COMPLETE GEOMETRIC INVARIANT STUDY OF TWO CLASSES OF
QUADRATIC SYSTEMS
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ABSTRACT. In this paper we give a complete study using affine invariant conditions for the
quadratic systems having centers. Independently we do the same for quadratic systems
being Hamiltonian. There are two improvements of the previous results as [33] in which
centers where study up to GL-invariant, and of [1] in which Hamiltonian QS where classified
without invariants. The geometrical affine invariant study we present here is a crucial step
for a bigger goal which is a complete affine invariant algebraic classification of the hole family
of quadratic systems according to all their singular points (finite and infinite).

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

Let R[z,y] be the ring of the polynomials in the variables x and y with coefficients in R.
We consider a system of polynomial differential equations or simply a polynomial differential
system in R? defined by

t= P(x,y),
) i= Qo)

where P,Q € Rz, y]. We say that the maximum of the degrees of the polynomials P and @ is
the degree of system (1). A quadratic polynomial differential system or simply a quadratic system
(QS) is a polynomial differential system of degree 2. We say that the quadratic system (1) is
non—degenerate if the polynomials P and @ are relatively prime or coprime, i.e. g.c.d.(P,Q) = 1.

These last one hundred years quadratic vector fields have been investigated intensively as
one of the easiest families of nonlinear differential systems, and more than one thousand papers
have been published about these vectors fields (see for instance [11, 27, 36, 35]), but the problem
of classifying all the integrable quadratic vector fields remains open. For more information on
the integrable differential vector fields in dimension 2, see for instance [12] or [21].

In [26] H. Poincaré defined the notion of a center for a real polynomial differential system
in the plane (i.e. an isolated singularity surrounded by periodic orbits). The analysis of the
limit cycles which bifurcate from a focus or a center of a quadratic system was made by Bautin
[8], by providing the structure of the power series development of the displacement function
defined near a focus or a center of a quadratic system. More recently the structure of this
displacement function has been understand for any weak focus of a polynomial differential
system. More precisely, first by using a linear change of coordinates and a rescaling of the
independent variable, we transform any polynomial differential system having a weak focus or
a center at the origin with eigenvalues tai # 0 (i.e. having a weak focus) into the form

y=—c+ Q(x,y),

where P and @) are polynomials without constant and linear terms. Then the return map
2+ h(z) defined for |z| < R, where R is a positive number sufficiently small to insure that the
power series expansion of h(x) at the origin is convergent. Of course, limit cycles correspond to
isolated zeros of the displacement function d(x) = h(z)—x. The structure of the power series for
the displacement function is given by the following restatement of Bautin’s fundamental result
(see [28] for more details): There exists a positive integer m and a real number R > 0 such
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that the displacement function in a neighborhood of the origin for the polynomial differential
system (2) can be written as

m o0
25+1 2j+1_k
d(z) = E vaj 4122 Lo + E a? } ,
=1 h=1
27+1,

for || < R, where the va;41’s and the o’ ’s are homogeneous polynomials in the coefficients
of the polynomials P and Q.

The constants V; = vgj41 are called the focus quantities or the Poincaré-Liapunov constants.
A weak focus for which V; = ... =V,,_1 =0 and V,, # 0 is a weak focus of order n. If all the
focus quantities are zero then the weak focus is a center. Note that any weak focus has finitely
many focus quantities, in our notation exactly m.

It is known that a polynomial differential system (2) has a center at the origin if and only
if there exists a local analytic first integral of the form H = x? + y% + F(z,y) defined in a
neighborhood of the origin, where F' starts with terms of order higher than 2. This result is
due to Poincaré [26] and Liapunov [20], see also Moussu [23].

Through the coefficients of a quadratic system every one of these systems can be identified
with a single point of R'2. One of the first steps in a systematic study of the subclasses of QS
was achieved in the determining the subclass QC of all QS having a center. Of course this
problem is algebraically solvable in the sense indicated by Coppel [13], because the classification
of the quadratic centers is algebraically solvable.

The phase portraits of the class QC were given by N. Vulpe in [33] and are here denoted
by Vuly using his classification. In that classification, only GL-invariants were used which
implied that systems could only be characterized after displacing one center to the origin and
adopting the standard normal form. Later papers related with centers provide the bifurcation
diagrams for the different types of centers (see [29] or [37]).

The polynomial differential system (2) is Hamiltonian if there exists a polynomial H =
H(z,y) such that P = 0H /0y and Q = —0H/0z. Regarding Hamiltonian systems, apart from
many papers using them in conservative systems, the first complete classification for quadratic
systems was done in [1] where quadratic Hamiltonian systems were split into four normal forms
and a bifurcation diagram was provided for each one of them. No invariants were used there.
Later on in [18] the affine-invariant conditions were stablished but they were constructed with
primitive tools which in the later years have been greatly improved. Now, with these better
tools, the invariants needed are of lower degree and consistent with all the set of invariants
needed to describe singular points.

The main results of this paper are the following two theorems.
Theorem 1. Consider a quadratic system of differential equations.

(i) This system possesses a center and the configuration of all its singularities (finite and
infinite) is given in Table 2 if and only if the corresponding conditions described in
Table 2 hold.

(ii) The phase portrait of this system corresponds to the one of 81 topologically distinct
phase portraits constructed in [33] (except the case of a linear system) and either it
is determined univocally by the respective configuration, or it is determined by the
configuration and additional conditions are given in Table 3.

Tables 2 and 3 can be found in section 5.

Theorem 2. Assume that a quadratic system of differential equations is Hamiltonian.

(i) This system possesses the configuration of all its singularities (finite and infinite) given
in Table 4 if and only if the corresponding conditions given in Table 4 hold.

(i) The phase portrait of this system corresponds to the one of 28 phase portraits given in
[1] and either it is determined univocally by the respective configuration, or it is determined by
the configuration and additional conditions given in Table 5.

Tables 4 and 5 can be found in section 6.
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The work is organized as follows. In section 2 we introduce the notation that we use for
describing the singular points. In section 3 we give some preliminary results needed for the
work. In section 4 we adapt a diagram from a previous paper [6] to describe more easily the
bifurcation tree of finite singularities, and we also introduce the used invariants from [33] and
[18]. Finally in sections 5 and 6 we prove the main theorems of this paper.

2. THE NOTATION FOR SINGULAR POINTS

In this section we present the notation that we use for describing the singular points. The
complete notation for singular points will appear in our project of classification of finite and
infinite singular points of all @S.

This notation used here for describing finite and infinite singular points of quadratic systems,
can easily be extended to general polynomial systems.

We start by distinguishing the finite and infinite singularities denoting the first ones with
small letters and the second with capital letters. When describing in a row both finite and
infinite singular points, we will always order them first finite, latter infinite with a ‘;” separating
them.

Finite and infinite singular points may either be real of complex. Most of the times one
only wishes to describe the real ones, but in case we wish to remark the presence of a complex
singular point we will do by means of the symbols © and (© for finite and infinite points
respectively. We point out the sum of the multiplicities of all singular points of a quadratic
system (with a finite number of singular points) is always 7. The sum of the multiplicities
of the infinite singular points is always at least 3, more precisely it is always 3 plus the sum
of the multiplicities of the finite points which have gone to infinity. So when the sum of the
multiplicities of all singular points is lower than 7, or the sum of the multiplicities of all infinite
singular points is lower than 3, means that there are complex singularities.

e We call elementary a singular point with its both eigenvalues not zero.

o We call semi—elementary a singular point with exactly one of its eigenvalues equal to
Zero.

o We call nilpotent a singular point with its eigenvalues zero but its Jacobian matrix is
not identically zero.

o We call degenerate a singular point with its Jacobian matrix identically zero.

Starting with elementary points, we use the letters ‘s’,*S’ for “saddles”; ‘n’, ‘N’ for “nodes”;
‘f for “foci” and ‘¢’ for “centers”. The small letters denote finite singular points, and the capital
ones infinite singular points. In order to augment the level of precision we will distinguish the
finite nodes as follows:

‘n’ for a node with two distinct eigenvalues.

e ‘n®’ (a one-direction node) for a node with two identical eigenvalues whose Jacobian
is not diagonalizable.
Con k9

e ‘n*’ (a star-node) for a node with two identical eigenvalues whose Jacobian s diago-
nalizable.

Moreover in the case of an elementary infinite node, we want to distinguish whether the
eigenvalue associated to the eigenvector directed towards the affine plane is greater or lower
than the eigenvalue associated to the eigenvector tangent to the line at infinity. This is relevant
because this determines if all the orbits except one arrive at infinity tangent to the line at infinity
or transversal to this line. We will denote them as ‘N°°’ and ‘N7’ respectively.

Finite elementary foci (or saddles) are classified according to their order as weak foci (or
saddles). When the trace of the Jacobian matrix evaluated at those singular points is not zero,
we call them strong saddles and strong foci and we maintain the standard notations ‘s’ and
‘f.” But when the trace is zero, it is known that for quadratic systems they may have up to 3
orders plus an integrable one, which corresponds to infinite order. So, from the order 1 to order
3 we denote them by ‘s’ and ‘f®)’ where i = 1,2, 3 is the order. For the integrable case, the
saddle remains a topological saddle and it will denoted by ‘s’. In the second case we have a
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change in the topology of the local phase portrait which makes the singular point a center and
is denoted by ‘c’.

Foci and centers cannot appear as isolated singular points at infinity and hence it is not
necessary to introduce their order in this case. In case of saddles, we can have weak saddles
at infinity but it is premature at this stage to describe them since the maximum order of weak
singularities in cubic systems is not yet known.

All non—elementary singular points are multiple points, in the sense that when we perturb
them within a nearby system they could split in at least two elementary points. For finite
singular points we denote with a subindex their multiplicity as in ‘5(5)’ or in ‘€5(3)’ (the meaning
of the ‘7 and the 7 will be explained below). The multiplicity of a singularity of a QS is the
maximum number of singular points which can appear from this singularity when we perturb
it inside the class of all @S. In order to describe the various kinds of multiplicity at infinite
singular points we use the concepts and notations introduced in [30] Thus we denote by ‘(‘;) .
the maximun number a (respectively b) of finite (respectively infinite) singularities which can

be obtained by perturbation of the multiple point. For example ‘(}) SN’ means a saddle-node

at infinity produce by the collision of one finite singularity with an infinite one; ‘(g)S ’ means a
saddle produced by the collision of 3 infinite singularities.

Semi—elementary points can either be nodes, saddles or saddle—nodes, finite or infinite. We
will denote them always with an overline, for example ‘sn’, s’ and ‘»’ with the corresponding
multiplicity. In the case of infinite points we will put the ‘7" on top of the parenthesis of
multiplicity.

Semi-elementary nodes could never be ‘n?’ or ‘n*’ since the eigenvalues are always different.
In case of an infinite semi—elementary node, the type of collision determines whether the point
is denoted by ‘N’ or by ‘N°°’ where ‘(1)N’ is an ‘N7’ and ‘(g)N’ is an ‘IN°°’.

Nilpotent points can either be saddles, nodes, saddle-nodes, elliptic-saddles, cusps, foci or
centers. The first four of these could be at infinity. We denote the finite ones with a hat ‘™’
as in €5(3) for a finite nilpotent elliptic saddle of multiplicity 3, and @(2) for a finite nilpotent
cusp point of multiplicity 2. In the case of nilpotent infinite points, analogously to the case
of semi-elementary points we will put the ‘~’ on top of the parenthesis of multiplicity. The
relative position of the sectors of an infinite nilpotent point with respect to the line at infinity
can produce topologically different phase portraits. This forces us to use a notation for these
points similar to the notation which we will use for the degenerate points.

It is known that the neighborhood of any singular point of a polynomial vector field (except
foci and centers) is formed by a finite number of sectors which could only be of three types:
parabolic, hyperbolic and elliptic (see [14]). Then a reasonable way to describe degenerate
points and nilpotent points at infinity is to use a sequence formed by the types of their sectors.
The description we give is the one which appears in the clock—wise direction once the blow—
down is done. Thus in quadratic systems we have just seven possibilities for finite degenerate
singular points (see [3]) which are the following ones

o a) phpphpsy;
® b) phpha);

e c) hhy;

e d) hhhhhh(4);
[ ]

[ )

[ )

=3

o

e) peppep sy
f) pepe(ay;
g) €€(4)-

We use lower case because of the finite nature of the singularities and add the subindex (4)
since they are of multiplicity 4.

For infinite degenerate and nilpotent singular points, we insert a dash between the sectors to
split those which appear on one side of the equator of the sphere from the ones which appear
in the other side. In this way we distinguish between (g) PHP — PHP and (g) PPH — PPH.
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The lack of finite singular points will be encapsulated in the notation ¢. In the cases we need
to point out the lack of an infinite singular point we will use the symbol 0.

Finally there is also the possibility that we have an infinite number of finite or infinite singular
points. In the first case, this means that the polynomials defining the differential system are
not coprime. Their common factor may produce a real line or conic filled up with singular
points, or a conic with real coeficients having only complex points.

We consider now systems which have the set of non isolated singularites located on the line
at infinity. It is known that the neighborhood of infinity can be 7 different types (see [30]) up to
topological equivalence. The way to determine them comes from a study of the reduced system
on the infinite local charts where the line of singularities can be removed within the chart and
still a singular point may remain on the line of infinity. However in [30] the tangential behavior
was not considered in the case of the node. If after the removal of the degeneracy at the line
of infinity, a node remains, this can either be of the type N? or a node (N) with two different
eigenvalues. Since no eigenvector of such a node N will ever be tangent to the line of infinity
we do not need to split N in N/ and N°°. Thus, depending of the nature of this point, the
behavior of the singularities at infinity of the original system can be denoted as [oco, 0], [co, N],
[00, N¥], [00, S], [00, C], [0, SN] or [oo, EE] In the families showed in this paper we will
only meet the case [oo, S].

We will denote with the symbol & the case when the polynomials defining the system have
a common factor. The symbol stands for the most generic of these cases which corresponds to
a real line filled up of singular points. The degeneracy can be also be produced by a common
quadratic factor which could generate any kind of conic. We will indicate each case by the
following symbols

¢ O[] for a real straight line;

e 5[V for a real parabola,

. G[H] for two real parallel lines;

O[||¢] for two complex parallel lines;

B||2] for a double real straight line;

B[)(] for a real hyperbola;

B[x] for two intersecting real straight lines;

B|o] for a real circle or ellipse;

©[©] for a complex conic;

O[] for two complex straight lines which intersect at a real finite point.

In the families showed in this paper we will only meet the caseS]|].

Moreover we also want to determine whether after removing the common factor of the poly-
nomials, singular points remain on the curve defined by this common factor. If the reduced
system has no finite singularity which remains on the curve defined by this common factor, we
will use the symbol ¢ to describe this situation. If some singular points remain we will use the
corresponding notation of their types. In the families showed in this paper we will only meet
the case (©|], 0).

The existence of a common factor of the polynomials defining the differential system also
affects the infinite singular points. We point out that the projective completion of a real affine
line filled up with singular points has a point on the line at infinity which will then be also a
non isolated singularity.

In order to describe correctly the singularities at infinity, we must mention also this kind
of phenomena and describe what happens to such points at infinity after the removal of the
common factor. To show the existence of the common factor we will use the same symbol as
before: 6, and for the type of degeneracy we use the symbols introduced above. We will use
the symbol () to denote the non—existence of infinite singular points after the removal of the
degeneracy. They are other possibilities for a polynomial system, but this is the only one of
interest in this paper.
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3. SOME PRELIMINARY RESULTS

Consider real quadratic systems of the form

3)

dx
pril ) +pi1(z,y) + p2(z,y) = P(z,y),
dy
ik (s @ (z,y) + @z, y) = Q(x,y),

with homogeneous polynomials p; and ¢; (i = 0,1,2) of degree i in x,y, where

po = ag, pi(z,y)=aor+aony, p2(z,y)+anr®+2a112y + aey?,
Q@ =ac, q1(z,y) =a0r +any, ¢(z,y)+anr® + 2a117y + apy’.

Let a = (aoo, aio, aopi, @20, @11, @4p2, boo, bl()7 b()l, bz(), bu, b()z) be the 12-tuple of the coefficients of
systems (3) and denote R[a, z, y] = Rlaoo, - - - , bo2, z, y].

3.1. Number and types of weak singularities of quadratic systems. A complete char-
acterization of the finite weak singularities of quadratic systems via invariant theory was done
in [34], where the next result is proved.

Proposition 3. Consider a non-degenerate quadratic system (3).

(a)
(b)

If Ty # 0 then this system has no weak singularity.

If Ty =0 and T3 # 0 then the system has exactly one weak singularity. Moreover
this singularity is either a weak focus (respectively a weak saddle) of the indicated order
below, or a center (respectively an integrable saddle) if and only if T3 F < 0 (respectively
TsF > 0) and the following corresponding condition holds

1

by) fO (respectively s(V) < Fi #0;

ba) fP (respectively s?) & F1 =0, Fp #0;

bs) f¥ (respectively sV) & Fi=Fy =0, FsFu #0;
b)) ¢

4 (respectively $) & Fi=F=FF=0

A~~~ o~

If T4 = T3 =0 and Tz # 0, then the system could possess two and only two weak
singularities and none of them is of order 2 or 3. Moreover this system possesses two
weak singularities, which are of the types indicated below, if and only if F =0 and one
of the following conditions holds

(1) sV, s o F#0, Ta<0, B0, H>0;
(o) sV, fO o F#0, T,>0, B<O;
(e3) fO, fO o F#0, T,<0, B<0, H<O0;
(ca) 8, $ & F1=0, Ta<0, B<0, H>0;
(65) 3, C 54 ]'—1:0, 7—2>0, B<O;
(c6) ¢ c & F1=0,T2<0, B<0, H<O.

If Ta=T5="T2=0 and Ty # 0, then the system could possess one and only one weak
singularity (which is of order 1). Moreover this system has one weak singularity of the
type indicated below if and only if F = 0 and one of the following conditions holds

(d) sV & Fi#£0, B<0, H>0;
(d2) Y & Fi#0,B<0, H<O.

If Ta=T3=T2="Ti =0 and o(a,z,y) # 0, then the system could possess one and
only only one weak singularity. Moreover this system has one weak singularity, which
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is of the type indicated below, if and only if one of the following conditions holds

(61) s 54 ]:1750,’7“[281207 By > 0;
(62) f(l) 54 .7:1750,7'[28120, By < 0
] F1=0, F=0, B<0, H>0, or
[,3] .7'—1:0,7‘[:31:0, [)’2>07 or
(63) $ =4 M .7:1:0,7‘[:3:81:[)’2:63:/10:0, K(M%+M§)§£O, or
}}—1:0,7‘[28281:82:63:[(:0, Mzg#o, or
[6] ]:1:0,H=B=B1=BQIB3=B4=K=[L2:0, ,ug#o;

(e4) o {la F1=0, F=0,B<0, H<0, or
“e 8] Fr=0, =B =0, By <0.

(f) If o(a,z,y) = 0, then the system is Hamiltonian and it possesses i (with 1 < i < 4)
weak singular points of the types indicated below if and only if one of the following
conditions holds

f1 $,8, 8 ¢ & <0, D<0, R>0,S>0;
(
(f2) 88 c¢c,c & pu>0 D<0, R>0,S>0;
(f3) $,8, C < /1/0:07D<07R7é0a
[a] po <0, D>0, or
(fa) 88 & Bl m<0, D=0, T<O, or
] wo=R=0,P#0, U>0, K+ 0;

] 1o>0, D>0, or
] wo>0, D=0, T<O, or

(fs) s ¢ &
V] wo=R=0, P#0, U>0, K =0;

[@] po<0, D=T=P=0, R#0, or
Bl po=0, D>0, R#0, or

Us) 8 < Y[y po=0, D=0, PR£0, or
0] po=R=P =0, U#0;

(f7) c & p >0, =T=P=0, R#0.

The invariant polynomials used in the above theorem are constructed as follows
Fi(a) =Aa,
Fo(@) = — 2A2 A3 + 2A5(5As + 3A9) + Az(Ag — 3A10 + 3411 + Apn)—
— A4(104s — 349 + 5410 + 5A11 + 5A12),
F3(@) = — 1047 A + 245(As — Ag) — As(2A4s + Ag + A1 + A11 + Ar2)+
+ As(bAs + A1p — A11 + 5A12),

Fu(@) = 20ATAy — Ao(TAs — 4Ag + Aro + A11 + TAr2) + A1 (6A14 — 224:5)—
—4A33 + 4 A3,

F(a) =Ar,
B(a) = — (3As + 249 + A1g + A11 + A1),
H(a) = — (Aq + 245),
G(a,x,y) =M + 32H,
and
B1(@) ={ (77, D2)"" [12D1Ts + 2D% + 9D, Ty + 36 (11, D2) V]

—2D4(Ts, Do) " [D3+12T5)+ D3 [ D1 (T, 1)+ 6( (T, €1) ), D2) V] /144,
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Bo(@) ={ (17, Do)V 875 (T, D>) ™ — D3 (T, 1) — 4Dy (15,01) ", 22) )+

+ [(T D “)} * (8T, — 2

7, Da) (875 — 3Ty + 2D73) ¢ /384,
83(&7 Z, y) - D2 (4D2 + Tg + 4T9) + 3D DQ(TG + 4T7) — 24T3(D Tg)
B4(C~L, x, y) =Dy (T5 + 2D201) — 302(D% + 2T3)

Here by (f,g)® is denoted the differential operator called transvectant of index k (see [24]) of
two polynomials f, g € R[a, z,y]

k
k oFf 9*g
(k) — _1)»
(f.9) hzz:o( 1) (h) Dk dyh dxhdyF—h’

and A;(a) are the elements of the minimal polynomial basis of affine invariants up to degree
12 (containing 42 elements) constructed in [9]. We have applied here only the following ele-
ments(keeping the notation from [9])

A=A, Ay = (Ca, D)®)/12,
&—[ D2)W, Do), Dy) M /18, Ay = (H,H)®),
=(H )(2 /2, Ag = (B, H)?)2,
[Cg,E)m D)8, As = [D, H)®,Dy)V /s,
= [D, D3)"), Dy)", D) /48, A = [D,K)®,D,) "8,
A11 = (F7 K)® /4, Ay = (F,H)® /4,
A1g = (B, C2)®) /36, Ay = (B, F)® /4,
Agz = [5 Do (1)7F)(1 )(1 )(1 /128, Asy = [D,13)(2)7Dg)(1)7[?)(1),D2)(1)/64,
where

A=(Cy,Ts — 2Ty + D2)® /144,

D= [200 y — 8Ty — 2D2) + C1 (65 — Ts — (C1, T5)™ + 6D1(CL Dy — Ts) — 9D%02} /36,
E= [D1(2T9 ~Ty) — 3(C1, To)) — Do(3T5 + Dng)] /72,

F = [6D?(D? — 4Ty) + 4Dy D2(Tg + 6Ty) +48Cq (Do, Tp) ") — 9D3T,+288D, E

@ (D)
_ 94 (CQ,D) +120 (DQ,D) 360 (D, Tr) M +8Dy (DQ,T;))(U} /144,

oy
Il

{16D1 (D2, Ts)™M (3C1 Dy — 2C Do + AT3) + 32Cy (D2, T) ™! (3D, Dy — 5T + 9T%)
+2(Dy, To)"V (27C1 Ty — 18C,D? —32D1 T + 32 (Co, T5) ™" )

+6(Dy, Tr)M [8C(Ts — 12Ty) —12C) (Dy Dy +T7) + D1 (26C, Dy +32T5) +Cs (9T +96 T3 )|
+6 (D2, Ts) ™ [32C0 Ty — C1 (12T + 52D, Dy) —32C5D?] + 48D (D, 1)\ (2D3 — Tk)
— 32D Ty (Do, To)") + 9D3Ty (Ts — 2T%) — 16Dy (Co, Ts) ™ (D? + 4T3)

+12D; (C1, Ts)® (CL Dy — 2C2D1) + 6D, Do Ty, (Ts — TD3 — 42T)

£12D; (Cy, Ts) ™ (T5 + 2Dy Dy) + 96 D2 [Dl (1, T6)Y + Dy (Co, Te)(“}

— 16Dy DT (2D3 + 3Ts) — AD D, (D3 + 3Ts + 6Ty) + 6D D3 (TT5 + 2T+)
—252D1 Dy Ty Ty} /(283%),

(T + 4T, + 4D3)/72 = (palev). o) /4

(=Ts + 8Ty + 2D3) /72,

(C2,C2)® = 2 Hess (Ca(,y))

K
H
M
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and

Ty = (Co, )V, Ty = (Co,Co)Y, Ty = (Co, D)™,
(4) Ty = (01701)(2) ., TIs = (01702)(1) , T = (01702)(2) ,
Ty = (C1,D2)",  Ts=(Co,C2)®, Ty = (Co, Do)

are the G L-comitants constructed by using the following five polynomials, basic ingredients in
constructing invariant polynomials for systems (3)

Ci(a,z,y) = ypi(z,y) — 2qi(z,y), (i=0,1,2),

(5) ~ _Opi | Ogi
Dz(a7$»y) - aCU + a_yv

(i=1,2).

The affine invariants 7; (j = 1,2, 3,4) which are responsible for the number of vanishing traces
of the finite singularities (see [34]) are constructed as follows.

We consider the polynomial o(a, z,y) which is an affine comitant of systems (3)

P 9Q

g(dvx’y) = % + a_y = Uo(d) +O’1((L,£L’, y) (E Dl(a’) + DQ(&,iE,y))7

and the differential operator £ =z - Ly —y - Ly (see [6]) acting on R[a, z, y], where

0 1o} 1 ad ad 1 0
L =2 = 2b b =bo1 =—;
! @00 8@10 + 10 8@20 + 2&01 8&1 + 0 b0 8b + 0 a0 86 20 2 01 abu’
0 0 1 0 0 0 1 0
Ly =2 — 2b bor=— + =bio=—.
2 aooaa01 + a018a02 + 5405 o + 006601 + bo1 b0z + 5 1oab11

Applying the differential operators £ and (x, ) (i.e. transvectant of index k) in [34] is defined
the following polynomial function (named trace function)

4 1 o (3) ‘ 4 _

(6) W) =D G (oi, 5£<”<uo>) W'=Y Giwt
2:0 ’ i=0

L

(i)

where the coefficients G;(a) =

(UL :ul)(z)a i =0,1,2,3,4 (go(d) = ,UO(E'/)) are GL-
invariants.
Finally using the function T (w) the following four needed affine invariants 74, 73, T2, T1 are
constructed [34]
1 d'T

Z' dwl w=og

Ta-i(a)=

,1=0,1,2,3 (T2 =%(00)),

which are basic schematic affine invariants for the characterization of weak singularities via
invariant polynomials (see Proposition 3).

The invariant polynomials D, P, R, S, T, U and V are defined in the next section (see (11)).
In what follows we also need the following invariant polynomials:
Bg(&,%y) = (02 5)(1) = Jacob (C2a5) ’
By(a,x,y) = (Bs, B3)'? — 6B3(C, D)),
By(@) = Res,, (C2, D) /y° = —27%37 (By, By)",
Ba(a,x,y) = —((D, 1)®, H)" x (D, H)®,
Bs(a,z,y) = Da[((Ca, D2)), Dy)) = 3(Cy, K)?],
Bg(a,z,y) = Cl —4CyHCs.
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and
n(@) = Discrim (Ca(z, y)) = (M, M)® /384,
- N(a,z,y) = 4K — 4ﬁf;~ R(a,z,y) = E~+ 3~2f(,
0(a) = Discrim (N (a,z,y)) = —(N, N) /2,
L(a,z,y) = 16K — 32H — M; 61(a) = 161 — 260 — 1640.

3.2. Number and multiplicities of the finite singularities of quadratic systems. The
conditions for the number and multiplicities of the finite singularities of quadratic systems are
first constructed in [6].

We shall use here the notion of zero—cycle in order to describe the number and multiplicity
of singular points of a quadratic system. This notion as well as the notion of divisor, were used
for classification purposes of planar quadratic differential systems by Pal and Schlomiuk [25],
Llibre and Schlomiuk [22], Schlomiuk and Vulpe [30] and by Artes and Llibre and Schlomiuk [2].

Definition 1. We consider formal expressions D = > n(w)w where n(w) is an integer and
only a finite number of n(w) are nonzero. Such an expression is called a zero—cycle of P2(C)
if all w appearing in D are points of Py(C). We call degree of the zero—cycle D the integer
deg(D) = > n(w). We call support of D the set Supp (D) of w’s appearing in D such that

n(w) # 0.

We note that Po(C) denotes the complex projective space of dimension 2. For a system
(S) belonging to the family (3) we denote v(P,Q) = {w € C2 | P(w) = Q(w) = 0} and
we define the following zero—cycle D, (P,Q) = ZweV(P’Q) I, (P, Q)w, where I,(P,Q) is the
intersection number or multiplicity of intersection of P and @ at w. It is clear that for a
non-degenerate quadratic system deg(D,) < 4 as well as Supp (D,) < 4. For a degenerate
system the zero—cycle D (P, Q) is undefined.

Using the affine invariant polynomials
(9) ,U;()(El), D(d)7 R(EL, ZZJ, y)7 S(a‘7 l’, y)7 T(a’v $7 y)’ U(&, IE, y): V(da IZ?, ?J)

(the construction of these polynomials will be discussed further), in [6] the next proposition
was proved.

Proposition 4. ( [6]) The form of the divisor D (P, Q) for non-degenerate quadratic systems
(3) is determined by the corresponding conditions indicated in Table 3, where we write p+ q +
r¢ 4+ s¢ if two of the finite points, i.e. r°, s, are complex but not real.

4. THE GLOBAL DIAGRAM FOR THE FINITE SINGULARITIES OF QUADRATIC SYSTEMS. SOME
NEEDED INVARIANTS.

We note that the polynomials (9) were constructed in [6] (see also [3]) using the basic ingre-
dients (5) in constructing invariant polynomials for systems (3) and applying the differential
operator (x,%)*) (i.e. transvectant of index k).

Here we shall use the new expressions for the polynomials (9) (constructed in [34]), which are
equivalent to the old ones but make more transparent their geometry and allow us to observe
the dynamic of the finite singularities. More exactly we shall use the polynomials pp(a) and
1i(a,x,y) constructed in [6] as follows

po(@) = Res.(pa(z,y), g2(2,9)) /v,

(10) ) 1 .
‘ui(a”a:’y) = J‘C(l)(#o)v 1= 17 "747

where £ (1g) = L(LOY (1p)). Their geometrical meaning is revealed in the following two
lemmas.
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Table 1
No Zero—cycle Invariant No Zero—cycle Invariant
D, (P,Q) criteria 1 D,(P,Q) criteria
1 tq+r+s Ho 70, D <0, gl Ly =0,D<0,R#0
pTgq R>07S>0 pTq Ho ) s
2| p+qg+re+s© o #0,D >0 Mip+q¢+r°| pp=0D>0R#0
c c c c M0#07D<07R§0 _ _
3| p+q-+r+s i Z0D<0S<0 12 2p+4q o =D=0,PR#0
4 2p+qg+r o #0,D=0,T <0 |13 3p wo=D=P=0,R#0
5 2p+q° + e o Z0,D=0,T>0 |14 p+q NO:RU:;)E)P#O’
}LO#O,D:TZO, c c ,U‘OZR:O7P5£07
6 2p +2q PR > 0 15| p°+q U<o
c c #07&07D:T:0a ,U'OZR:OaP?éOv
7 2p° +2¢q PR < 0 16 2p U=0
Mo#O,D:T:O, M(J:R:P:O,
i Pta P-oR#A0 || P U £0
Mo#O,D:T:O, M(]:R:P:O,
9 4p P-R-0 18 0 U=0,V#£0

Lemma 5 ([6]). The total multiplicity of all finite singularities of a quadratic system (3)
equals k if and only if for every i € {0,1,...,k — 1} we have p;(a,z,y) = 0 in Rlz,y] and
(@, z,y) #0. Moreover a system (3) is degenerate if and only if p;(a,z,y) =0 in Rlz,y] for
every 1 =0,1,2,3,4.

Lemma 6 ([7]). The point My(0,0) is a singular point of multiplicity k (1 < k < 4) for a
quadratic system (3) if and only if for every i € {0,1,...,k — 1} we have ps—;(a,x,y) =0 in
Rlz,y] and pa—r(a,z,y) # 0.

Using the invariant polynomials u; (¢ = 0,1,...,4) in [34] the polynomials (9) are constructed

as follows

D= [3((u3, 13) @, pi2) ) = (6pops — Bpps + p, m)““} /48,
P =12p04 — 3papis + pi3,

R =37 — 8popa,

S =R? - 1642P,

T =18u5 (33 — Spiapta) + 2p0(2u5 — Ipa piapis + 2713 pua) — PR,

U =3 — 4popia,
Vv =H4.

(11)

Considering these expressions we have the next remark.

Remark 7. If uo = 0 then the condition R = 0 (respectively R =P =0; R=P =U = 0;
R=P=U=V =0) is equivalent to p3 = 0 (respectively p; = pa = 0; pu1 = po = pusz = 0;
p1 = pig = pz = pa = 0).

On the other hand, considering Lemma 5 we deduce that the invariant polynomials p; (1 =
0,1,...,4) are responsible for the number of finite singularities which have collapsed with
infinite ones. So taking into account the remark above and Proposition 4 we could present a
diagram, which is equivalent to Table 1. So we get the next result.

Theorem 8. The number and multiplicities of the finite singular points (described by the
divisor D (P, Q)) for a non-degenerate quadratic system (3) is given by the diagram presented
i Fig.1 .

We are interested in a global characterization of the singularities (finite and infinite) of the
family of quadratic systems. More precisely we would like to extend the diagram of Fig.1
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S g+ rs]
D<0 L
R<0vS<0 5 ;

> N
P2t vt

T>0 ,
b0
R0t
T=0 PR<O[55c1 07

R7 0
3
08 PR-0
B R=0
<
20 lorarr]

D>0
/.L17é0 p+qc+,r(:

P#0
by

po 7 0

P:()
o =0 U>0
,Uf27é0 U<0 p(#qc
=0 U=0
p3# 0 l
pi2=0 paF 0 0
p3=10
pa=10

S]

FiGure 1. Diagram for Finite Singularities of Quadratic systems

adding the infinite singularities (their number and multiplicities) and then including the types
of all these singularities. Moreover we wish to distinguish the weak singularities (if it is the
case) as well as their order. This is one of the motivations why we consider again the class
of quadratic systems with centers as well as the class of Hamiltonian systems, the topological
classifications of which could be found in articles [17, 15, 16] and [18], respectively.

On the other hand we would like to reveal the main affine invariant polynomials associated
to the singularities of quadratic systems, having a transparent geometrical meaning. And it is
clear that all the conditions we need have to be based on the invariant polynomials contained
in the diagram of Fig.1.

Thus in this article new geometrical more transparent affine invariant conditions for distin-
guishing topological phase portraits of the two mentioned families of quadratic systems are
simultaneously constructed. For this purpose we need the following G L-invariant polynomials



COMPLETE GEOMETRIC INVARIANT STUDY... 13

constructed in tensorial form in [32] (we keep the respective notations)

« « «
I =a;, I :aﬁag, I3 :apagq p 0vq008

Y pq — 42,8 7 -Pa _ B 7 pg
ag,e™, I, = ap g, 0l Is =afa ePbq,
— 0%aB Y 48 _oPa — o B Y 0 _pg.Ts — o B Y 8 _pg.rs
Is = ajalajapse™, In = ap.agqap.055e™e™, Iy = ap.ag,a5,a3,7€",

_ o, B v 5§ _pg.rs _ o, B v, 6 v _pq _ o, B v 0 v _pg.rs
Iy = ay,ap,a7,a5.e%€"™, Lo = ajagajagq.ap,e™, Iz = ayaga) a0,

(12) p Ygrysta
o« ) v T rs _ _ ol
I = apafa}aaqaﬁsawaf,‘Tepqs , Lis =a%"%bep, Tig=a affaaﬂ,
_ a B .q,P _ o, B.7 0 _ a B v 5
Iy = a%a’a Qo 5Epgs I3 =a%a U508 Iy =a A5 A0 Ay
— OB Y0 G — . B0 6 K _pg
Irs = a%a a5a5, 005, Iso=a Ay, 0n,, 00 57
«@ ) v «@ ) v
Iss =a aﬁa“’aaﬁaﬁyaéu, Iss = a aﬁalagqaﬁyaéﬂepq,
_ o B — 4P 0 — a8 7 — 4P LaB..4q
K1 =aggx”, Kz =ahz%2le,, Ks=aga,,x", Ks;= Qo gt 2l Epg,
_ B Y 70 — 4P, B d o B Y 0 u
(13) K7 =a%Bya’adx"z’ Kip = abag, vz 2%y, Kiz = agag,as,z°z",
— 40,8 Y 0 o .Pg — Pd — %P 4
Ky = A Qg g0 s 0n, XM, Ko = aPxleyy, Koo =a“abale,,,
_ q fe _ L« Y .0 _ L« Yy 0 v
Koz = apaaﬂ:z:*alﬂﬁsz,,q7 Kor =a agvawx , K31 =a agyaﬁ(;awx“m ,
where €11 = €90 = el =22 =0, €19 = —e9; = €'2 = —2! = 1. We note that the expressions
for the above invariant are associated to the tensor notation for quadratic systems (3) (see [32])
dxjfj § oo i a.B 1_ 1_ 1_ 1 1 _
o a7 + @, + @, g7, a” = ago, 61 = dio0, G5 = do1, 11 = 020, (33 = 402,

- _ . 2 _ 2 _ 2 _ 2 _ 2 _
(j,a,8=1,2); a® = bgg, aj = big, a3 = bo1, ai; = bao, a3y = boz,

1.1 _ 2 _ 2 _
ajy = ay; = a11, Ay = az = bi1.

5. THE FAMILY OF QUADRATIC SYSTEMS WITH CENTERS

The proof of Theorem 1 is based on the classification of the family of quadratic systems with
centers given in [33]. Using the expressions (12) of [33] we get the following G L-invariants (we
keep the respective notations adding only the ”hat”)

. 3
(14 G = I21g — 281512 + 615110, [ =417 — 330y —4l31y, 4= 1—2(21314 + L 1y),
14 4

6 =27l — Iy — 1817, & = LIs(II; + 2Iy0) — 417 — I315.

We note that in [33] the expressions of the invariants é and & are used directly, but we set these
notations for compactness.

According to [33] (see Lemmas 2-5) the next result follows.

Proposition 9. Assume that for a quadratic system with the singular point (0,0) the conditions
I = Is = 0 and Iy < 0 hold. Then this system has a center at (0,0) and via a linear
transformation could be brought to one of the canonical forms below if and only if the respective
additional G L-invariant conditions hold

L 2
(S§C)) { ;; x ?_1;;291 3g;yy’_ 2(525‘é 0), & I3hi3 #0, 513 — 214 = 1313 — 1015 = 0;
() i =y+2nay, (wm#0), _ .
(S37) { § = —x + 122 + 2may — 2, & I3 =0, I13 #0;
c z=y+2(1—e)xy,
(55) { = Zix Jr(dlg Jr)ezz < ILi3=0, Iy #0;

s 2
(557) {m—y+2cxy+by, & 1y =0;

y=—r—azr?—cy? ce{0,1/2}

where w = m?(2n — 1) — (n — 1)2(2n +1).
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Table 2

Conditions for the existence of a center [statement (b) of Proposition 3J:

T3 #0, Ta=F1 =F=F3F, =0, TzF <0, (bs)

Additional conditions for configurations chj(;?ﬁ (}9&2%228 No.
D<o I:(<0 ¢, 8,8 8; NN, N 1
K>0 c,s,n,n; S, S N 2

0 £ 0 . .
Mo # D=0 n <0 e, fi S 3
n>0 c,n; S, S, N 4
D=0 en, 8 ; S (SN | 5
fo =0 ¢, 53 N, (SN, (SN | 6

Conditions for the existence of a center [statement (c¢) of Proposition 3]:

Ta=Ts=0,To #0, (¢5) U (co)

n<0 c, $,n,mn; S

D<o - }E<0 ¢, $,8,8; N N,N

1o <0 K>0 ¢, $,n,n; S:g,N
n=2~0 c, $n,n; (g)S 10
n<0 c,c; S 11
D>0 n>0 c,c; S, S, N 12
n=20 qc;@)S 13
D<O ¢ c 8,85 N 14
o > 0 n<0 c, $; N 15
D>0 n>0 ¢, $; S,N,N 16
n=0 c,$;@)N 17
[?#0 2 <0 c,c;(__f)S 18
n<0 p2 >0 es; )N 19
po =0 K=0 ¢, s; N 20
>0 If;éo c,$;(_’~1’)S,N7_N 21
K=0 ¢,$; N,(})SN,(})SN | 22

Proof of Theorem 1. We shall consider each one of the systems (Sf))f (Sic)) and will compare
the G L-invariant conditions [33] with the affine invariant ones given by Tables 2 and 3.

5.1. The family of systems (S{C)). For these systems we calculate the respective GL-
invariants

(15) Lis =125g(1+¢%)/8, I =5(1+g%)/2
and the affine invariant polynomials

Ta=Fi=Fo=Fs=0, Tz=-125g(1+g%), F3=0625¢>(1+ g%

16
16) go=-2(1+g%), D=5184¢°(1+4°), n=4(1+g").

According to [33] in the case I13 # 0 the phase portrait of systems (SY)) is given by Vulso and
hence we have the configuration of the singularities ¢, n, S, S, N.
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Table 2 (continued)

Conditions for the existence of a center [statement (e) of Proposition 3]:
71:73:75:()’0#07(64)
Additional conditions for configurations 0??9?7/? gg:lzartiif('zgs No.
n<0 c, 6/:9(3) ;S 23
po <0 n>0 c,esiy; S, S, N 24
n= 0 C, é(\S(g) H (E)S 25
o >0 ¢, 5(3); N 26
D <0 ¢,s,s; N, (3 PEP—H| 27
p N <0 ¢; S, (3 PEP—H 28
1251 0 _ —
D >0 L<0| ¢;S, (3)PEP—PHP | 29
po =20 ~ = —
’ N>01 fso| N, (YH-HHH | 30
L=0 c; [oo, S] 31
L#0 ¢; N,(3)H—HHH | 32
o | #s #0 ~ i — (22\
= L=0 c; (3)S, (3)PEP—H | 33
ps =0 G (6 [|]7‘D)§ (6 [”7 Q)) 34
Conditions for the existence of a center [statement (f) of Proposition 3]:
Hamiltonian systems = o =0, (f1)-(f3), (f5), (f7)
U <0 c $,88%;, N,N,N 35
D<O0 c,c$8; N 36
1o > 0 D>0 c7A$; N 37
Do T#0 c,8,Cpgy; N 38
- T=0 C, §(3) 3 N 39
=0 w1 #0 ¢,s,8; N,(3)PEP — H| 40
0= =
pn1 =0 c,$; (g)N 41

On the other hand the condition I3 # 0 implies 73 # 0 and as F; = Fo = F3F4 = 0, the
conditions provided by the statement (by) of Proposition 3 are satisfied. Moreover, as ug # 0,
D > 0 and 7 > 0, we obtain the respective conditions given by Table 2 (row No. 4).

5.2. The family of systems (Séc)). In this case calculations yield:

Liz=m [m2(2n ) —(n—-0D%2n+ ],
6 = —8(1 4 2n)%(I> + m? + 2in).

(17)

Iy — Is = 4ln(I? + m? + n?),

According to [33] (see Lemma 4) the phase portrait (and this yields the respective configuration

of singularities) of a system from the family (Séc)) is determined by the following G L-invariant

conditions, respectively

Ig—1Ig >0 & Vg =
Iy —Ig=0 & Vip =
(18) Ii—Ig<0,6<0 & Vo =
197I8<0,8>0 & Vi =
Iy—Ig<0,6=0 & Vs =

¢, S,8,8,N, N, N;
c.s.N. (1) SN, (1) SN
¢, s,n,n,S,S, N;

¢, [,

¢,n,8(2), N, (5) SN.
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Table 3
%;Z_' Phase ggg: Phase %;)Z_' Phase
ration portrait ration portrait ration portrait
1 Vulm 15 Vulg 30 VU115
2 Vulor 16 Vulqg 31 Vulys
3 Vulso 17 Vuls 32 Vulqs
4 Vu152 18 Vulgo 33 Vullz
5 Vulsy 19 Vuls 34 Vulog
6 Vul17 20 Vulg Vu111 if Bl 75 0
7 Vulas 21 Vulyg Vulg if By =0, B3B4 <0
Vidly if B3Bs < 0 Vilys if BsBs < 0|| 20 [Vulg if By = 0, BsBy > 0
8 Vulg if BsBs >0 22 | Vulyg if BsBs >0 Vulyp if B = B3 =10
Vaulio if B3 = 0 Vuliy if B3 =0 [, Vuly if By # 0
Vulog if B3Bs < 0 93 Vulag if 61 <0 Vuls if By =0
9 Vul% if B3Bs >0 Vul23 if6, >0 37 Vulo
Vul27 if B3 =0 24 Vulg4 38 Vul7
10 Vulos 25 Vulos 39 Vuls
11 Vulgo 26 Vulg 40 Vulg if Bl % 0
12 Vu121 27 Vul5 Vul5 if Bl =0
13 V’U,lgo 28 Vul12 41 Vulg
14 Vulg 29 Vull4

On the other hand calculations yield
Ta=Fi=Fo=Fs=0, ToF=-8m*m?2n—1)—(n—0>*2n+1)]
po = —4n2, D = —192(1 + 2n)2(1* + m? + 2In) = —48y, K = —Aln(z® + y?).

We observe that the condition I13 # 0 implies T3F < 0 and as F; = Fo = F3F4 = 0 we
conclude that the conditions provided by statement (b4) of Proposition 3 are fulfilled. Moreover
comparing (17) and (19) if Dpg # 0 we obtain

(19)

sign (I — Is) = —sign (K), sign (§) = sign (D) = —sign (1),
and Iy — Ig = 0 (respectively 5= 0) if and only if pg = 0 (respectively D = 0). So taking into
consideration that the condition K < 0 implies D < 0, we obviously arrive to the conditions
provided by Table 2 (the case of statement (b) of Proposition 3).

5.3. The family of systems (Séc)). For these systems calculations yield
(20)
Ta=T3=T1=F=F1=0, To=4d(d+2—-2¢e), B=-2, H=4d(1—e), o =2y.

Therefore according Proposition 3 for a system (Séc)) could be satisfied either the conditions
of statement (c) (if 72 # 0) or of statement (e) (if 72 = 0). We shall consider each one of these
possibilities.

5.3.1. The case T3 # 0. Following [33, Lemma 3] for systems (SéC)) we calculate
(21) 14:71, ]3:7(d+e)7 ]gzd’ 3:2(d+2*26), ’?:667

and therefore the condition 73 # 0 is equivalent to I3 # 0. It was above mention that the
conditions of statement (¢) (Proposition 3) are satisfied in this case, i.e. there should be two
weak singularities on the phase plan of these systems. So according to [33] (see the proof of
Lemma 3) the phase portrait (and this yields the respective configuration of singularities) of
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a system from the family (S?EC)) with the condition Iy # 0 is determined by the following
G L-invariant conditions

(22)
Al > 0, B&<O, & Vi = ¢ 8,8;N;
e, ;N if (3 —4)(F—6) #0;
{@19 >0, B4 >0, I(4—4) <0, e, 55 )N if §=0;
. 5 s Vo= — .
or ¥=0, <0, ¢, s; (N if 4 =4
¢, $;N if 4 =6;
¢, c; S if A(F —4) #0;
Ig<0,0<4<4, >0, &V = e () if 4=0;
cc; (39 if 4 =4
Iy <0, >4, >0, & Vo = ¢c¢;S,S,N;
Iy>0,0<4<4 & Vi = {Zz(%]gvalef}f:O
- R c, $,n,n; S if 4 #£4;
B<0,0<4<4, & Vs = {C7$’n’n;(g)§ ifvf:&
and
(i) Aly<0,4(3%—6)>0, & Vi, Vo,Vig = ¢,8,55;N,N,N;
(23) (i) Iy <0, 4 =6, & Vig,Vir,Vis = ¢5; N, ()SN, (1))SN;

(iii) B <0, 4<% <6, & Vo, Vor,Vas = ¢, 8n,n;8,5, N.

On the other hand for systems (Séc)) we calculate
o = 4de(e — 1)%, D =192e(d + 2 — 2¢)*, n = 4d(2 — 3e)?,
(24) K =4(e —1)(dz® — ey?), p1 =4de(e—1)(d+e—1)y,
/L2|6:0 =d(d + 2)z?, u2|6:1 = d(dz? + ?).
So considering (21) and (24) if Dugn # 0 we obtain

sign (ko) = sign (Y1o),  sign (D) =sign (89), sign (n) = sign (Io(4 — %)),
and due to T2 # 0 we have that g = 0 (respectively D = 0; = 0) if and only if (% — 6) =0
(respectively 4 = 0; 4 = 4). Therefore it is not too hard to determine that in cases (22) (when
we have the unique phase portrait) the conditions from Table 2 (the case of statement (c) of
Proposition 3) are equivalent to the respective conditions from (22).

We consider now the remaining cases (23). According to [33] the phase portraits Vauls, Vo, Vig
(vespectively Vulig, Vir, Vis; Vulgg, Var, Vag) are distinguished via the GL-invariant §l3ly.
More precisely in the mentioned cases the phase portrait corresponds to Vulg (respectively
Vulyg; Vulag) if 411y > 0; Vulg (respectively Vulig; Vaulag) if 4IsI4 < 0 and it corresponds to
Vulyg (respectively Vuli7; Vular) if Is = 0.

On the other hand for systems (Séc)) we calculate
By = —6(2+d —3e)(d+e)x’y, B3Bs=288d(2+ d — 3e)e(d + e)xy>.

We claim that in all three cases (23), if Bz # 0 then we have
(25) sign (B3 Bs) = sign (Y314) = sign (e(d + ¢)),
and Bs = 0 if and only if I3 = 0 (i.e. d+ e = 0). To prove this claim we shall consider each
one of the cases (i) — (i4¢) from (23).

Case (i). Considering (21) we have de < 0, e(e — 1) > 0 and herein it can easily be detected
that sign (d + 2 — 3e) = —sign (e) and this leads to (25).

Case (ii). As e = 1 we have B3Bj = 288d(d — 1)(1 + d)z*y? and due to d < 0 this evidently
implies (25).

Case (iit). In this case considering (21) we have 2/3 < e < 1 and d 4+ 2 — 2e < 0. Therefore
d <0 and 2 — 3e < 0 that gives d +2 — 3e < 0. As e > 0 we again obtain (25).
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It remains to note that due to the conditions discussed above in all three cases we can have
Bs =0if and only if d + e =0 (ie. I3 =0).

Thus our claim is proved and obviously we arrive to the conditions of Table 3 corresponding
to the configurations 8, 9 and 22 respectively.

5.3.2. The case T3 = 0. Then d(d + 2 — 2¢) = 0 and considering (21) for systems (Séc)) we

have Iy3 = 0. We recall that by Proposition 3 in this case for a system (S§C>) has to be satisfied
the conditions of the statement (e), i.e. besides the center we could not have another weak
singularity. So according to [33] (see the proof of Lemma 3) the phase portrait (and hence, the

respective configuration of singularities) of a system from the family (Séc)) with the condition
Iy = 0 is determined by the following G L-invariant conditions

Iy =0,5(5 — 6) > 0, & VW = css:iN ()PEP—H;
. S, ()PEP—H it 4 +0;
Iy=0, 0<4 <3, o v, - 465 RP if 4 # 05
¢; (5. ) PEP—H if =0

o~

Iy=0, 3<4 <4, ¢; S, (3) PEP— PHP;

o
=
U

Iy =0, 4=4, & Vis = c;foo, S
c; N, (D)H - HHH if 4 # 6;
(26) To=0,4<9<6, < Vi3 = (3) . Y?é
¢; N, (5)H—HHH if 4=6;
3:07 &IQ>O719(47¢Y)<07 < VB o= 053(3);]\7;
B=0,0<4<3, & Vo = ¢ é53); S;
. ¢, €83y; S if A # 4,
B=03<4<4, A TR
c, 65(3);(3)5 if 4=4;
B=0,4<4<6, & Vo = ¢ 53 S, S, N;
B=0,4=0, & Ve = c; ©]0).

We remark that by (21) the condition Iy = 0 gives d = 0 whereas the condition B =0 gives
d=2(e—1).

1) Assume first Iy =0, i.e. d = 0. Then for systems (S§C>) we obtain
po=n=0, D=—1536e(e—1)>, N =4(1—e)(2e —1)y?,
L=8e(3e—2)y, i =4de(e—1)%y, us=2(1—e)x’y+ ey

As 4 = Ge (see (21)) this implies 4 —6 = 6(e — 1), y —4 = 2(3e —2) and 4 — 3 = 3(2¢ — 1). So
if (3 —3)(% — 4)(¥ — 6) # 0 then we have

(27)

o8) sign (D) = —sign (3(7 — 6)), sign (V)] 1., = sign (5 - 3),
sign (f’)’{D>0,ﬁ>o} = sign (¥ — 4).

Moreover if yi; # 0 then N =0 (respectively L = 0) if and only if 4 = 3 (respectively 4 = 4).
Therefore to determine the cases (26) (when Iy = 0) the conditions of Table 2 (the case of
statement (e) of Proposition 3) are equivalent to the respective conditions of (26).

2) Suppose now 3 = 0 and Iy # 0. Then d = 2(e — 1) # 0 and for systems (Séc)) we have
po = 8e(e —1)%, n=28(e—1)(2—3e)® u =12e(e —1)%y,

us =ey®, 0 =128(e —1)(2e — 1)(3e — 2)(5 — 6e).
We observe that if pg # 0 then

(29)

sign (1o) = sign (Y(3 — 6)), sign (n)], oy = sign (¥ — 4),

(30) . o
sign (91)|{“U<0’n<0} = sign (§ — 3).
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We claim that the conditions 41y > 0 and Ig(4 —4) < 0 corresponding to phase portrait Vo (see
(26)) are equivalent to po > 0. Indeed, as Iy = d = 2(e — 1) # 0 we obtain Iy = 12e(e — 1)
and hence the condition 4y > 0 is equivalent to po > 0. It remains to note that in the case
e(e —1) > 0 we have Iy(4 —9) = —4(e—1)(3e —2) < 0. So 3e —2 # 0 (i.e. ¥ # 4) and we
arrive to the respective conditions from Table 2.

Considering the remaining cases (26) corresponding to the condition 3 = 0 and (30) we arrive
to the respective conditions provided by Table 2 (the case of statement (e) of Proposition 3).

5.4. The family of systems (Sic)). For these systems we have o0 = 0, i.e. this is a class of

Hamiltonian systems with center. Moreover any simple point which is not a center must be an
integrable saddle. Calculations yield

& =8(a — 2¢)?(b? — dac +8¢?), Iy = 2a(ab® + 4c?),

31
(81) Lo = —b* — (a+¢)?, L = b(3ac* — a® + ab® + 2¢3).

According to [33] (see the proof of Lemma 2) the phase portrait (and hence, the respective
configuration of singularities) of a quadratic system from the family (Sff)) is determined by
the following G L-invariant conditions

c, $; N if a#0;
a<0,ora=he=0, < Va = ¢, 53); N if =0, Ig #0;

~

es; )N if =0, Iy =0;

(32) a>0, Is <0, < Ve, Vo, Vi, Vi = ¢, 8,8,8; N,N,N,
a>0, Is >0, & Vs, Va4 = ¢ 88, N;
a@>0, Ig=0, & Vs, Vs = ¢s$s$; N,(3)PEP - H;
a=0, Ig #0, & V7 = ¢, $,CPy; N.

On the other hand for systems (.S, ic>) calculations yield

po = a(ab® +4¢3) = Ig/2, D = —48(a — 2¢)*(b* — dac + 8¢%) = —64,

(33) w1 = 2ab(a — c)x — 2(ab® + 2ac® 4 2¢3)y.

We observe that the condition Is < 0 implies ¢ # 0 (then by Proposition 9 we have ¢ = 1/2) and
a < 0. In this case we evidently obtain & > 0. Similarly the condition & < 0 gives ¢ # 0 (i.e.
¢=1/2) and a > 1 and this implies Ig > 0. Herein we conclude that in the case Ig& # 0 (i.e.
oD # 0) the conditions provided by Table 2 (the case of statement (f) of Proposition 3) for
distinguishing the configurations of the singularities are equivalent to the respective conditions
of (32).

Assume now Igé =0 (i.e. oD = 0).

1) If Iy = 0 then by (31) we have a(ab? + 4¢3) = 0 and then pp = 0. We claim that in the
case & # 0 we obtain & > 0 and this is equivalent to p; # 0. Indeed as the condition & # 0
implies (a? 4 ¢?)(b% + ¢?) # 0, we conclude that the condition Is = 0 gives a < 0 and ¢ # 0.
So as ¢ = 1/2 we obtain & > 0. On the other hand since a — ¢ # 0 we obtain that p; = 0 if
and only if ab = a + ¢ = 0 but in this case the condition Ig = 0 implies & = 0. So our claim is
proved and this shows the equivalence of the respective conditions of Table 2 and (32).

Assume Ig = 0 = &. Then considering (32) we obtain portrait Vo and the configuration of
singularities indicated in the row 41 of Table 2. It remains to observe that the condition above
is equivalent to po = 1 = 0.

2) Suppose now & = 0 and Ig # 0. This implies yo # 0 and D = 0, i.e. (a — 2¢)(b? — 4ac +
8¢?)=0. So we obtain

T = —48b%c*y*(2ca + by)? (b — cy)?, g = 2b%c, po = 4c¢*(b* + 2¢2),
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if a = 2c and

3b?
T = ~ 109648 (b% + 4c®) 2 (br — 2cy)? (b*x + 8%z + 2bcy)?,
1 1
Tie = — 132 4 402)2 = A2 (B2 2
16 6463b(b+ ), o 1662(b+ )7 (b + 8¢7),

if a = (b + 8¢?)/(4c) (we note that ¢ # 0 due to I # 0).

Thus clearly if & = 0 and Is # 0 then the condition I14 = 0 is equivalent to T = 0 and as
1o > 0 we obtain that the respective conditions provided by Table 2 (see rows 38 and 39) are
equivalent to the corresponding conditions from (32).

To finish the proof of Theorem 1 it remains to examine the conditions for distinguishing the
different phase portraits which correspond to the same configuration of singularities. We have
three groups of such phase portraits: (i) Vs — Vi1; (i) V3, Vy and (4i1) Vi, Vs. According to
[34] quadratic systems (Sic)) possess one of the mentioned phase portraits if and only if the
following conditions are fulfilled
Va if Iig =0;

Vi if Lig #£0;
Vs if Iig=0;
Vo if g #0;
Vs if Lo #0, Lis =0, &> 0;
Vo if T #0, Iig =0, £ < 0;
V10 if IlO = 0,
V11 if IIG ?é 0.

a>0,1g>0 = {

a>0,Is=0 = {
(34)

a>0,Ig<0 =

On the other hand for systems (Si@) we have
By = —Lig[b* + (a — 3¢)?], Tis = b(3ac? — a® + ab® + 2¢*),
Bz = —3abx" — 6(a — 3¢)(a + )2y + 18bcx’y? + 6b%xy® + 3b(a — 2¢)y?,

and hence the condition I14 = 0 is equivalent to B; = 0. Herein we arrive to the conditions
provided by Table 3 for the portraits V3 — Vi respectively.

Next we examine the conditions for the phase portraits Vg — Vi;. First we observe that
by (31) the condition I3 = 0 yields b = a + ¢ = 0 and this implies I14 = B3 = B; = 0.
Therefore in the case I1g # 0 (this is equivalent with By # 0) we get Vuli1 and in the case
Ip = 0 (then B3 = 0) we obtain Vulig (see Table 3, configuration number 35). So it remains
to consider the phase portraits Vulg and Vulg. We claim that in the case I;4 = 0 we have

sign (§) = sign (B3 By). Indeed assuming I16 = 0 we shall examine two cases, b =0 and b # 0.
1) If b = 0 (then I15 = 0) a straightforward calculation for systems (Sic)) yields
£ =—4(a—c)(a+c)®, BsBy=—-192(a—3¢)3ct(a+ c)’z*y?, Iz = 8ac®,

and as Is < 0 (i.e. ac <0 ) we get (a — c¢)(a — 3¢) > 0. So clearly our claim is proved in this
case.

2) Assume now b # 0. Then I < 0 gives ac < 0 and hence we can set a new parameter u as
follows u? = (a — 2¢)/a. Herein we have ¢ = a(1 — u?)/2 and calculation gives

I = ab(2b — 3au + au®)(2b + 3au — au®) /4.
Hence due to ab # 0 the condition I3 = 0 gives b = +au(u? — 3)/2 and then we calculate

€= —a'(u® = 1) =31 +u?/2, Is=a*(2—u®)(1+u?)?/4,
B3By = —3a'%(u? — 3)*(1 + u?)®(uz £ ) (uy F x)*/16.
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As Is < 0 we have u2 —2 > 0 and this implies u? — 1 > 0. Therefore sign (£) = sign (BsBy), i.e.
our claim is valid and we arrive to the respective conditions given by Table 3 in the considered
case.

As all the cases are examined Theorem 1 is proved. O

6. THE FAMILY OF HAMILTONIAN QUADRATIC SYSTEMS

In this section in order to prove Theorem 2 we need the following invariant polynomials
defined in [18] (we keep the respective notations adding only the “hat”)
=TIy, H=-Ku, 4G = —5LK;+2I5Ks+4K32 + 8Kz,
2F = —Ih, K1y — ALKy + 4Ko Koy, V = K11 Ko + K2,
R=3H?>-2Gn, §=2FHi?+G*i*—AGHfi+ 3H* — 4p*V,
P=G*—6FH+ 123V, U=F?—4GV,

T = 9F%0® — 14FGHi + 12FH? + 2G°fi — 2G*H? — 8GRV + 12H?1V,
W, = K3 — 4K5Ko, Wa = —Ky K1y — 2K3K11 + 4K5Ko7 + 6K7K)3,
Ey =45 — 51,05 — 24159, Ey = I3 + 3215 — 16154,

Es = I3 + 32(12I5 115 — 312 + 161s3),
32D = 4I2(31,E, — E3) — Ey(AI;Ey + IsEy),

T, = (93 + IsE))? + 9I2(I2Ey — 31%) + I3 (3L, E, — Ej),

U, = 3IsLo(315 15 + 16130) — 2I5(3I5 135 + 2415155 + 1613157)
—|—3152(I5119 + 10135) — 2I16(20215 — 19 + 1213).

The proof of Theorem 2 is based on the classifications of quadratic Hamiltonian systems
given in [1] and [18]. We use the notations of [1] whether the system has a center as Vy or
if not as Hamg. In the first paper the global phase portraits of this family were studied. In
the second one there are determined the affine invariant criteria for the realization of each one
of the 28 possible topologically distinct phase portraits constructed in [1]. That is, the phase
portraits of the systems

de  O0H dy 0H
(36) — ==, ==_
dt Jy dt ox
where H(x,y) is a polynomial of degree 3 in the variables z and y over R.

According to the paper [4] for the quadratic Hamiltonian systems we have

2

1
(37) H(z,y) =;m0j(l‘,y),

where Cj(z,y), j = 0,1,2 are the polynomials (5). So the 3rd degree homogeneous part of the
polynomial H(z,y) is the polynomial Hs(z,y) = Ca(z,y)/3. As it is shown in [1] via linear
transformations the non-zero form Hs(z,y) can be derived to one of the 4 canonical forms

a) w(z® —y?); b) (@® +9°)/3; o) 2’y d) 2°/3.

By (7) we observe that the invariant polynomials n and M are respectively the discriminant
and the Hessian of the binary form Cs(z,y). So considering also [18] we arrive to the next
proposition.

Proposition 10. Assume that for a quadratic system the condition a—axP(m, y)+ B—%Q(m, y)=0
holds, i.e. it is Hamiltonian. Then this system could be brought via an affine transformation
and time rescaling to one of the canonical forms below if and only if the respective conditions
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Table 4
Affine invariant conditions for configurations ng?ggg;flz%%gs No.
D <0 $,%,8,¢c; N,N,N 1
D>0 $,8; NN, N 2
fio <0 T#0 $,8,Pa); N,N,N 3
D=0 T—0 R#0 $,53); N,N,N 4
R=0 (hhhhhh) 4y ; N, N, N 5
D<o (R > 0)&(S > 0) $,8,¢c,c; N 6
R=<0)VvV(S<0) N 7
D>0 $,c; N 8
T<0 $,¢, gy N 9
Lo > 0 _ p(z)
D-0 PR <0 N 11
PR -0 R#0 ¢, 5i3); N 13
R=0 (hh)y; N 14
D <0 s,5,c; N,(j)PEP—H| 15
i #0 D >0 s; N,(; PEP—H | 16
D=0 P #0 $,épay; N, (3) PEP — H| 17
P=0 S3); N,(;j) PEP—H | 18
M N,()H-H 19
U<o M#0 : (i
7 2
o =0 20 M=0 (3)N 20
H2 M .$: N, () PEP — PEP | 21
U0 M#0 |88; ,(2)/\
7 2
=0 M=0 ,C; (Piz\
=0 o) (5) N 23
uz 70 s; () PEPEP — P 24
pws=0, | M+#0 | N,(3) PHP—PHP | 25
H2 =0 pa #0 7 4
M=0 (5) N 26
p3 =g =0 S 27
hold
Jr—a+bx+cy—2xy, o >0

= —ax — by — 322 + 92,

h) {L—a+bx+cy+y,

B8 — az — by — a2 &S <0

T*a-&-bﬂ‘-‘r(’y-f—T

=B —azx — by — 2y, & n=0 M#0;

(h) T =a+bxr+cy, ~
(Sy7) {yzﬁ—ax—by—ﬁ & n=0, M=0.

Remark 11. For a quadratic Hamiltonian system the relation n = —27ug holds. This could be
easy established via the frontal evaluations of the invariant polynomials n and po for systems

(") = (55"
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Table 5
%OZ_' Phase %OZ_' Phase %OZ_' Phase
g portrait g portrait A portrait
ration ration ration
Vu111 if B1 ;é 0 8 Vulg 20 Ham11
Vulg if B1 = 07 BgB4 <0 9 Vul7 21 Hamzo if B3 75 0
1 V’ulg if B1 = 07 3334 >0 10 Ham17 Ham21 if B3 =0
Vulw if Bl = Bg =0 11 Ham11 22 Vulg
Hamgg if B = 0,BgB4 <0 12 Hamag 23 Hamq7
? | Hamns it {Bl 70, or 13 Vul 24 H
amsas 1 By =0,B3By >0 Ub2 amig
3 Hamgy if By #0 14 Hamqr 25 Hamgs
Ham24 if Bl =0 15 Vul6 if Bl 75 0 26 Ham11
4 Hamas Vuls if By = Hamyy if M #0
Hamys 16 Hamyo o7 |[Ham if M=0,B<0
6 Vauly if By #0 17 Hamys Hamys if M =0,Bg>0
Vauls if By = 0 18 Hamig Hamyg if M=0,Bg=0
7 Hamqq 19 Hamqo

Proof of Theorem 2. In what follows we shall consider each one of the systems (Sih)) — (Sflh))
and will show that the conditions given in [18] for distinguishing the phase portraits of the
respective systems, are equivalent with the affine invariant provided in Tables 4 and 5.

6.1. The family of systems (Sih’)). In this case according to [18, Theorem 3] the phase
portrait (and this yields the respective configuration of singularities) of a system of the family

(S}h’)) is determined by the following affine invariant conditions

D<o0,U.=0, T. >0,
D<0, U.=0, T. <0,
D<o0,U.=0, T.=0,
D<o, U, #0,
D=0,0.=0, T,=0,
D=0,0.=0, T, <0,
D>0,U,#0, or
{ﬁzm U.=0, T. >0,
D>o0,U,=0, T, <0,
D=0, U.#0,

t ¢ TO

9

Vs
Vo
Vio
Vi
Hamos

Ham24
H&mzs

H amsae
H amay

L I

4l

$,8,8,¢c;N,N,N;

$,8 8 c;N,N,N;

$,8,8,¢; N, N, N;

$,8,.8,¢c;N,N,N;

(hhhhhh) 4y ; N, N, N;

$,8,CP(2); N, N, N;
$,$;N,N,N if D +#0;
$,3(3; N, N, N if D =0;

$,8; N, N, N;

$,8, P2y s N, N, N.

According to [1] systems (Sfm) have at least one real singular point. So we may assume
a = =0 due to a translation and then calculations yield

po=—12<0, D=48D, By =U./2,

Bs =18(a* — 4b* — 2ac — 3¢*)x3y — 18bc(3x* + 622y* —

y*),

=4(b? — ac)?[~8a®c — (36¢* + b?)a® + 6¢(4b? — 9c?)a + 3(b* + 33b%c* — 9¢*)],
« =108bc(a — 2b — 3¢)(a + 2b — 3c)(a — 2b + ¢)(a + 2b + ¢),
[(a+2b+c)*(a—2b—3c)> + 24bc(a + 2b + c)*(a — 2b — 3¢)*—

— 384b%*c*(a + 2b + c)(a — 2b — 3c) — 4096b°¢°],

By =288[(a® — 4b* — 2ac — 3¢%)x — 8bey][24bcx + (a® — 4b* — 2ac — 3c¢?)y).
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Remark 12. We claim that in the case ﬁc = 0 we have sign (%6) = sign (B3 B4) and 7’0 =0
if and only if Bg = 0.

Indeed assume U. = 0. We observe that the change of variables (z,y,t) — (z, —y, —t) keeps

the systems (S{h)) with a = 8 = 0 except the sign of the parameter b, which will be changed.
Hence without loss of generality we could consider only the equality be(a+2b+c¢)(a—2b—3c) = 0.

If bc # 0 then by (39) evidently we get T. = —219333¢3. On the other hand for a =
—2b — ¢ as well as for @ = 2b + 3¢, we obtain B3B; = —2123%3c3(z — y)4(3z + y)? and
B3 = —18bc(x — 4)3(3z + y). So our claim is proved in the considered case.

Assume now bc = 0. Then calculations yield
T. =3456(a — 3¢)*(a + ¢)*, BsBy =3T.a*y?/2, Bs=18(a —3c)(a+ )’y
if b=10 and
T. = 3456(a — 2b)*(a + 2b)>, BsBy = 3T.a*y?/2, Bs = 18(a — 2b)(a + 2b)z®

if ¢ = 0. Now evidently the proof of the claim is completed.

6.1.0.1. The case D < 0. Then D < 0 and considering (39) and Remark 12 we conclude that
the conditions for phase portraits Vs — V41 given by Tables 4 and 5 are equivalent to the
respective conditions in (38).

6.1.0.2. The case D > 0. According to (38) in this case we could have only the phase portraits
Hamgs and Hamgg. So considering (39) and Remark 12 we again arrive to the equivalence of
the respective conditions from (38) and from Tables 4 and 5.

6.1.0.3. The case D = 0. By (38) we have: (i) the phase portraits Hamgy (if U. = 0, T, < 0)
and Hamgz (if U, # 0) with the same configuration having three finite singularities (one double);
(#) the phase portrait Hamgs (if U,.=0, T, > 0) possessing only two real finite singularities
(one triple); (7ii) the phase portrait Hamas (if U,=T, = 0) possessing only one finite singularity
of multiplicity four. Considering the diagram in Fig.1 and (39) we conclude that the conditions
for determining the mentioned phase portraits from Tables 4 and 5 are equivalent to the
respective conditions from (38).

6.2. The family of systems (Séh)). In this case according to [18, Theorem 4] the phase
portrait (and this yields the respective configuration of singularities) of a system from the

family (Séh)) is determined by the following affine invariant conditions

13>0, or $,c;Nifﬁ7é0
5_7_p ~ & Vs = R RS
D=T=P=0,R#0, ¢, 83 N if D =0;
ﬁ<0 f%>0 S>0U =0 & Vs = $.$cc;N;
f)<0,1§>0,S>O,Uc7é0, & Vi = 8.8 cc;N;

(40) ﬁ:O, f<0, & V7 = 8¢,y N;
D R< S <
Q<Q\7(R_Q\)/y (S 0)7 or & Hamypy = N;
D=T=0, PR<O,
9:(& Tf O,Aor o Hamp — cp(g), N if T;é()
D=T=P=R=0, (hh)@y; Nif T =0;
ﬁszO, 131/%>07 & Hamgg = cp(2)7cp(2),N.

Taking into account (35) and (11) a straightforward calculation gives for systems (Séh))
(41) po=1, D=D/48, T=T/6, R=R/4, S= S/48, P=P, U.= 2B.

Herein considering the diagram from Fig. 1, it is easy to observe that the conditions for
determining the phase portraits from Tables 4 and 5 corresponding to the case pg > 0 are
equivalent to the respective conditions from (40).
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6.3. The family of systems (S?Eh)). For this family of systems we have n = po = 0 and

M # 0. According to [30, Table 2] at infinity we have two real singularities of total multiplicity
at least four. So in order to determine exactly the configuration of the singularities at infinity
we shall use the classification of the behavior of the trajectories in the neighbourhood at infinity
of quadratic differential systems, given in [30].

In this order of ideas we need the following additional invariant polynomials, defined in [30]
K@) = (M, K)®, k(@) = (M,C1)®,
Ki(a,z,y) = pi(2.9)q2(2.y) — p2(z, 1)1 (z, ),
Ko (@, x,y) = 4(T,w) P+ 3D (Cr,w) ) — () (1673 + 374/2 + 3D3),
Ks(a,z,y) = C2(4Ts + 3Ty) + Co(3CoK — 2C1T7) + K1 (3K, — C1D5),

(42)

where w = M — 8K. According to [18, Theorem 2] the phase portrait of a system from the
family (Séh)) is determined by the following affine invariant conditions

Vs & f)<0, ﬁczo;
Vo < D<0,U.#0;
Hamis < R=0, U<O0;
Hamis & R=U=0, V #£0;
(43) Hamig < {12>0’ or ~
D=0, R+0, U.=0;
Hamsy < R=0,U >0, Wy#0;
Hamsr < R=0,U>0, Wy=0;
Hamyy < D=0, U, #0.

For systems (Séh)) calculations yield
D = 108c*(ab + 28)? — 4¢*(b? + 2ac — 40)°,
U, = —108¢*(ab+28), R =12¢%7,
o =0, M =—7222, D =48D, B, = U./2,
w1 = 4dex, L =242% > 0, K =—42® < 0,

(44)

6.3.1. The case R # 0. In this case the condition ¢ # 0 (i.e. p1 # 0) holds and as L > 0 and
K <0 according to [30, Table 4] at infinity the behavior of the trajectories corresponds to
Figure 9, i.e. we have the following configuration of singularities N, (;)PE'P — H.

We observe that in the case D = 0 and (i.e. D = 0) by (43) we have the phase portrait
Hamyo with one finite singularity (if U, = 0) and Hamys with two finite singularities (if U, # 0).
Considering the diagram (Fig.1), (44) and the fact, that the condition D2 + U2 # 0 implies
R # 0, we conclude that the conditions for determining the phase portraits from Tables 4 and

5 corresponding to the case po = 0 and puy # 0 are equivalent to the respective conditions of
(43) (i.e. the conditions for the phase portraits Vs, Vg, Hamig and Hamgs).

6.3.2. The case R = 0. Then ¢ = 0 and for systems (Séh)) we calculate

U= - 4a) [(ab+2B8)z — (b — 4a)y}2x4, Wy = —62(ab + 28),
(45) po =t =0, pz = (da —b%)a%, U=U, B; =3Ws,
2= =0, Ky = 768(b% — 4a)a?,

We observe that sign (U) = sign (U) = —sign (u2) = sign (Ks).
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6.3.2.1. Assume first U < 0. According to (43) the phase portrait of a system (S?Eh)) corre-
sponds to Hamis (without real finite singularities). On the other hand as pg = p; = » =
s =0, pp >0, L >0 and K> < 0, according to [30, Table 4] at infinity the behavior of the
trajectories corresponds to Figure 8, i.e. we arrive to the configuration N, (g)H —H.

6.3.2.2. Admit now U > 0. Then by (43) we obtain the phase portrait Hamgg if /V[72 #0
and Hamg; if /Wg = 0 in both cases having two finite integrable saddles. As regarding the
configuration of infinite singularities we observe that us < 0, L > 0 and K < 0. So following
[30, Table 4] we obtain Figure 9, i.e. we get the configuration N, (3) PEP — PEP. This leads to
the total configuration 21 of Table 4. It remains to note that by (45) the condition Wy =0is
equivalent to Bs = 0.

6.3.2.3. Assume finally U = 0. Then o = b2/4 and for systems (S:gh)) we have
(46) po=p1 = p2 = pi3 =0, pg = a*(ab+26)%a*/4 =V,

According to (43) the phase portrait of a system (Séh)) corresponds to Hamis if V # 0 and
we get degenerate systems (with the phase portrait Hamy4) if V = 0. We claim that in the
first case at infinity we have the configuration IV, (3) PHP — PHP. Indeed following [30] for

systems (Séh)) we have
=1 =0 L=242%>>0, K=-42> <0, R=—82%2 <0

and according to [30, Table 4] at infinity the behavior of the trajectories corresponds to Figure
28, i.e. we arrive to the mentioned above configuration and our claim is proved.

Considering that the condition M # 0 for the family (Séh)) holds and (45), we conclude that
the conditions for determining the phase portraits from Tables 4 and 5 corresponding to the
case po = p1 = 0 are equivalent to the respective conditions from (43) (i.e. the conditions for
the phase portraits Hamia, Hamys, Hamag and Hamay).

6.4. The family of systems (Sih)). For this family of systems we have n = pgp = p1 = 0 and
M=0. According to [30, Table 2] at infinity we have one real singularity of total multiplicity
at least five. So in order to determine exactly the configuration of the singularities at infinity
we shall use again Table 4 from [30].

According to [18, Theorem 1] the phase portrait of a system from the family (Sih)) is deter-
mined by the following affine invariant conditions

Vo & P#£0,U>0;
P+0,U<0, or

Hamy, < ﬁ:ﬁ:O,XA/#O, or
P=U=V=0,W <0

(47) PO

Haomys & P=U=V=0,W; >0;

Hamig < ﬁ:ﬁ:f/:ﬁ/\l:Q

Hami; < ]37&0,[7:0;

Hamis < P=0, U #0.

For systems (Sflh)) calculations yield

P=c42t, U= [(ac — b*)? + 4c(ba + ¢B)] (b + cy)?a?,

(48) — ~ ~ .
n=M=po=p1 =0, po=cz?, K=0,P=P, U=U.

6.4.1. The case P # 0. In this case according to (47) a system from the family (Sih)) has one
of the following phase portraits: Va (if U> 0), Hamq: (if U< 0) or Hamy7 (if U= 0). In all
the cases at infinity we have a multiple node, which according to [30, Table 4] is of multiplicity
five, as the conditions py = u1 = M =K =0and w2 > 0 (as ¢ # 0) are verified. More precisely
at infinity we have Figure 30, i.e. the nilpotent singular point (3) N.
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6.4.2. The case P =0. Then ¢ = 0 and for systems (Sih)) we have
U= 88, V= [(a2 — aba — V?B)x — bzay] z2,

(49) _ - -
p2 =0, M3:b3$3a U=U, pa=V, K=0, Klz_b$3~

So if U # 0 (i.e. b # 0) according to (47) ~we get the phase portrait Hams with a finite
integrable saddle. On the other hand as u3kK; = —b*z* < 0 according to [30, Table 4] the
configuration of infinite singularities corresponds to Figure 33, i.e. (g) PEPEP — P.

Assume U =0 (i.e. b=0). In this case we have
(50) us =0, pg = V=a2t W, = (a® 4+ 4B)x* — daz®y = Bg, K;=0
and we shall consider two subcases: g4 # 0 and pg = 0.

1) If pa # 0 systems (Sﬁh) ) are non-degenerate having the phase portrait Hamii (see (47),
as V # 0). Clearly at infinity we have a singular point of multiplicity seven. As pu4 > 0 and
I~(3 = 0 according to [30, Table 4] at infinity we get Figure 30. More exactly we have the
configuration (g) P — P as the infinite singular point is degenerate.

2) Assume finally pg = 0, i.e. @ = 0. Then systems systems (Sih)) withc=b=a=0
become degenerate possessing the phase portraits indicated respectively in (47).

It remains to note taking into account (48), (49) and (50) that for the family of systems

(Sih)) the respective conditions for determining the phase portraits from Tables 4 and 5 in all
the cases considered above are equivalent to the respective conditions from (47).

As all the cases are considered Theorem 2 is proved. ]
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