| ≤ C|t1, t2| and |X−t1
ε (x)−X−t2

ε (x)| ≤ C|t1 − t2|.

The Arzela-Ascoli Theorem then implies that there exists mapping Xt and X−t such that

Xt
εk

(x) → Xt(x) uniformly on compact subset of [0, T ∗]× Rd,

X−t
εk

(x) → X−t(x) uniformly on compact subset of [0, T ∗]× Rd.

Moreover it is easy to check that Xt and X−t inherit the Lipschitz bounds of Xt
ε and X−t

ε .
Since the mapping Xt : Rd → Rd is Lipschitz continuous, by Rademecher’s Theorem it is differentiable

almost everywhere. Therefore it makes sense to consider its Jacobian matrix DXt(α). Because of Lemma
12-(i) we know that there exists a constant C independent of t and ε such that

sup
αεRd

|det DXt(α)| ≤ C and sup
α∈Rd

|det DXt
ε(α)| ≤ C.

By the change of variable we then easily obtain the following Lemma:

Lemma 13. The mappings f 7→ f ◦X−t and f 7→ f ◦X−t
ε , t ∈ [0, T ∗], ε > 0, are bounded linear operators

from Lp(Rd) to Lp(Rd). Moreover there exists a constant C∗ independent of t and ε such that

‖f ◦X−t‖Lp ≤ C∗‖f‖Lp and ‖f ◦X−t
ε ‖Lp ≤ C∗‖f‖Lp for all f ∈ Lp(Rd).
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Note that Lemma 12-(ii) implies

|Xt
ε(α)− α| ≤ Ct for all (t, α) ∈ [0, T ∗)× Rd,

and therefore
|Xt(α)− α| ≤ Ct for all (t, α) ∈ [0, T ∗)× Rd.

This gives us the following lemma:

Lemma 14. let Ω be a compact subset of Rd, then

Xt
ε(Ω) ⊂ Ω + Ct and Xt(Ω) ⊂ Ω + Ct,

where the compact set Ω + Ct is defined by

Ω + Ct := {x ∈ Rd : dist (x,Ω) ≤ Ct}.

2.4 Convergence in C([0, T ∗), Lp)

Since uε and vε = uε ∗ ∇K are C1 functions which satisfy

uε
t + vε · ∇uε = −(div vε)uε and uε(0) = uε

0 (2.35)

we have the simple representation formula for uε(t, x), t ∈ [0, T ∗), x ∈ Rd:

uε(t, x) = uε
0(X

−t
ε (x))e−

R t
0 div vε(s,X−(t−s)

ε (x))ds = uε
0(X

−t
ε (x)) aε(t, x).

Lemma 15. There exists a function a(t, x) ∈ C1([0, T ∗)× Rd) and a sequence εk → 0 such that

aεk(t, x) → a(t, x) uniformly on compact subset of [0, T ∗]× Rd. (2.36)

Proof. By the Arzela-Ascoli Theorem, it is enough to show that the family

bε(t, x) :=
∫ t

0

div vε(s,X−(t−s)
ε (x))dx

is equicontinuous and uniformly bounded. The uniform boundedness simply come from the fact that

|div vε| = |uε ∗∆Kε| ≤ ‖uε‖Lp‖∆K‖Lq .

Let us now prove equicontinuity in space, i.e., we want to prove that for each δ > 0, there is η > 0 independent
of ε and t such that

|bε(t, x1)− bε(t, x2)| ≤ δ if |x1 − x2| ≤ η.

First, note that by Hölder’s inequality we have

|bε(t, x1)− bε(t, x2)| ≤
∫ t

0

‖uε(s)‖Lp‖τξJε∆K − τζJε∆K‖Lq ds

where ξ stands for X−(t−s)
ε (x1) and ζ for X−(t−s)

ε (x2). Then equicontinuity in space is a consequence of
Lemma 9 (iv) together with the fact that

|X−(t−s)
ε (x1)−X−(t−s)

ε (x2)| ≤ C|x1 − x2|

where C is independent of t, s and ε.
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Let us finally prove equicontinuity in time. First not that, assuming that t1 < t2,

bε(t1, x)− bε(t2, x) =
∫ t1

0

div vε(s,X−(t1−s)(x))− div vε(s,X−(t2−s)(x))ds

−
∫ t2

t1

div vε(s,X−(t2−s)
ε (x))ds.

Since div vε is uniformly bounded we clearly have∣∣∣∣∫ t2

t1

div vε(s,X−(t2−s)
ε (x))ds

∣∣∣∣ ≤ C|t1 − t2|.

The other term can be treated exactly as before, when we proved equicontinuity in space.
Recall that the function

uε(t, x) = uε
0(X

−t
ε (x)) aε(t, x)

satisfies the ε-problem (2.27). We also have the following convergences:

uε
0 → u0 in Lp(Rd), (2.37)

X−t
εk

(x) → X−t(x) unif. on compact subset of [0, T ∗]× Rd, (2.38)

aεk(t, x) → a(t, x) unif. on compact subset of [0, T ∗]× Rd, (2.39)
vεk(t, x) → v(t, x) unif. on compact subset of [0, T ∗]× Rd. (2.40)

Define the function
u(t, x) := u0(X−t(x)) a(t, x). (2.41)

Convergence (2.37)-(2.40) together with Lemma 13 and 14 allow us to prove the following proposition.

Proposition 16. : u, uε, uv and uεvε all belong to the space C([0, T ∗), Lp(Rd)). Moreover we have:

uεk → u in C([0, T ∗), Lp), (2.42)
uεkvεk → uv in C([0, T ∗), Lp). (2.43)

Proof. Straight forward, see appendix at the end of the paper.
We now turn to the proof of the main theorem of this section.

Proof of Theorem 6. Let φ ∈ C∞c (0, T ∗) be a scalar test function. It is obvious that uε and vε satisfy:

−
∫ T∗

0

uε(t)φ′(t) dt+
∫ T∗

0

div
(
uε(t) vε(t)

)
φ(t) dt = 0, (2.44)

vε(t, x) = (uε(t) ∗ ∇Kε)(x) for all (t, x) ∈ [0, T ∗]× Rd, (2.45)
uε(0) = uε

0, (2.46)

where the integrals in (2.44) are the integral of a continuous function from [0, T ∗] to the Banach space
W−1,p(Rd). Recall that the injection i : Lp(Rd) → W−1,p(Rd) and the differentiation ∂xi : Lp(Rd) →
W−1,p(Rd) are bounded linear operator. Therefore (2.42) and (2.43) imply

uεk → u in C([0, T ∗],W−1,p(Rd)),

div [uεkvεk ] → div [uv] in C([0, T ∗],W−1,p(Rd)), (2.47)

hich is more than enough to pass to the limit in relation (2.44). To pass to the limit in (2.45), it is enough
to note that for all (t, x) ∈ [0, T ∗]× Rd we have

|(uε(t) ∗ ∇Kε)− (u(t) ∗ ∇K)(x)| ≤ ‖uε(t)− u(t)‖Lp‖∇Kε‖Lq + ‖u(t)‖Lp‖∇Kε −∇K‖Lq , (2.48)
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and finally it is trivial to pass to the limit in relation (2.46).
Equation (2.44) means that the continuous function u(t) (continuous function with values in W−1,p(Rd))

satisfies (2.12) in the distributional sense. But (2.12) implies that the distributional derivative u′(t) is itself
a continuous function with value in W−1,p(Rd). Therefore u(t) is differentiable in the classical sense, i.e, it
belongs to C1([0, T ∗],W−1,p(Rd)), and (2.12) is satisfied in the classical sense.

We now turn to the proof of (2.15). The uε’s satisfies (2.19). Integrating over [0, t], t < T ∗, we get

‖uε(t)‖p
Lp = ‖uε

0‖
p
Lp − (p− 1)

∫ t

0

∫
Rd

uε(s, x)p div vε(s, x) dxdt. (2.49)

Proposition 16 together with the general inequality

‖|f |p − |g|p‖L1 ≤ 2p
(
‖f‖p−1

Lp + ‖g‖p−1
Lp

)
‖f − g‖Lp (2.50)

implies that

(uε)p, up ∈ C([0, T ∗], L1(Rd)), (2.51)

(uεk)p → up ∈ C([0, T ∗], L1(Rd)). (2.52)

On the other hand, replacing ∇K by ∆K in (2.48) we see right away that

div v, div vε ∈ C([0, T ∗], L∞(Rd)), (2.53)

div vεk → div v in C([0, T ∗], L∞(Rd)). (2.54)

Combining (2.51)-(2.54) we obtain

up div v, (uε)p div vε ∈ C([0, T ∗], L1(Rd)), (2.55)

(uεk)p div vεk → up div v in C([0, T ∗], L1(Rd)). (2.56)

So we can pass to the limit in (2.49) to obtain

‖u(t)‖p
Lp = ‖u0‖p

Lp − (p− 1)
∫ t

0

∫
Rd

u(s, x)p div v(s, x) dxdt.

But (2.55) implies that the function t →
∫

Rd u(t, x)p div v(t, x) dx is continuous, therefore the function
t→ ‖u(t)‖p

Lp is differentiable and satisfies (2.15).

2.5 Continuation and conserved properties

Theorem 17 (Continuation of solutions). The solution provided by Theorem 6 can be continued up to a
time Tmax ∈ (0,+∞]. If Tmax < +∞, then limt→Tmax supτ∈[0,t] ‖u(τ)‖Lp = +∞

Proof. The proof is standard. One just needs to use the continuity of the solution with respect to time.

Theorem 18 (Conservation of mass/ second moment). (i) Under the assumption of Theorem 6, and if we
assume moreover that u0 ∈ L1(Rd), then the solution u belongs to C([0, T ∗], L1(Rd)) and satisfies ‖u(t)‖L1 =
‖u0‖L1 for all t ∈ [0, T ∗].

(ii) Under the assumption of Theorem 6, and if we assume moreover that u0 has bounded second moment,
then the second moment of u(t) stays bounded for all t ∈ [0, T ∗].

Proof. We just need to revisit the proof of Proposition 16. Since u0 ∈ L1 ∩ Lp it is clear that

uε
0 = Jεu0 → u0 in L1(Rd) ∩ Lp(Rd). (2.57)
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Using convergences (2.57), (2.38), (2.39) and (2.40) we prove that

uεk → u in C([0, T ∗], L1 ∩ Lp). (2.58)

The proof is exactly the same than the one of Proposition 16 . Since the aggregation equation is a conser-
vation law, it is obvious that the smooth approximates satisfy ‖uε(t)‖L1 = ‖uε

0‖L1 . Using (2.58) we obtain
‖u(t)‖L1 = ‖u0‖L1 .

We now turn to the proof of (ii). Since the smooth approximates uε have compact support, their second
moment is clearly finite, and the following manipulation are justified:

d

dt

∫
Rd

|x|2uε(t, x)dx = 2
∫

Rd

~x · vε duε(x) ≤ 2
(∫

Rd

|x|2uε(t, x)dx
)1/2(∫

Rd

|vε|2uε(t, x)dx
)1/2

≤ C

(∫
Rd

|x|2uε(t, x)dx
)1/2

. (2.59)

Assume now that the second moment of u0 is bounded. A simple computation shows that if ηε is radially
symmetric, then |x|2 ∗ ηε = |x|2 + second moment of ηε. Therefore∫

Rd

|x|2uε
0(x)dx ≤

∫
Rd

|x|2 ∗ ηε(x) u0(x)dx

≤
∫

Rd

|x|2u0(x)dx+
∫

Rd

|x|2ηε(x)dx

≤
∫

Rd

|x|2u0(x)dx+ 1 for ε small enough. (2.60)

Inequality (2.60) come from the fact that the second moment of ηε goes to 0 as ε goes to 0. Estimate (2.59)
together with (2.60) provide us with a uniform bound of the second moment of the uε(t) which only depends
the second moment of u0. Since uε converges to u in L1, we obviously have, for a given R and t:∫

|x|≤R

|x|2u(t, x)dx = lim
ε→0

∫
|x|≤R

|x|2uε(t, x)dx ≤ lim sup
ε→0

∫
Rd

|x|2uε(t, x)dx.

Since R is arbitrary, this show that the second moment of u(t, ·) is bounded for all t for which the solution
exists.

Combining Theorem 17 and 18 together with equality (2.15) we get:

Theorem 19 (Global existence when ∆K is bounded from above). Under the assumption of Theorem 6,
and if we assume moreover that u0 ∈ L1(Rd) and ess sup ∆K < +∞, then the solution u exists for all times
(i.e.: Tmax = +∞).

Proof. Equality (2.15) can be written

d

dt
{‖u(t)‖p

Lp} = (p− 1)
∫

Rd

u(t, x)p(u(t) ∗∆K)(x) dx. (2.61)

Since ∆K is bounded from above we have

(u(s) ∗∆K)(x) ≤ (ess sup ∆K)
∫

Rd

u(s, x)dx = (ess sup ∆K) ‖u0‖L1 . (2.62)

Combining (2.61), (2.62) and Gronwall inequality gives

‖u(t)‖p
Lp ≤ ‖u0‖p

Lp e
(p−1)(ess sup ∆K)‖u0‖L1 t,

so the Lp-norm can not blow-up in finite time which, because of Theorem 17, implies global existence.
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3 Uniqueness of solutions in P2(Rd) ∩ Lp(Rd)

In this section we use an optimal transport argument to prove uniqueness of solutions in P2(Rd) ∩ Lp(Rd),
when ∇K ∈ W 1,q for 1 < q < ∞ and p its Hölder conjugate. To do that, we shall follow the steps in [19],
where the authors extend the work of Loeper [34] to prove, among other, uniqueness of P2 ∩ L∞-solutions
of the aggregation equation when the interaction potential K has a Lipschitz singularity at the origin.

One can easily check that solutions of the aggregation equation constructed in previous sections are
distribution solutions, i.e. they satisfy∫ T

0

∫
RN

(
∂ϕ

∂t
(t, x) + v(t, x) · ∇ϕ(t, x)

)
u(t, x) dx dt =

∫
RN

ϕ(0, x)u0(x) dx (3.63)

for all ϕ ∈ C∞0 ([0, T ∗)×RN )). A function u(t, x) satisfying (3.63) is said to be a distribution solution to the
continuity equation (2.12) with the given velocity field v(t, x) and initial data u0(x). In fact, it is uniquely
characterized by ∫

B

u(t, x) dx =
∫

X−t(B)

u0(x) dx

for all measurable set B ⊂ Rd, see [1]. Here Xt : Rd → Rd is the flow map associated with the velocity
field v(t, x) and X−t is its inverse. In the optimal transport terminology this is equivalent to say that Xt

transports the measure u0 onto u(t) (u(t) = Xt#u0).

We recall, for the sake of completeness, [19, Theorem 2.4], where several results of [2, 35, 22, 1] are put
together.

Theorem 20 ([19]). Let ρ1 and ρ2 be two probability measures on RN , such that they are absolutely con-
tinuous with respect to the Lebesgue measure and W2(ρ1, ρ2) < ∞, and let ρθ be an interpolation measure
between ρ1 and ρ2, defined as in [34] by

ρθ = ((θ − 1)T + (2− θ)IRN )#ρ1 (3.64)

for θ ∈ [1, 2], where T is the optimal transport map between ρ1 and ρ2 due to Brenier’s theorem [12] and IRN

is the identity map. Then there exists a vector field νθ ∈ L2(RN , ρθ dx) such that

i.
d

dθ
ρθ + div(ρθνθ) = 0 for all θ ∈ [1, 2].

ii.
∫

RN

ρθ|νθ|2 dx = W 2
2 (ρ1, ρ2) for all θ ∈ [1, 2].

iii. We have the Lp-interpolation estimate

‖ρθ‖Lp(RN ) ≤ max
{
‖ρ1‖Lp(RN ), ‖ρ2‖Lp(RN )

}
for all θ ∈ [1, 2].

Here, W2(f, g) is the Euclidean Wasserstein distance between two probability measures f, g ∈ P(Rn),

W2(f, g) = inf
Π∈Γ

{∫∫
Rn×Rn

|v − x|2 dΠ(v, x)
}1/2

, (3.65)

where Π runs over the set of joint probability measures on Rn × Rn with marginals f and g.
Now we are ready to prove the uniqueness of solutions to the aggregation equation.

Theorem 21 (Uniqueness). Let u1, u2 be two bounded solutions of equation (2.12) in the interval [0, T ∗]
with initial data u0 ∈ P2(Rd) ∩ Lp(Rd), 1 < p < ∞ and assume that v is given by v = −∇K ∗ u, with K
such that ∇K ∈W 1,q(RN ), p and q conjugates. Then u1(t) = u2(t) for all 0 ≤ t ≤ T ∗.
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Proof. Consider two characteristics flow maps, X1 and X2, such that ui = Xi#u0, i = 1, 2. Define the
quantity

Q(t) :=
1
2

∫
RN

|X1(t)−X2(t)|2u0(x) dx, (3.66)

From [19, Remark 2.3], we have W 2
2 (u1(t), u2(t)) ≤ 2Q(t) which we now prove is zero for all times, implying

that u1 = u2. Now, to see that Q(t) ≡ 0 we compute the derivative of Q with respect to time.

∂Q

∂t
=
∫

RN

〈X1 −X2, v1(x1)− v2(x2)〉ρ0(x)dx

=
∫

RN

〈X1 −X2, v1(x1)− v1(x2)〉ρ0(x)dx +
∫

RN

〈X1 −X2, v1(x2)− v2(x2)〉ρ0(x)dx

where the time variable has been omitted for clarity. The above argument is justified because, due to Lemma
7, the velocity field is C1 and bounded. Taking into account the Lipschitz properties of v into the first integral
and using Hölder inequality in the second one, we can write

∂Q

∂t
≤ CQ(t) +Q(t)

1
2

(∫
RN

|u1 (X2(t, x))− u2 (X2(t, x)) |2ρ0(x)dx
) 1

2

= CQ(t) +Q(t)
1
2 I(t)

1
2 . (3.67)

Now, in order to estimate I(t), we use that the solutions are constructed transporting the initial data through
their flow maps, so we can write it as

I(t) =
∫

RN

|∇K ∗ (u1 − u2) [X2(t, x)] |2u0(x) dx =
∫

RN

|∇K ∗ (u1 − u2) (x)|2u2(x) dx.

Thus, taking an interpolation measure ρθ between ρ1 and ρ2 and using Hölder inequality and first statement
of Theorem 20 we can get a bound for I(t)

I(t) ≤

(∫
RN

∣∣∣∣∇K ∗
(∫ 2

1

∂θuθ

)∣∣∣∣2q
)1/q

‖u2(t)‖Lp (3.68)

≤
∫ 2

1

‖D2K ∗ (νθuθ)‖2
L2qdθ ‖u2(t)‖Lp , (3.69)

where νθ ∈ L2(RN , υθdx) is a vector field, as described in Theorem 20. Let us work on the first term of the
right hand side. Using Young inequality, for α such that 1 + 1

2q = 1/q + 1/α we obtain∫ 2

1

‖D2K ∗ (νθuθ)‖2
L2qdθ ≤

∫ 2

1

‖D2K‖2
Lq‖νθuθ‖2

Lαdθ. (3.70)

Note that q ∈ (1,+∞) implies α ∈ (1, 2). Therefore we can use Hölder inequality with conjugate exponents
2/(2− α) and 2/α to obtain

‖νθuθ‖2
Lα =

(∫
|uθ|α/2 |uθ|α/2 |νθ|α

)2/α

≤
(∫

|uθ|α/(2−α)

)(2−α)/α(∫
|uθ| |νθ|2

)
(3.71)

whence, since we can see from simple algebraic manipulations with the exponents that α
2−α = p, the conjugate

of q, ∫ 2

1

‖D2K ∗ (νθuθ)‖2
L2qdθ ≤ ‖D2K‖2

Lq

∫ 2

1

‖uθ‖Lp

(∫
|uθ| |νθ|2

)
dθ. (3.72)

Therefore, using statements (ii) and (iii) of Theorem 20 we obtain

I(t) ≤ ‖u2‖Lp max{‖u1‖Lp , ‖u2‖Lp}‖D2K‖2
qW

2
2 (u1, u2) ≤ CQ(t). (3.73)
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Finally, going back to (3.67) we see that dQ
dt ≤ Q(t), whence, since Q(0) = 0, we can conclude Q(t) ≡ 0 and

thus u1 = u2. The limiting case p = ∞ is the one studied in [19].

Remark 22. Note that in order to make the above argument rigorous, we need the gradient of the kernel to
be at least C1 when estimating I. It is not the case here, but we can still obtain the estimate using smooth
approximations. let us define

Iε(t) =
∫

RN

|∇Kε ∗ (u1 − u2) [X2(t, x)] |2u0(x) dx

where Kε = JεK (see section 2.2). Since ∇Kε converges to ∇K in Lq, it is clear that ∇Kε ∗ (u1 − u2)
converges pointwise to ∇K ∗ (u1 − u2). Using the dominated convergence theorem together with the fact that
‖∇Kε ∗ (u1 − u2)‖L∞ is uniformly bounded we get that Iε(t) converges to I(t) for every t ∈ (0, T ).

On the other hand, due to the definition of uθ we can write the difference u2 − u1 as the integral between
1 and 2 of ∂θuθ with respect to θ. Now, since the equation ∂θuθ + div(uθνθ) = 0 is satisfied in the sense of
distribution, and ∇Kε ∈ C∞c (Rd), we can replace ∂θuθ for div(νθuθ) and pass the divergence to the other
term of the convolution, so that the equality∫ 2

1

(D2Kε ∗ νθuθ)(x)dθ = ∇Kε ∗ (u2 − u1)(x)

holds for all x ∈ Rd. The rest of the manipulations performed above are straight forward with Kε. passing
to the limit in (3.73) is easy since D2Kε converges to D2K in Lq.

4 Instantaneous mass concentration when K(x) = |x|
In this section we consider the aggregation equation with an interaction potential equal to |x| in a neighbor-
hood of the origin and whose gradient is compactly supported (or decay exponentially fast at infinity). The
Laplacian of this kind of potentials has a 1/|x| singularity at the origin, therefore ∇K belongs to W 1,q(Rd)
if and only if q ∈ [1, d). The Hölder conjugate of d is d

d−1 . Using the theory developed in section 2 and 3 we
therefore get local existence and uniqueness of solutions in P2(Rd) ∩ Lp(Rd) for all p > d

d−1 . Here we study
the case where the initial data is in P2(Rd) ∩ Lp(Rd) for p < d

d−1 .
Given p < d

d−1 we exhibit initial data in P2(Rd)∩Lp(Rd) for which the solution instantaneously concen-
trates mass at the origin (i.e. a delta Dirac at the origin is created instantaneously). This shows that the
existence theory developed in section 2 and 3 is in some sense sharp. This also shows that it is possible for
a solution to lose instantaneously its absolute continuity with respect to the Lebesgue measure.

The solutions constructed in this section have compact support, hence we can simply consider K(x) = |x|
without changing the behavior of the solution, given that if the solution has a small enough support, it only
feels the part of the potential around the origin.

We build on the work developed in [16] on global existence for measure solutions with bounded second
moment:

Theorem 23 (Existence and uniqueness of measure solutions [16]). Suppose K(x) = |x|. Given µ0 ∈ P2(Rd),
there exists a unique weakly continuous family of probability measures (µt)t∈(0,+∞) satisfying

∂tµt + div(µtvt) = 0 in D′((0,∞)× Rd), (4.74)

vt = −∂0K ∗ µt, (4.75)
µt converges weakly to µ0 as t→ 0. (4.76)
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Here ∂0K is the unique element of minimal norm in the subdifferential of K. Simply speaking, since
K(x) = |x| is smooth away from the origin and radially symmetric, we have ∂0K(x) = x

|x| for x 6= 0 and
∂0K(0) = 0, and thus:

(∂0K ∗ µ)(x) =
∫

y 6=x

x− y

|x− y|
dµ(y). (4.77)

Note that, µt being a measure, it is important for ∂0K to be defined for every x ∈ Rd so that (4.75) makes
sense. Equation (4.74) means that∫ +∞

0

∫
Rd

( dψ
dt

(x, t) +∇ψ(x, t) · vt(x)
)
dµt(x) dt = 0, (4.78)

for all ψ ∈ C∞0 (Rd × (0,+∞)). From (4.77) it is clear that |vt(x)| ≤ 1 for all x and t, therefore the above
integral makes sense.

The main Theorem of this section is the following:

Theorem 24 (Instantaneous mass concentration). Consider the initial data

u0(x) =

{
L

|x|d−1+ε if |x| < 1,

0 otherwise,
(4.79)

where ε ∈ (0, 1) and L :=
(∫

|x|<1
|x|−(d−1+ε)dx

)−1

is a normalizing constant. Note that u0 ∈ Lp(Rd) for all

p ∈ [1, d
d−1+ε ). Let (µt)t∈(0,+∞) be the unique measure solution of the aggregation equation with interaction

potential K(x) = |x| and with initial data u0. Then, for every t > 0 we have

µt({0}) > 0,

i.e., mass is concentrated at the origin instantaneously and the solution is no longer continuous with respect
to the Lebesgue measure.

Theorem 24 is a consequence of the following estimate on the velocity field:

Proposition 25. Let (µt)t∈(0,+∞) be the unique measure solution of the aggregation equation with interaction
potential K(x) = |x| and with initial data (4.79). Then, for all t ∈ [0,+∞) the velocity field vt = −∂0K ∗µt

is focussing and there exists a constant C > 0 such that

|vt(x)| ≥ C|x|1−ε for all t ∈ [0,+∞) and x ∈ B(0, 1). (4.80)

By focussing, we mean that the velocity field points inward, i.e. there exists a nonnegative function
λt : [0,+∞) → [0,+∞) such that vt(x) = −λt(|x|)~x

x .

4.1 Representation formula for radially symmetric measure solutions

In this section, we show that for radially symmetric measure solutions, the characteristics are well defined.
As a consequence, the solution to (2.12) can be expressed as the push forward of the initial data by the flow
map associated with the ODE defining the characteristics.

In the following the unit sphere {x ∈ Rd, |x| = 1} is denoted by Sd and its surface area by ωd.

Definition 26. If µ ∈ P(Rd) is a radially symmetric probability measure, then we define µ̂ ∈ P([0,+∞)) by

µ̂(I) = µ({x ∈ Rd : |x| ∈ I})

for all I ∈ B([0,+∞)).
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Remark 27. If a measure µ is radially symmetric, then µ({x}) = 0 for all x 6= 0, and therefore∫
Rd\{x}

∇K(x− y) dµ(y) =
∫

Rd

∇K(x− y) dµ(y) for all x 6= 0.

In other words, for x 6= 0, (∇K ∗ µ)(x) is well defined despite the fact that ∇K is not defined at x = 0. As
a consequence (∂0K ∗ µ)(x) = (∇K ∗ µ)(x) if x 6= 0 and (∂0K ∗ µ)(0) = 0.

Remark 28. If the radially symmetric measure µ is continuous with respect to the Lebesgue measure and
has radially symmetric density u(x) = ũ(|x|), then µ̂ is also continuous with respect to the Lebesgue measure
and has density û, where

û(r) = ωdr
d−1ũ(r). (4.81)

Lemma 29 (Polar coordinate formula for the convolution). Suppose µ ∈ P(Rd) is radially symmetric. Let
K(x) = |x|, then for all x 6= 0 we have:

(µ ∗ ∇K) (x) =
(∫ +∞

0

φ

(
|x|
ρ

)
dµ̂(ρ)

)
x

|x|
(4.82)

where the function φ : [0,+∞) → [−1, 1] is defined by

φ(r) =
1
ωd

∫
Sd

re1 − y

|re1 − y|
· e1dσ(y). (4.83)

Proof. This come from simple algebraic manipulations. These manipulations are shown in [5].
In the next Lemma we state properties of the function φ defined in (4.83).

Lemma 30 (Properties of the function φ).

(i) φ is continuous and non-decreasing on [0,+∞). Moreover φ(0) = 0, and limr→∞ φ(r) = 1.

(ii) φ(r) is O(r) as r → 0. To be more precise:

lim
r→0
r>0

φ(r)
r

= 1− 1
ωd

∫
Sd

(y · e1)2 dσ(y). (4.84)

Proof. Consider the function F : [0,+∞)× Sd → [−1, 1] defined by

(r, y) 7→ re1 − y

|re1 − y|
· e1. (4.85)

Since F is bounded, we have that

φ(r) =
1
ωd

∫
Sd

F (r, y)dσ(y) =
1
ωd

∫
Sd\{e1}

F (r, y)dσ(y).

If y ∈ Sd\{e1} then the function r 7→ F (r, y) is continuous on [0,+∞) and C∞ on (0,+∞). An explicit
computation shows then that

∂F

∂r
(r, y) =

1− F (r, y)2

|re1 − y|
≥ 0, (4.86)

thus φ is non-decreasing and, by the Lebesgue dominated convergence, it is easy to see that φ is continuous,
φ(0) = 0 and limr→∞ φ(r) = 1, which prove (i).

To prove (ii), note that the function ∂F
∂r (r, y) can be extended by continuity on [0,+∞). Therefore the

right derivative with respect to r of F (r, y) is well defined:

lim
r→0
r>0

F (r, y)− F (0, y)
r

=
1− F (0, y)2

|y|
= 1− (y · e1)2.
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and since ∂F/∂r is bounded on (0,+∞) × Sd\{e1}, we can now use the Lebesgue dominated convergence
theorem to conclude:

lim
r→0
r>0

φ(r)
r

= lim
r→0
r>0

φ(r)− φ(0)
r

= lim
r→0
r>0

1
ωd

∫
Sd

F (r, y)− F (0, y)
r

dσ(y) =
1
ωd

∫
Sd

1− (y · e1)2dσ(y).

Remark 31. Note that for r > 0 the function ρ 7→ φ
(

r
ρ

)
is non increasing and continuous. Indeed, it is

equal to 1 when ρ = 0 and it decreases to 0 as ρ → ∞. In particular, the integral in (4.82) is well defined
for any probability measure µ̂ ∈ P([0,+∞)).

Remark 32. In dimension two, it is easy to check that limr→1 φ
′(r) = +∞ which implies that the derivative

of the function φ has a singularity at r = 1 and thus, that the function φ is not C1.

Proposition 33 (Characteristic ODE). Let K(x) = |x| and let (µt)t∈[0,+∞) be a weakly continuous family
of radially symmetric probability measures. Then the velocity field

v(x, t) =

{
−(∇K ∗ µt)(x) if x 6= 0
0 if x = 0

(4.87)

is continuous on Rd\{0} × [0 + ∞). Moreover, for every x ∈ Rd, there exists an absolutely continuous
function t→ Xt(x), t ∈ [0,+∞), which satisfies

d

dt
Xt(x) = v(Xt(x), t) for a.e. t ∈ (0,+∞), (4.88)

X0(x) = x. (4.89)

Proof. From formula (4.82), Remark 31, and the weak continuity of the family (µt)t∈[0,+∞), we obtain
continuity in time. The continuity in space simply comes from the continuity and boundedness of the
function φ together with the Lebesgue dominated convergence theorem.

Since v is continuous on Rd\{0} × [0 +∞) we know from the Peano theorem that given x ∈ Rd\{0}, the
initial value problem (4.88)-(4.89) has a C1 solution at least for short time. We want to see that it is defined
for all time. For that, note that by a continuation argument, the interval given by Peano theorem can be
extended as long as the solution stays in Rd\{0}. Then, if we denote by Tx the maximum time so that the
solution exists in [0, Tx) we have that either Tx = ∞ and we are done, or Tx < +∞, in which case clearly
limt→Tx

Xt(x) = 0, and we can extend the function Xt(x) on [0,+∞) by setting Xt(x) := 0 for t ≥ Tx.
The function t → Xt(x) that we have just constructed is continuous on [0,+∞), C1 on [0,+∞)\{Tx}

and satisfies (4.88) on [0,+∞)\{Tx}. If x = 0, we obviously let Xt(x) = 0 for all t ≥ 0.

Finally, we present the representation formula, by which we express the solution to (2.12) as a push-
forward of the initial data. See [1] or [41] for a definition of the push-forward of a measure by a map.

Proposition 34 (Representation formula). Let (µt)t∈[0,+∞) be a radially symmetric measure solution of the
aggregation equation with interaction potential K(x) = |x|, and let Xt : Rd → Rd be defined by (4.87), (4.88)
and (4.89). Then for all t ≥ 0,

µt = Xt#µ0.

Proof. In this proof, we follow arguments from [1]. Since for a given x the function t 7→ Xt(x) is continuous,
one can easily prove, using the Lebesgue dominated convergence theorem, that t 7→ Xt#µ0 is weakly
continuous. Let us now prove that µt := Xt#µ0 satisfies (4.78) for all ψ ∈ C∞

0 (Rd × (0,∞)). Given
that the test function ψ is compactly supported, there exist T > 0 such that ψ(x, t) = 0 for all t ≥ T . We
therefore have:

0 =
∫

Rd

ψ(x, T )dµT (x)−
∫

Rd

ψ(x, 0)dµ0(x) =
∫

Rd

(
ψ(XT (x), T )− ψ(x, 0)

)
dµ0(x). (4.90)
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If we now take into account that from Proposition 33 the mapping t→ φ(Xt(x), t) is absolutely continuous,
we can rewrite (4.90) as

0 =
∫

Rd

∫ T

0

( d

dt
ψ(Xt(x), t)

)
dt dµ0(x) (4.91)

=
∫

Rd

∫ T

0

(
∇ψ(Xt(x), t) · v(Xt(x), t) +

dψ

dt
(Xt(x), t)

)
dt dµ0(x) (4.92)

=
∫ T

0

∫
Rd

(
∇ψ(Xt(x), t) · v(Xt(x), t) +

dψ

dt
(Xt(x), t)

)
dµ0(x) dt (4.93)

=
∫ T

0

∫
Rd

(
∇ψ(x, t) · v(x, t) +

dψ

dt
(x, t)

)
dµt(x) dt.

The step from (4.92) to (4.93) holds because of the fact that |v(x, t)| ≤ 1, which justifies the use of the
Fubini Theorem.

Remark 35 (Representation formula in polar coordinates). Let µt and Xt be as in the previous proposition.
Let Rt : [0,+∞) → [0,+∞) be the function such that |Xt(x)| = Rt(|x|). Then

µ̂t = Rt#µ̂0. (4.94)

Remark 36. Since φ is nonnegative (Lemma 30), from (4.82), (4.87) and (4.88) we see that the function
t 7→ |Xt(x)| = Rt(|x|) is non increasing.

4.2 Proof of Proposition 25 and Theorem 24

We are now ready to prove the estimate on the velocity field and the instantaneous concentration result. We
start by giving a frozen in time estimate of the velocity field.

Lemma 37. Let K(x) = |x|, and let u0(x) be defined by (4.79) for some ε ∈ (0, 1). Then there exist a
constant C > 0 such that

|(u0 ∗ ∇K) (x)| ≥ C|x|1−ε (4.95)

for all x ∈ B(0, 1)\{0}.

Proof. Note that if we do the change of variable s = |x|
ρ in equation (4.82), we find that

|(u0 ∗ ∇K) (x)| = |x|
∫ +∞

0

φ(s) û0(
|x|
s

)
ds

s2
. (4.96)

On the other hand, using (4.81) we see that the û0(r) corresponding to the u0(x) defined by (4.79) is

û0(r) =

{
ωd

rε if r < 1,
0 otherwise.

(4.97)

Then, plugging (4.97) in (4.96) we obtain that for all x 6= 0

|(u0 ∗ ∇K) (x)| = ωd|x|1−ε

∫ +∞

|x|

φ(ρ)
ρ2−ε

dρ. (4.98)

In light of statement (ii) of Lemma 30, we see that the previous integral converges as |x| → 0. Hence
|(u0 ∗ ∇K) (x)| is O(|x|1−ε) as |x| → 0 and (4.95) follows.

Finally, the last piece we need in order to prove Proposition 25 from the previous lemma, is the following
comparison principle:
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Lemma 38 (Temporal monotonicity of the velocity). Let (µt)t∈(0,+∞) be a radially symmetric measure
solution of the aggregation equation with interaction potential K(x) = |x| . Then, for every x ∈ Rd\{0} the
function

t 7→ |(∇K ∗ µt)(x)|
is non decreasing.

Proof. Combining (4.82) and (4.94) we see that

|(µt ∗ ∇K)(x)| =
(∫ +∞

0

φ(
|x|
Rt(ρ)

) dµ̂0(ρ)
)
. (4.99)

Now, by Lemma 30, φ is non decreasing and due to Remark 35, t 7→ Rt(ρ) is non increasing. Henceforth it
is clear that (4.99) is itself non decreasing.

At this point, Proposition 25 follows as a simple consequence of the frozen in time estimate (4.95) together
with Lemma 38, and we can give an easy proof for the main result we introduced at the beginning of the
section.

Proof of Theorem 24. Using the representation formula (Proposition 34) and the definition of the push for-
ward we get

µt({0}) = (Xt#µ0)({0}) = µ0(X−1
t ({0})).

Then, note that the solution of the ODE ṙ = −r1−ε reaches zero in finite time. Therefore, from Proposition
25 and 33 we obtain that for all t > 0, there exists δ > 0 such that

Xt(x) = 0 for all |x| < δ.

In other words, for all t > 0, there exists δ > 0 such that B(0, δ) ⊂ X−1
t ({0}). Clearly, given our choice of

initial condition, we have that µ0(B(0, δ)) > 0 if δ > 0, and therefore µt({0}) > 0 if t > 0.

4.3 Remark about the initial data 1/ |x|d−1

An interesting open problem is wether or not there is instantaneous mass concentration when the initial data
is defined by (4.79) with ε = 0. We right now can not answer this question, but below are some interesting
remarks about this case.

Lemma 39. Let u0 be defined by (4.79) with ε = 0. Then there exists constants C > 0 and β > 1 such that

|(∇K ∗ u0)(x)| ≤ C|x|
∣∣∣∣log

|x|
β

∣∣∣∣ for all x ∈ B(0, 1). (4.100)

Proof. From Lemma 30 it is clear that there exists a constant α > 0 such that φ(r)/r ≤ α for all r ∈ (0, 1).
We can then use (4.98) with ε = 0 to obtain that, for |x| < 1,

|(u0 ∗ ∇K)(x)| = ωd |x|

(∫ 1

|x|

φ(ρ)
ρ

dρ

ρ
+
∫ ∞

1

φ(ρ)
ρ2

dρ

)

≤ ωd |x|

(
α

∫ 1

|x|

dρ

ρ
+ cst

)
= ωd |x| (−α log |x|+ cst) = −C|x| log

|x|
β
,

for some constants C > 0 and β > 1.
Consider the pushforward St(r) defined by the ODE

d

dt
St(r) = −CSt(r)

∣∣∣∣log
St(r)
β

∣∣∣∣ ,
S0(r) = r.
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This ODE has an explicit solution: for r < 1 we have

St(r) = β

(
r

β

)eCt

The push forward of u0 by the map St can also be explicitly computed:

(St#u0)(r) =

{
L(t)
rα(t) if r < β1−exp(Ct)

0 otherwise
where α(t) =

(d− 1) + eCt − 1
eCt

, and L(t) =
∫ β1−exp(Ct)

0

r−α(t)dr.

In dimension 2 and greater, α(t) ≤ d− 1 for t > 0, so St#u0 is less singular than u0.

5 Osgood condition for global well-posedness

This section considers the global well-posedness of the aggregation equation in P2(Rd) ∩Lp(Rd), depending
on the potential K. We start by giving a precise definitions of “natural potential”, “repulsive in the short
range” and “strictly attractive in the short range”, and then we prove Theorem 5.

Definition 40. A natural potential is a radially symmetric potential K(x) = k(|x|), where k : (0,+∞) → R
is a smooth function which satisfies the following conditions:

(C1) sup
r∈(0,∞)

|k′(r)| < +∞,

(C2) ∃ α > d such that k′(r) and k′′(r) are O(1/rα) as r → +∞,

(MN1) ∃ δ1 > 0 such that k′′(r) is monotonic (either increasing or decreasing) in (0, δ1),

(MN2) ∃ δ2 > 0 such that rk′′(r) is monotonic (either increasing or decreasing) in (0, δ2).

Remark 41. Note that monotonicity condition (MN1) implies that k′(r) and k(r) are also monotonic in
some (different) neighborhood of the origin (0, δ). Also, note that (C1) and (MN1) imply

(C3) lim
r→0+

k′(r) exists and is finite.

Remark 42. The far field condition (C2) can be dropped when the data has compact support.

Definition 43. A natural potential is said to be repulsive in the short range if there exists an interval (0, δ)
on which k(r) is decreasing. A natural potential is said to be strictly attractive in the short range if there
exists an interval (0, δ) on which k(r) is strictly increasing.

We would like to remark that the two monotonicity conditions are not very restrictive as, in order to
violate them, a potential would have to exhibit some pathological behavior around the origin, like oscillating
faster and faster as r → 0.

5.1 Properties of natural potentials

As a last step before proving Theorem 5, let us point out some properties of natural potentials, which show
the reason behind the choice of this kind of potentials to work with.

Lemma 44. If K(x) = k(|x|) is a natural potential, then k′′(r) = o(1/r) as r → 0.
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Proof. First, note that since k(r) is smooth away from 0 we have

k′(1)− k′(ε) =
∫ 1

ε

k′′(r)dr.

Now, because of (MN1) we know that there exists a neighborhood of zero in which k′′ doesn’t change sign.
Therefore, letting ε → 0 and using (C3) we conclude that k′′ is integrable around the origin. A simple
integration by part, together with (C3) gives then that∫ r

0

k′′(s)s ds = −
∫ r

0

k′(s)dr + k′(r)r.

Dividing both sides by r and letting r → 0 we obtain

lim
r→0

1
r

∫ r

0

k′′(s)s ds = 0.

which, combined with (MN2) implies limr→0 k
′′(r)r = 0.

The next lemma shows that the existence theory developed in the previous section applies to this class
of potentials.

Lemma 45. If K is a natural potential then ∇K ∈ W 1,q(Rd) for all 1 ≤ q < d. As a consequence, the
critical exponents ps and qs associated to a natural potential satisfy

qs ≥ d and ps ≤
d

d− 1
.

Proof. Recall that

∇K(x) = k′(|x|) x
|x|

and
∂2K

∂xi∂xj
(x) =

(
k′′(|x|)− k′(|x|)

|x|

)
xixj

|x|2
+ δij

k′(|x|)
|x|

,

where δij is the Kronecker delta symbol. In order to prove the lemma, it is enough to show that
k′(|x|), k′′(|x|) and k′(|x|)

|x| belong to Lq(Rd) for all 1 ≤ q < d. To do that, observe that the decay con-
dition (C2) implies that they belong to Lq(B(0, 1)c) for all q ≥ 1. Then, we take into account that (C3)
implies that k′(r)

r = O(1/r) as r → 0 and that we have seen in the previous Lemma that k′′(r) = o(1/r) as
r → 0. This is enough to conclude, since the function x 7→ 1/|x| is in Lq(B(0, 1)) for all 1 ≤ q < d.

The following Lemma together with Theorem 19 gives global existence of solutions for natural potentials
which are repulsive in the short range, whence part (i) of Theorem 5 follows.

Lemma 46. Suppose K is a natural potential which is repulsive in the short range. Then ∆K is bounded
from above.

Proof. We will prove that there is a neighborhood of zero on which ∆K ≤ 0. This combined with the decay
condition (C2) give the desired result. First, recall that ∆K(x) = k′′(|x|) + (d− 1)k′(|x|)|x|−1. Then, since
k is repulsive in the short range, there exists a neighborhood of zero in which k′ ≤ 0. Now, we have two
possibilities: on one hand, if limr→0+ k′(r) = 0, then given r ∈ (0,+∞) there exists s ∈ (0, r) such that
k′(r)

r = k′′(s). Together with (MN1), this implies that k′′ is also non-positive in some neighborhood of zero.
On the other hand if limr→0+ k′(r) < 0, then the fact that k′′(r) = o(1/r) implies that rk′′(r)+(d−1)k′(r)

r is
negative for r small enough.

Finally, the next Lemma will be needed to prove global existence for natural potentials which are strictly
attractive in the short range and satisfy the Osgood criteria.
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Lemma 47. Suppose that K is a natural potential which is strictly attractive in the short range and satisfies
the Osgood criteria (1.9). If moreover supx6=0 ∆K(x) = +∞ then the following holds

(Z1) limr→0+ k′′(r) = +∞ and limr→0+
k′(r)

r = +∞,

(Z2) ∃δ1 > 0 such that k′′(r) and k′(r)
r are decreasing for r ∈ (0, δ1),

(Z3) ∃δ2 > 0 such that k′′(r) ≤ k′(r)
r for r ∈ (0, δ2).

Proof. Let us start by proving by contradiction that

lim
r→0+

sup
p∈(0,r)

k′(r)
r

= +∞. (5.101)

If we suppose that
k′(r)
r

< C ∀r ∈ (0, 1], (5.102)

then given a sequence rn → 0+ there will exist another sequence sn → 0+, 0 < sn < rn, such that

k′(rn)
rn

= k′′(sn) < C.

Since k′′(r) is monotonic around zero, this implies that k′′ is bounded from above, and combining this
with (5.102) we see that ∆K must also be bounded from above, which contradicts our assumption. Now,
statements (Z1), (Z2), (Z3) follow easily: First note that if limr→0+ k′(r) > 0, then clearly the Osgood
condition (1.9) is not satisfied, whence limr→0+ k′(r) = 0. This implies that for all r > 0 there exists
s ∈ (0, r) such that

k′(r)
r

= k′′(s). (5.103)

Combining (5.103), (5.101) and the monotonicity of k′′ we get that limr→0+ k′′(r) = +∞ and k′′ is decreasing
on some interval (0, δ), which corresponds with the first part of (Z1) and (Z2). Now, going back to (5.103)
we see that if 0 < s < r < δ then k′(r)

r = k′′(s) ≥ k′′(r) which proves (Z3). This implies

d

dr

{
k′(r)
r

}
=

1
r

(
k′′(r)− k′(r)

r

)
≤ 0

and therefore k′(r)/r decreases on (0, δ). Thus, (5.101) implies limr→0+
k′(r)

r = +∞ and the proof is
complete.

5.2 Global bound of the Lp-norm using Osgood criteria

We have already proven global existence when the potential is bounded from above. In this section we prove
the following proposition, which allows us to prove global existence for potentials which are attractive in the
short range, satisfy the Osgood criteria, and whose Laplacian is not bounded from above. From it, second
part of Theorem 5 follows readily. This extends prior work on L∞-solutions [5] to the Lp case.

Proposition 48. Suppose that K is a natural potential which is strictly attractive in the short range, satisfies
the Osgood criteria (1.9) and whose Laplacian is not bounded from above (i.e. supx6=0 ∆K(x) = +∞). Let
u(t) be the unique solution of the aggregation equation starting with initial data u0 ∈ P2(Rd)∩Lp(Rd), where
p > d/(d− 1). Define the length scale

R(t) =
(
‖u(t)‖L1

‖u(t)‖Lp

)q/d

.
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Then there exists positive constants δ and C such that the inequality

dR

dt
≥ −C k′ (R) (5.104)

holds for all time t for which R(t) ≤ δ.

Remark 49. R(t) is the natural length scale associated with blow up of Lp norm. Given that mass is
conserved, R(t) > 0 means that the Lp norm is bounded. The differential inequality (5.104) tell us that R(t)
decays slower than the solutions of the ODE ẏ = −Ck′(y). Since k′(r) satisfies the Osgood criteria (1.9),
solutions of this ODE do not go to zero in finite time. R(t) therefore stays away from zero for all time which
provides us with a global upper bound for ‖u(t)‖Lp .

Proof. Equality (2.15) can be written

d

dt
{‖u(t)‖p

Lp} = (p− 1)
∫

Rd

u(t, x)p(u(t) ∗∆K)(x) dx.

Using the chain rule we get

d

dt

{
‖u(t)‖−

q
d

Lp

}
=− (p− 1)q

pd
‖u(t)‖−

q
d−p

Lp

∫
Rd

u(t, x)p(u(t) ∗∆K)(x) dx (5.105)

≥ − (p− 1)q
pd

‖u(t)‖−
q
d

Lp sup
x∈Rd

{(u(t) ∗∆K)(x)} . (5.106)

To obtain (5.104), we now need to carefully estimate supx∈Rd {(u(t) ∗∆K)(x)}:

Lemma 50 (potential theory estimate). Suppose that K(x) = k(|x|) satisfies (C2), (Z1), (Z2) and (Z3).
Suppose also that p > d

d−1 . Then there exists positive constants δ and C such that inequality

sup
x∈Rd

(u ∗∆K) (x) ≤ C‖u‖L1
k′(R)
R

where R =
(
‖u‖L1

‖u‖Lp

)q/d

(5.107)

holds for all nonnegative u ∈ L1(Rd) ∩ Lp(Rd) satisfying R ≤ δ.

Remark: By Lemma 47, potentials satisfying the conditions of Proposition 48 automatically satisfy (C2),
(Z1), (Z2) and (Z3).

Proof of Lemma 50. Recall that ∆K(x) = k′′(|x|) + (d − 1)k′(|x|)
|x| so that (Z3) implies that ∆K(x) <

d k′(|x|)/|x| in a neighborhood of zero. So for ε small enough we have:∫
|y|<ε

u(x− y)∆K(y)dy ≤ d

∫
|y|<ε

u(x− y)
k′(|y|)
|y|

dy (5.108)

≤ d

(∫
|y|<ε

u(x− y)pdy

)1/p(∫
|y|<ε

(
k′(|y|)
|y|

)q

dy

)1/q

(5.109)

≤ d ‖u‖Lp

(∫ ε

0

(
k′(r)
r

)q

rd−1dr

)1/q

(5.110)

= d ‖u‖Lp

(∫ ε

0

k′(r)qrd−1−qdr

)1/q

(5.111)

≤ d ‖u‖Lp k
′(ε)

(∫ ε

0

rd−1−qdr

)1/q

(5.112)

=
d

(d− q)1/q
‖u‖Lp

k′(ε)
ε

εd/q. (5.113)
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To go from (5.108) to (5.109) we have used the fact that k′ is nonnegative in a neighborhood of zero (because
limr→0+ k′(r)/r = +∞ ) and that u is also nonnegative. To go from (5.111) to (5.112) we have used the
fact that k′ is increasing in a neighborhood of zero (because limr→0+ k′′(r) = +∞). Finally, to go from
(5.112) to (5.113) we have used the fact that, since q < d,

∫ ε

0
rd−1−qdr = εd−q/(d− q). Let us now estimate∫

|y|≥ε
u(x− y)∆K(y)dy. On one hand k′′(r) and k′(r)/r go to 0 as r → +∞. On the other hand k′′(r) and

k′(r)/r go monotonically to +∞ as r → 0+. Therefore for ε small enough we have

sup
|x|≥ε

∆K(x) = sup
r≥ε

{
k′′(r) + (d− 1)

k′(r)
r

}
≤ k′′(ε) + (d− 1)

k′(ε)
ε

≤ d
k′(ε)
ε

which gives, since u is nonnegative,∫
|y|≥ε

u(x− y)∆K(y)dy ≤ d ‖u‖L1

k′(ε)
ε

. (5.114)

Combining (5.113) and (5.114) we see that for ε small enough we have

sup
x∈Rd

(u ∗∆K) (x) ≤ c
k′(ε)
ε

(εd/q‖u‖Lp + ‖u‖L1) (5.115)

where c is a positive constant depending on d and q. To conclude the proof, choose ε = R =
(
‖u‖L1

‖u‖Lp

)q/d

.
Combining (5.106) and (5.107) allows us to get (5.104), which concludes the proof of Proposition 48.

6 Conclusions

This paper develops refined analysis for well-posedness of the multidimensional aggregation equation for
initial data in Lp. An additional assumption of bounded second moment is needed as a decay condition for
uniqueness; fortunately this condition is preserved by the dynamics of the equation. The results connect
recent theory developed for L∞ initial data [4, 5, 6] to recent theory for measure solutions [16]. It turns
out that Lp spaces provide a good understanding of the transition from a regular (bounded) solution to a
measure solution, which was proved to occur in [5] whenever the potential violates the Osgood condition.

In [5], it is shown that for the special case ofK(x) = |x|, no ‘first kind’ similarity solutions exist to describe
the blowup to a mass concentration for odd space dimensions larger than one. A subsequent numerical study
of blowup [26], for K = |x|, illustrates that for dimensions larger than two, there is a ‘second kind’ self-similar
blowup in which no mass concentration occurs at the initial blowup time. Rather, the solution is in Lp for
some p < ps = d/(d − 1). The solution has asymptotic structure like the example constructed in Section 4
of this paper, thus we expect after the initial blowup time, that it concentrates mass in a delta. We remark
that these results provide an interesting connection to classical results for Burgers equation. Our equation in
one space dimension, with K = |x|, reduces to a form of Burgers equation by defining w(x) =

∫ x

0
u(y)dy [10].

Thus, an initial blowup for the aggregation problem is the same as a a singularity in the slope for Burgers
equation. Generically, Burgers singularities form by creating a |x|1/3 power singularity in w, which gives a
−2/3 power blowup in u. This corresponds to a blowup in Lp for p > 3/2, but does not result in an initial
mass concentration. However, as we well know, the Burgers solution forms a shock immediately afterwards,
resulting in a delta concentration in u. Thus the scenario described above is a multidimensional analogue
of the well-known behavior of how singularities initially form in Burgers equation. The delta-concentrations
are analogues of shock formation in scalar conservation laws.

Section 4 constructs an example of a measure solution with initial data in Lp, p < ps, that instantaneously
concentrates mass, for the special kernel K(x) = |x| (near the origin). We conjecture that such solutions exist
for more general power-law kernels K(x) = |x|α, 2 − d < α < 2. The proof of instantaneous concentration
uses some monotonicity properties of the convolution operator ~x/|x| which would need to be proved for the
more general case.
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Several interesting open problems remain, in addition to proving sharpness of the exponent ps for more
general kernels. For initial data in Lps local well-posedness is not known and we do not have intuition for
this.

7 Appendix – Proof of Proposition 16

Since all the convergences (2.38)-(2.40) take place on compact sets, one of the key ideas of this proof will be
to approximate u0 ∈ Lp by a function with compact support and to use the fact that Xt maps compact sets
to compact sets (Lemma 14).

PART I: We will prove that u(t, x) = u0(X−t(x))a(t, x) belongs to C([0, T ∗), Lp(Rd)). Assume first that
u0 ∈ Cc(Rd). The function u0 is then uniformly continuous and, since

sup
x∈Rd

|X−t(x)−X−s(x)| ≤ C|t− s|,

it is clear that the quantity
‖u0(X−t(x))− u0(Xs(x))‖Lp

can be made as small as we want by choosing |t−s| small enough. We have therefore proven that u0(X−t(x)) ∈
C([0, T ∗), Lp(Rd). Assume now that u0 ∈ Lp(Rd). Approximate it by a function g ∈ Cc(Rd) and write:

‖u0(X−t(x))− u0(X−s(x))‖Lp ≤ ‖u0(X−t(x))− g(X−t(x))‖Lp + ‖g(X−t(x))− g(X−s(x))‖Lp

+‖g(X−s(x))− u0(X−s(x))‖Lp

= I + II + III.

As we have seen above, the second term can be made as small as we want by choosing |t− s| small enough.
Using Lemma 13 we get

I, III ≤ C∗‖u0 − g‖Lp ,

which can be made as small as we want since Cc(Rd) is dense in Lp(Rd). We have therefore proven that, if
u0 ∈ Lp(Rd), then

(t, x) 7→ u0(X−t(x)) ∈ C([0, T ∗), Lp(Rd)). (7.116)

Let us now consider the function u0(X−t(x))a(t, x). Recall that a(t, x) is continuous and bounded on
[0, T ∗]× Rd. Write

‖u0(X−t(x))a(t, x)− u0(X−s(x))a(s, x)‖Lp ≤
‖u0(X−t(x)){a(t, x)− a(s, x)}‖Lp

+‖{u0(X−t(x))− u0(X−s(x))}a(s, x)‖Lp

= I + II.

Since a(s, x) is bounded, (7.116) implies that II can be made as small as we want by choosing |t− s| small
enough. Let us now take care of I. Approximate u0 by a function g ∈ Cc(Rd) and write

I ≤ ‖{u0(X−t(x))− g(X−t(x))}{a(t, x)− a(s, x)}‖Lp

+‖g(X−t(x)){a(t, x)− a(s, x)}‖Lp

= A+B.

From Lemma 13 we have
A ≤ 2C∗‖u0 − g‖Lp sup

(t,x)∈[0,T∗]×Rd

|a(t, x)|,
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and since Cc(Rd) is dense in Lp, A can be made as small as we want. Let Ω denote the compact support of
g. Using Lemmas 13 and 14 we obtain:

B =
(∫

Ω+Ct

∣∣g(X−t(x)){a(t, x)− a(s, x)}
∣∣p dx)1/p

≤
(

sup
x∈Ω+ct

|a(t, x)− a(s, x)|
)
C∗‖g‖Lp .

Since a(t, x) is uniformly continuous on compact subset of [0, T ∗] × Rd, it is clear that by choosing |t − s|
small enough we can make B as small as we want. We have proven that

u ∈ C([0, T ∗], Lp(Rd).

PART II: In Part I we have proven that u ∈ C([0, T ∗], Lp). The same proof work to show that uε, uv
and uεvε belong to C([0, T ∗], Lp) (v(t, x) is continuous and bounded, so we can handle it exactly like a(t, x).)

PART III: Let us now prove that uε(t, x) = uε
0(X

−t
ε (x))aε(t, x) converges to u(t, x) = u0(X−t(x))a(t, x).

For convenience we write ε instead of εk. To do this, we will successively prove:

u0(X−t
ε (x)) → u0(X−t(x)) in C([0, T ∗), Lp), (7.117)

uε
0(X

−t
ε (x)) → u0(X−t(x)) in C([0, T ∗), Lp), (7.118)

uε
0(X

−t
ε (x))aε(t, x) → u0(X−t(x))a(t, x) in C([0, T ∗), Lp). (7.119)

To prove (7.117), approximate u0 ∈ Lp(Rd) by a function g ∈ Cc(Rd) and write:

supt∈[0,T∗) ‖u0(X−t
ε (x)− u0(X−t(x))‖Lp ≤ supt∈[0,T∗) ‖u0(X−t

ε (x))− g(X−t
ε (x))‖Lp +

supt∈[0,T∗) ‖g(X−t
ε (x))− g(X−t(x))‖Lp + supt∈[0,T∗) ‖g(X−t(x))− u0(X−t(x))‖Lp

= I + II + III.

From Lemma 13 it is clear that I and III can be made as small as we want by choosing an appropriate
function g. Using Lemma 14, we see that, if Ω is the support of g

II = sup
t∈[0,T∗

(∫
Ω+Ct

∣∣g(X−t
ε (x))− g(X−t(x))

∣∣p dx)1/p

.

Using the uniform continuity of g together with the fact that X−t
ε (x) converges uniformly to X−t(x) on

[0, T ∗]× Ω + CT ∗, we can make II as small as we want by choosing ε small enough.
This concludes the proof of (7.117). To prove (7.118), write

sup
t∈[0,T∗)

‖uε
0(X

−t
ε (x))− u0(X−t(x))‖Lp ≤ sup

t∈[0,T∗)

‖uε
0(X

−t
ε (x))− u0(X−t

ε (x)‖Lp

+ sup
t∈[0,T∗)

‖u0(X−t
ε (x))− u0(X−t(x))‖Lp

= I + II.

From (7.117) we know that II can be made as small as we want by choosing ε small enough. Using Lemma
13 we obtain

I ≤ C∗‖uε
0 − u0‖Lp → 0 as ε→ 0.
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Let us now prove (7.119). Write

sup
t∈[0,T∗]

‖uε
0(X

−t
ε (x))aε(t, x)− u0(X−t(x))a(t, x)‖Lp

≤ sup
t∈[0,T∗]

‖{uε
0(X

−t
ε (x))− u0(X−t(x))}aε(t, x)‖Lp

+ sup
t∈[0,T∗]

‖u0(X−t(y)){aε(t, x)− a(t, x)}‖Lp

= I + II.

Since aε(t, x) is uniformly bounded on [0, T ∗]× Rd, it is clear from (7.118) that I → 0 as ε → 0. If u0 is in
Cc(Rd), then it is easy to prove that II → 0 as ε → 0. If u0 ∈ Lp(Rd), then approximate it by g ∈ Cc(Rd)
and proceed as before.

Part IV: To prove that uεkvεk converges to uv in C([0, T ∗], Lp), proceed exactly as in the proof of
(7.119).
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