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Constant Gaussian Curvature Hypersurfaces in Hadamard Manifolds

1 - Introduction.

Let Mn+1 be a Hadamard manifold. In this paper we prove the existence of constant Gaus-
sian curvature hypersurfaces in M satisfying prescribed boundary conditions. Explicitely,
let (Σ0, ∂Σ0) be a smooth, convex, immersed hypersurface in M with smooth boundary.
Let N be the exterior unit normal vector field over Σ0 and define E : Σ0×] −∞, 0] → M
by:

E(x, t) = Exp(−tN).

We have chosen here an unusual sign convention which we prefer for technical reasons. We
say that a C0,1 hypersurface (Σ, ∂Σ) is a graph beneath Σ0 if and only if there exists a
C0,1 function f : Σ0 →]−∞, 0] and a homeomorphism ϕ : Σ0 → Σ such that:

(i) f vanishes along ∂Σ0 (i.e. ∂Σ = ∂Σ0); and

(ii) for all p ∈ Σ0:
ϕ(p) = Expp(−f(p)N(p)).

Let (Σ̂, ∂Σ̂) be a C0,1, convex, immersed hypersurface in M which is a graph below Σ1.
We will prove:

Theorem 1.1

Choose k > 0 and suppose that the Gaussian curvature of Σ0 is less than k.
Suppose, moreover, that, for some ε > 0, the Gaussian curvature of Σ̂ is no less
than k+ ε in the weak (Alexandrov) sense and that the second fundamental form
of Σ̂ is also no less than ε in the weak (Alexandrov) sense. If Σ0 is locally and
globally rigid, then there exists a smooth, convex, immersed hypersurface Σk such
that:

(i) Σk is a graph beneath Σ0;

(ii) Σk lies between Σ0 and Σ̂ as a graph beneath Σ0; and

(iii)the Gaussian curvature of Σk is constant and equal to k.

Remark: This follows immediately from Lemma 10.1.

Remark: The weak (Alexandrov) notion of lower (and upper) bounds for curvature is
defined in Section 4. Local and global rigidity are defined in Section 9.

Remark: The hypothesis that M be a Hadamard manifold is only made for simplicity of
presentation. The same result, with appropriate modifications, continues to hold in more
general manifolds.

The interest of this result lies in its application via the Perron method to the solution of
more general boundary value problems. Indeed, let Γ = (Γ1, ...,Γn) be a disjoint collection
of closed, smooth, embedded (n − 1)-dimensional submanifolds of Hn+1. Applying the
machinery developed by Guan and Spruck in [10] with Lemma 11.4 (which constitutes the
more precise version of 1.1 when M = Hn+1) in place of Theorem 1.1 of [8], we immediately
obtain:
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Constant Gaussian Curvature Hypersurfaces in Hadamard Manifolds

Theorem 1.2

Choose k > 0. Suppose that there exists a C2, locally convex, immersed hypersur-
face Σ ⊆ Hn+1 of Gaussian curvature is no less than k such that ∂Σ = Γ. Suppose,
moreover, that Σ is locally strictly convex along its boundary. Then there exists
a smooth (up to the boundary) locally strictly convex immersed hypersurface
M ⊆ Hn+1 with ∂M = Γ of constant Gaussian curvature equal to k. Moreover, M
is homeomorphic to Σ.

Remark: The machinery developed in this paper is in fact also applicable in any affine flat
manifold (see section 11). Theorem 1.2 also holds in any affine flat Hadamard manifold, of
which a large supply is obtained by small deformations away from hyperbolic space within
the family of convex PGL manifolds, as described by Loftin in [16] and [17].

Our reasoning follows the now classical analysis of Caffarelli, Nirenberg and Spruck first
laid out in [3] and first applied to constant curvature hypersurfaces by the same authors
in [5]. These techniques are further developed in one direction by Guan in [8] yielding an
existence result for constant curvature hypersurfaces in Rn+1, of which Thereom 1.1 is a
generalisation, and which forms the engine driving the existence result of [10] (also proven
independantly by Trudinger and Wang in [23]). They are likewise developed in another
direction by Rosenberg and Spruck in [19], yielding existence results for hypersurfaces of
constant Gaussian curvature in hyperbolic space satisfying prescribed asymptotic boundary
conditions. This latter result is further generalised by Guan, Spruck and Szapiel in [11] and
Guan and Spruck in [12] to the case of other curvatures different from Gaussian curvature.
Within this context, our results may be viewed as a refinement of [11] and [12] and a
generalisation of [10]. Other related results can be found in [9] and [15].

Our work is based on two key innovations which simplify greatly the analysis required and
thus permit us to obtain results in our current more general context. The first, which is
merely a question of perspective, is to analyse the Gauss Curvature Equation intrinsically
along the hypersurface as in Section 6, and the second is the use of Sard’s Lemma in
Section 8 to generate smooth families of hypersurfaces interpolating between the data and
the desired solution. Such a topological approach to the deformation stage of the continuity
method is already suggested by the work [8] of Guan. However, it turns out that Sard’s
Lemma used in conjunction with the Fredholm Theory of elliptic PDEs circumvents the
necessity of studying hypersurfaces whose curvature depends, not only on position, but
also on the tangent space at any point. Since this latter case probably constitutes the
greatest technical difficulty in the study of constant Gaussian curvature hypersurfaces, it
is a relief for it to be conveniently excluded in this manner. This case still nonetheless
constitutes an interesting open problem which the techniques outlined in this paper are
not yet sufficiently mature to resolve. Finally, we show in Section 12 how our techniques
can be easily adapted to recover both the results [8] of Guan and [19] of Rosenberg and
Spruck.

The generality of Theorem 1.1 suggests that we may further generalise Theorem 1.2 to the
case of arbitrary Hadamard manifolds. The main difficulty here lies in understanding the
singularities that may arise by taking limits of viscosity solutions of the Gauss Curvature
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Equation. It is interesting to observe how the affine flat condition repeatedly recurs as
an obstruction, and is, in fact, the only one. One is therefore led to wonder whether this
condition is accidental or fundamental. At this stage, we remain confident that it is not
the latter (since this would otherwise exclude manifolds as simple as Hn×R). We therefore
believe that Theorem 1.2 remains valid in any Hadamard manifold.

This paper is structured as follows:

(a) in Section 2, we show how first order bounds arise as a consequence of convexity;

(b) in Section 3, we derive the Gauss curvature equation for a graph in a general Rieman-
nian manifold;

(c) in Section 4, we introduce the concept of weak (Alexandrov) lower and upper bounds
for curvature;

(d) in Sections 5 and 6 we obtain a-priori second order bounds over the boundary and
then over the whole hypersurface respectively. These bounds are then applied in Section
7 to obtain the compactness result, Lemma 7.1;

(e) in Section 8, we use Sard’s Lemma to obtain smooth (albeit possibly empty) one-
dimensional families of hypersurfaces interpolating between the data and the solutions.
These are used in conjunction with the concept of local and global rigidity developed in
Section 9 to prove in Section 10 the existence result, Lemma 10.1, which immediately
yields Theorem 1.1;

(f) In Section 11, we study affine flat Riemannian manifolds and show that the singularities
that may arise in such manifolds are no different from those encountered Rn+1. This is
used to prove Lemma 11.4, which, in conjunction with the machinery developed by Guan
and Spruck in [10] immediately yields Theorem 1.2;

(g) In Section 12, we show how minor adaptations of these techniques allow us to obtain
both the results [8] of Guan (Theorem 12.1) and [19] of Rosenberg and Spruck (Theorem
12.2); and

(h) In Appendix A, we prove the regularity of limiting hypersurfaces which are themselves
strictly convex. This result may be found in Caffarelli [2], but, given the general public
unavailability of these notes, we consider it preferable to provide our own proof here.

This paper was written whilst the author was staying at the Mathematics Department of
the University Autonoma de Barcelona, Bellaterra, Spain.

2 - First Order Control.

Let Mn+1 be an (n + 1)-dimensional Riemannian manifold. Let (Σ0, ∂Σ0) be a convex,
immersed hypersurface with boundary. Let N0 and A0 denote the outward pointing unit
normal and the second fundamental form respectively of Σ0. We define E : Σ0×]−∞, 0] →
M by:

E(x, t) = Exp(−tN0(x)).
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Constant Gaussian Curvature Hypersurfaces in Hadamard Manifolds

Remark: The change of sign ensures that convex hypersurfaces correspond to graphs of
convex functions.

We will say that a C0,1 hypersurface, Σ, is a graph beneath Ω if and only if there exists a
C0,1 function f : Ω →]−∞, 0] and a homeomorphism ϕ : Ω → Σ such that:

(i) f vanishes along ∂Ω (i.e. ∂Σ = ∂Ω); and

(ii) for all p ∈ Ω:
ϕ(p) = Expp(−f(p)N0(p)).

We refer to f as the graph function of Σ. In particular, since f is Lipschitz, its graph is
never vertical, even along the boundary. Consider the family of graphs over Ω. We define
the partial order “<” on this family such that if Σ and Σ′ are two graphs over Ω and f
and f ′ are their respective graph functions, then:

Σ < Σ′ ⇔ f(p) < f ′(p) for all p ∈ Ω.

Since ∂Ω is smooth, for all p ∈ ∂Ω, the set of supporting hyperplanes in TM to ∂Ω at p is
parametrised by R. Supporting hyperplanes may be locally considered as graphs over Ω,
and we obtain an analogous partial order on this set, which we also denote by <.

Let Σ̂ be a C0,1 convex hypersurface which is a graph over Ω. Let (Σn)n∈N be a sequence
of convex graphs over Ω such that for all n ∈ N, Σn > Σ̂. For all n, let fn be the graph
function of Σn.

Lemma 2.1

(fn)n∈N is uniformly bounded in the C0,1 sense.

Proof: For all n ∈ N∪{∞}, define Un by:

Un =
{
Expp(−tN0(p)) s.t. p ∈ Ω and 0 6 t 6 fn(p)

}
.

By the compactness of convex sets, after extraction of a subsequence, there exists U0 to
which (Un)n∈N converges in the Hausdorff sense. Moreover, the supporting hyperplanes
of U0 are transverse to the normal geodesics leaving H. Indeed, suppose the contrary and
let p0 ∈ ∂U0 be a point where the supporting hyperplane is not transverse to the normal
geodesic leaving Σ0. Taking limits ∂U0 > Σ̂. Since the tangent to Σ̂ along ∂Σ̂ is not
vertical, it follows that p0 lies over an interior point of Σ0. Let (pn)n∈N ∈ (∂Un)n∈N be a
sequence converging to p0. For all n ∈ N∪{0}, let qn ∈ Σ0 be the orthogonal projection
of pn onto Σ0 and let γn be the geodesic segment joining qn to pn. For all n ∈ N, γn ⊆ Un.
Taking limits, γ0 ⊆ U0. It follows that γ0 is an interior tangent to ∂U0 at p0. Therefore,
by convexity, γ0 ⊆ ∂U0. In particular, U0 has a vertical supporting tangent at q0, which is
absurd.

We assert that the supporting tangent hyperplanes of (∂Un)n∈N are uniformly transverse
to the foliation of normal geodesics leaving Σ0. Indeed, suppose the contrary. For all n,
let pn be a point in ∂Un and let Pn be a supporting tangent of Un at pn. Suppose that
(Pn)n∈N is not uniformly transverse to the foliation of normal geodesics leaving Σ0. After
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extracting a subsequence, we may assume that there exists p0 ∈ ∂U0 and a supporting
tangent P0 to ∂U0 at p0 to which (pn, Pn)n∈N converges such that P0 is tangent to the
foliation of normal geodesics leaving Σ0. This is absurd by the preceeding discussion. The
assertion is thus proven, and the result follows. �

3 - The Gauss Curvature Equation.

Let Mn+1 be an (n+1)-dimensional Riemannian manifold. Let (Σ0, ∂Σ0) ⊆M be a convex
immersed hypersurface with boundary. Let N0 and A0 denote the outward pointing unit
normal and the second fundamental form respectively of Σ0. Using the exponential map,
we identify an open subset of M with Σ0×]−∞, 0].

We will prove:

Proposition 3.1

Let f : Σ0 →]−∞, 0] be a smooth function. The Gaussian curvature of the graph
of f is given by:

K = ψ(x, f,∇f)−1Det(Hess(f) + Ψ(x, f,∇f))1/n,

where:

(i) ψ = ψ(x, t, p) is a smooth, strictly positive function and, for all R > 0 there
exists ε > 0 such that, if |t| < ε then ψ(x, t, p) is convex in p for ‖p‖ 6 R; and

(ii) there exists a smooth function Ψ0 such that:

Ψ(x, f,∇f)ij = A0,ij + f;if;kA0
k

j + f;jf;kA0
k

i + fΨ0(x, f,∇f).

Moreover, the graph of f is convex if and only if Hess(f) + Ψ(x, f,∇f) is positive
definite.

Example: We view Hn as a totally geodesic, embedded hypersurface in Hn+1. Let g0 and g
be the metrics of Hn and Hn+1 respectively. We consider the foliation of Hn+1 by geodesics
normal to Hn. Exceptionally, we reparametrise geodesics in a non-uniform manner in order
to make this parametrisation conformal. This facilitates the calculation of the connexion
2-form. Let α :]− π/2, π/2[→ R be such that, for all θ:

cos(θ)cosh(α(θ)) = 1.

Let N be the normal vector field over Hn in Hn+1. We define Φ : Hn×]−π/2, π/2[→ Hn+1

by:
Φ(x, θ) = Exp(−α(t)N(x)).

We easily obtain:

Φ∗g =
1

cos2(θ)
(g0 ⊕ dθ2).
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If Ω denotes the connexion 2-form of the Levi-Civita covariant derivative of Φ∗g with
respect to that of the product metric, then, for all X, Y tangent to Hn:

Ω(X,Y ) = −〈X,Y 〉tan(θ)∂θ,
Ω(X, ∂θ) = tan(θ)X,
Ω(∂θ, ∂θ) = tan(θ)∂θ.

Thus, if Ω ⊆ Hn is an open set, and if f : Ω →]− π/2, π/2[ is a smooth function, then the
Gauss curvature of the graph of f is given by:

K = cos(f)3(1 + ‖∇f‖2)−(n+2)/2nDet(f;ij − tan(f)(f;jf;j + δij))1/n.

This formula will be of use in the sequel. �

Let ∇0 denote the Levi-Civita covariant derivative of the product metric on Σ0×]−∞, 0].
Let g denote the pull back of the metric over M through the exponential map. Let Vol
denote the volume form of g and let ∇ denote the Levi Civita covariant derivative of g.
Trivially, ∇ coincides with the pull back through the exponential map of the Levi-Civita
covariant derivative of M .

Proposition 3.2

Let Ω := ∇−∇0 be the connection 2-form of ∇ with respect to ∇0. There exists
a smooth 2-form Ω0 such that, if X and Y are tangent to Σ, then:

Ω(x,t)(X,Y ) = A0(X,Y )∂t + tΩ0,(x,t)(X,Y ),
Ω(x,t)(X, ∂t) = −A0X + tΩ0,(x,t)(X, ∂t),
Ω(x,t)(∂t, ∂t) = tΩ0,(x,t)(∂t, ∂t).

Proof: When t = 0, by definition of A0:

∇XY = ∇0
XY + 〈∇XY,N0〉N0

= ∇0
XY −A0(X,Y )N0.

Thus, since N0 = −∂t, at t0:

∇XY = ∇0
XY +A0(X,Y )∂t.

Likewise:
∇X∂t = −∇XN0 = −A0X.

Finally, since the vertical lines are geodesics:

∇∂t
∂t = 0.

The result follows. �

Define f̂ : Σ0×]−∞, 0] → R by:

f̂(x, t) = f(x)− t.

6
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The graph of f is the level set f̂−1({0}). Observe that ∇f̂ is parallel to the downwards
pointing unit normal over the graph of f . Let Af denote the second fundamental form of
this graph. For all i, we define the vector field ∂̂i = (∂i, f;i)(x,f(x)). (∂̂1, ..., ∂̂n) forms a
basis of the tangent space of the graph of f .

Proof of Proposition 3.1: By definition:

Kn = Det(Af (∂̂i, ∂̂j))/Det(g(∂̂i, ∂̂j)).

However, since the graph of f is the level set f̂−1(0):

Af =
1

‖∇f̂‖g

(Hess(f̂)).

Moreover:
Hess(f̂) = Hess0(f̂)− df̂(Ω) = Hess(f)− df̂(Ω).

It follows that K has the specified form with:

ψ(x, f,∇f) = ‖∇f̂‖gDet(g(∂̂i, ∂̂j))1/n,

and:
Ψ(x, f,∇f) = −df̂(Ω).

When t = 0:
ψ(x, 0, p) = (1 + ‖p‖2)(n+2)/2n.

Thus, since the function p 7→ (1 + ‖p‖2)α is locally uniformly strictly convex for α > 1/2,
(i) follows.

Likewise, by Proposition 3.2:

Ψ(x, 0, p)(∂̂i, ∂̂j) = df̂(N)A0(∂i, ∂j) + f ;jdf̂(A0∂i) + f ;idf̂(A0∂j)
= A0,ij + f;if;kA0

k
j + f;jf;kA0

k
i.

(ii) follows.

Finally, the graph of f is convex if and only if Af is positive definite, and this completes
the proof. �

4 - Interlude - Maximum Principals.

Let Mn+1 be an (n+ 1)-dimensional Riemanian manifold.

De�nition 4.1

Let Σ be a C0,1 convex, immersed hypersurface in M . Choose k > 0. For P ∈ Σ,
we say that the Gaussian curvature of Σ is at least (resp. at most) k in the weak
(Alexandrov) sense at P if and only if there exists a smooth, convex, immersed
hypersurface Σ′ such that:

(i) Σ′ is an exterior (resp. interior) tangent to Σ at P ; and

(ii) the Gaussian curvature of Σ′ at P is equal to k.

7
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This notion is well adapted to the weak Geometric Maximum Principal:

Lemma 4.2, Weak Geometric Maximum Principal

Let Σ1, Σ2 be two C0,1, convex, immersed hypersurfaces in M . Choose P ∈ Σ1.
If Σ2 is an interior tangent to Σ1 at P , then the Gaussian curvature of Σ2 at P is
no less than the Gaussian curvature of Σ1 at P in the weak (Alexandrov) sense.

Proof: Let Σ′1 be a smooth, convex hypersurface which is an exterior tangent to Σ1 at P .
Likewise, let Σ′2 be a smooth convex hypersurface which is an interior tangent to Σ2 at
P . Let A1 and A2 be the respective second fundamental forms of Σ′1 and Σ′2 respectively.
Since Σ′2 is an interior tangent to Σ′1 at P :

A2 > A1.

The result follows. �

Remark: This result is often used in conjunction with foliations by constant curvature
hypersurfaces which then act as barriers. In the case where M = Hn+1, if we identify
Hn+1 with the upper half space in Rn+1, then we obtain families of constant curvature
hypersurfaces by considering intersections of spheres in Rn+1 with Hn+1. If the centre of
such a sphere lies on Rn, then its intersection with Hn+1 has zero curvature. If the sphere
is not entirely contained in Hn+1, then the intersection has curvature less than 1, and if it
is contained in Hn+1, then the intersection has curvature greater than 1.

We also have the strong Geometric Maximum Principal:

Lemma 4.3, Strong Geometric Maximum Principal

Let Σ1 and Σ2 be smooth, convex, immersed hypersurfaces in M of constant
Gaussian curvature equal to k. Choose P ∈ Σ1. If Σ2 is an exterior tangent to Σ1

at P , then Σ1 = Σ2

Proof: Σ2 is a graph beneath Σ1 near P . Let U be a neighbourhood of P in Σ1 over
which Σ2 is a graph. Let A be the shape operator of Σ1 and let f be the graph function
of Σ2. By Proposition 3.1:

Det(Hess(f) + Ψ(x, f,∇f))1/n = kψ(x, f,∇f),

for some Ψ and ψ. However:
Det(A) = k.

Thus, by concavity of Det1/n:

k

n
Tr(A−1(Hess(f) + Ψ(x, f,∇f)−A)) > k(ψ(x, f,∇f)− 1).

Moreover, by the proof of Proposition 3.1:

ψ(x, f,∇f) = (1 + ‖∇f‖2)n+2/2n + fψ0(x, f,∇f),

8
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For some smooth function ψ0. Thus:

k(ψ(x, f,∇f)− 1) = c1f + 〈b1,∇f〉,

for some smooth function c1 and vector field b1. Likewise, by Proposition 3.1:

Tr(A−1(Ψ(x, f,∇f)−A)) = c2f + 〈b2,∇f〉,

for some smooth function c2 and vector field b2. Thus:

Tr(A−1Hess(f)) + 〈b,∇f〉+ cf > 0,

for some smooth function c and vector field b. Since f 6 0 and f(P ) = 0, it follows by the
strong maximum principal that f = 0 over a neighbourhood of P . The result follows by
unique continuation of constant Gaussian curvature hypersurfaces. �

5 - Second Order Bounds Along the Boundary.

Let Mn+1 be an (n + 1)-dimensional Riemannian manifold. Let (Σ0, ∂Σ0) ⊆ M be a
smooth, strictly convex, immersed hypersurface. Using the exponential map, we identify
a subset of M with Σ0×]−∞, 0]. Let φ : M →]0,∞[ be a smooth, positive function. Let
(Σ̂, ∂Σ̂) be a C0,1, convex, immersed hypersurface such that:

(i) Σ̂ is a graph below Σ0;

(ii) ∂Σ̂ = ∂Σ0; and

(iii) for all x ∈ Σ̂, the Gaussian curvature of Σ̂ is greater than φ(x) + ε in the weak
(Alexandrov) sense, for some ε > 0.

Σ̂ serves as a lower barrier for our problem. Let (Σ, ∂Σ) ⊆ M be a smooth, convex,
immersed hypersurface such that:

(i) Σ̂ 6 Σ 6 Σ0;

(ii) ∂Σ = ∂Σ0; and

(iii) for all x ∈ Σ, the Gaussian curvature of Σ at x is equal to φ(x).

We aim to obtain bounds for the norm of the second fundamental form of Σ along the
boundary in terms of the data. To this end, we denote by B the family of constants which
depend continuously on the data: M , Σ0, Σ̂, ε, φ and the C1 jet of Σ (formally, B is the
set of continuous - or even locally bounded - functions over the space of data). When
supplementary data, D, (such as, for example, a vector field) is added, we denote by B(D)
the family of constants which, in addition, also depend on D.

We will prove:

Proposition 5.1

There exists K in B such that, if A is the second fundamental form of Σ, then,
for all P ∈ ∂Σ:

‖A(P )‖ 6 K.

9
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Remark: The strict convexity of Σ0 is only required in the last step of the proof, where it
is used to obtain uniform strict lower bounds for the restriction of the second fundamental
form to the tangent space of ∂Σ0. In the case where Σ0 is totally geodesic, this may be
shown using other geometric considerations.

Let P ∈ ∂Σ0 be a point on the boundary. Let Σ̂P ⊆ M be a smooth, convex, immersed
hypersurface such that:

(i) Σ̂P is a graph below Σ0;

(ii) P ∈ Σ̂P ; and

(iii) for all x ∈ Σ̂, the Gaussian curvature of Σ̂P at x is greater than φ(x) + ε.

Bearing in mind the results section 3, we will consider Σ and Σ̂P as graphs near P over
a hypersurface whose second fundamental form vanishes at P . Thus, let Σ1 ⊆ M be an
immersed hypersurface in M which is tangent to Σ0 at P and which is totally geodesic at
P .

Let Ω ⊆ Σ1 be an open set with P ∈ ∂Ω and f0 : Ω → R a function such that:

(i) Σ0 is the graph of f0 over Ω; and

(ii) f0(∂Ω) = ∂Σ0.

We observe in passing that, by convexity, after reducing Σ1 if necessary, f0 may be made
to be positive. ∂Ω consists of two components: we denote by ∂bΩ the subset of ∂Ω which
lies above the boundary of Σ0 and we denote by ∂iΩ the subset of ∂Ω which lies above the
interior of Σ0.

Proposition 5.2

There exists δ > 0 in B(P,Σ1) and a neighbourhood U of P in Σ which is a graph
over Bδ(P )∩Ω.

Proof: The radius over which Σ is a graph over Σ1 is determined by the C1 jet of Σ, which
is among the data defining B. The result follows. �

We thus replace Ω with Ω∩Bδ(P ) and let f, f̂ : Ω → R be the functions of which Σ and
Σ̂P respectively are the graphs below Σ1.

By Proposition 3.1, there exist functions ψ and Ψ and a positive number R > 0, which
only depend on M , φ and Σ1 such that:

Det(Hess(f) + Ψ(x, f,∇f))1/n = ψ(x, f,∇f).

Moreover:

(i) Hess(f) + Ψ(x, f,∇f) is positive definite;

(ii) Ψ(x, t, p), (∂pk
Ψ)(x, t, p) = O(d(x, P )) +O(t) where d(·, P ) is the distance in M to P ;

and

(iii) for t sufficiently small, p 7→ ψ(x, t, p) is a convex function in p for ‖p‖ 6 R.

10
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We define the matrix B by:

B =
1
n
ψ(x, f,∇f)(Hess(f) + Ψ(x, f,∇f))−1.

We define the operator L by:

Lg = Bijg;ij +Bij(∂pk
Ψ)ijg;k − (∂pk

ψ)g;k.

Proposition 5.3

There exists δ1 > 0 and ε1 > 0 in B(P,Σ1) such that, for d(x, P ) < δ1:

L(f − f̂) 6 −ε1(1 +
n∑

i=1

Bii).

Proof: There exists η1 > 0 in B such that, near p:

Det(Hess(f̂) + Ψ(x, f̂ ,∇f̂))1/n > ψ(x, f̂ ,∇f̂) + 2η1.

Define δ : Σ1 → R by:
δ(x) = d1(x, P )2,

where d1 denotes the intrinsic distance in Σ1. Near P :

Hess(δ) > Id.

There exists η2 > 0 in B such that, if we define ĝ by:

ĝ = f̂ − η2δ,

then, near P :
Det(Hess(ĝ) + Ψ(x, ĝ,∇ĝ))1/n > ψ(x, ĝ,∇ĝ) + η1.

Since Det1/n is a concave function:

Det(Hess(ĝ) + Ψ(x, ĝ,∇ĝ))1/n −Det(Hess(f) + Ψ(x, f,∇f))1/n

6 Bij(ĝ;ij + Ψij(x, ĝ,∇ĝ)− f;ij −Ψij(x, f,∇f))
6 Bij(f̂ − f);ij − η2

∑n
i=1B

ii +Bij(Ψij(x, ĝ,∇ĝ)−Ψij(x, f,∇f)).

Since Ψ(x, t, p) = O(d(x, P )) +O(t), near P :

Bij(f − f̂);ij 6 −η1 −
η2
2

n∑
i=1

Bii + ψ(x, f,∇f)− ψ(x, ĝ,∇ĝ).

However, sufficiently close to p:

ψ(x, f,∇ĝ)− ψ(x, ĝ,∇ĝ) 6 η1/3.

11
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Moreover, by convexity of ψ:

ψ(x, f,∇f)− ψ(x, f,∇ĝ) 6 (∂pk
ψ)(f;k − f̂;k + η2δ;k).

Since δ;k is continuous and vanishes at P , we conclude that, near P :

Bij(f − f̂);ij − (∂pk
ψ)(f;k − f̂;k) 6 −η1/3− η2/2

n∑
i=1

B11.

Bearing in mind that, for all k, (∂pk
Ψ)(x, t, ξ) = O(d(x, P )) +O(t), the result follows. �

Let X be a vector field over Σ1.

Proposition 5.4

There exists K in B(P,Σ1, X) such that, near P :

|L(Xf)| 6 K(1 +
n∑

i=1

Bii).

Proof: Differentiating the Gaussian curvature equation yields, for all k:

Bij(f;ijk + (∂xk
Ψ)ij + (∂tΨ)ijf;k + (∂pl

Ψ)ijf;lk) = (∂xk
ψ) + (∂tψ)f;k + (∂pl

ψ)f;lk.

However:
f;lk = f;kl.

Moreover:
f;ijk = f;kij +RΣ1

jki

p
f;p,

where RΣ1 is the Riemann curvature tensor of Σ1. There therefore exists K1 in B(P,Σ1)
such that: ∣∣Bij(f;kij + (∂pl

Ψ)ijf;kl)− (∂pl
ψ)f;kl

∣∣ 6 K1(1 +
n∑

i=1

Bii).

Moreover:
Bijf;ki = Bij((f;ki + Ψki)−Ψki)

= n−BijΨki.

However:
L(Xf) = Xk(Bij(f;kij + (∂pl

Ψ)ijf;kl)− (∂pl
ψ)f;kl)

+f;k(Bij(Xk
;ij + (∂pl

Ψ)ijX
k
;l)− (∂pl

ψ)Xk
;l)

+2Bij(f;kiX
k
;j).

The result follows by combining the above relations. �

Corollary 5.5

There exists K in B(P,Σ1, X) such that, near P :

|LX(f − f0)| 6 K(1 +
n∑

i=1

Bii).

12
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We define δ : Σ1 →]0,∞[ by:
δ(x) = d1(x, P )2,

where d1(·, P ) denotes the distance in Σ1 to P .

Proposition 5.6

There exists K in B(P,Σ1, X) such that, near p:

|Lδ| 6 K(1 +
n∑

i=1

Bii).

Proof: Trivial. �

Proof of Proposition 5.1: Let P , Σ1 and Ω be as before. Let X be a vector field over
Ω which is tangent to ∂bΩ. By Propositions 5.3 and 5.6 and Corollary 5.5, there exists
η,K > 0 in B(P,Σ1, X) such that:

|LX(f − f0)| 6 K(1 +
∑n

i=1B
ii),

|Lδ| 6 K(1 +
∑n

i=1B
ii),

L(f − f̂) 6 −η(1 +
∑n

i=1B
ii).

Moreover, we may assume that, throughout Ω:

|X(f − f0)| 6 K.

By definition of X, X(f − f0) vanishes along ∂bΩ. Since ∂iΩ is bounded away from P ,
there therefore exists A+ > 0 in B(P,Σ1, X) such that, over ∂Ω:

X(f − f0)−A+δ 6 0.

There exists B+ > 0 in B(P,Σ1, X) such that, throughout Ω:

L(X(f − f0)−A+δ −B+(f − f̂)) > 0.

Moreover, since f − f̂ > 0, this function is also negative along ∂Ω. Thus, by the Maximum
Principal, throughout Ω:

X(f − f0) 6 A+δ +B+(f − f̂).

Likewise, there exists A−, B− > 0 in B(P,Σ1, X) such that:

X(f − f0) > −A−δ −B−(f − f̂).

There therefore exists K1 > 0 in B(P,Σ1, X) such that:

|d(X(f − f0))(P )| 6 K1.

13
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Thus, increasing K1 if necessary:

|d(Xf)(P )| 6 K1.

Let N be the unit normal vector field along ∂Σ pointing into Σ. There exists K2 > 0 in B
such that, for any vector field, X, tangent to ∂Σ:

‖A(X,N)‖ 6 K2‖X‖.

The restriction of A to ∂Σ is determined by the norm of the second fundamental form of
∂Σ = ∂Σ0. There therefore exists K3 > 0 in B such that, if X and Y are vector fields
tangent to ∂Σ, then:

‖A(X,Y )‖ 6 K3‖X‖‖Y ‖.

Finally, since Σ lies between Σ0 and Σ̂, both of which are strictly convex, there exists
ε1 > 0 in B such that, throughout ∂Σ:

A|T∂Σ > ε1Id.

Since Det(A) = φ, A(N,N) may be estimated in terms of the other components of A, and
there therefore exists K4 > 0 in B such that, throughout ∂Σ:

‖A(N,N)‖ 6 K4.

The result now follows. �

6 - Second Order Bounds Over the Interior.

Let Mn+1 be a Hadamard manifold. Let (Σ, ∂Σ) ⊆ Mn+1 be a smooth convex hyper-
surface. Let N and A be the unit exterior normal vector and the shape operator of Σ
respectively. Let φ : M →]0,∞[ be a strictly positive smooth function. We prove second
order estimates given second order estimates along the boundary for the problem:

Log(Det(A)) = φ(x),

We denote by ‖A|∂Σ0‖ the supremum over ∂Σ0 of the norm of A. We will prove:

Proposition 6.1

There exists K > 0 in B(‖A|∂Σ0‖) such that:

‖A‖ 6 K.

14
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In the sequel, we raise and lower indices with respect to A. Thus:

AijAjk = δi
k,

where δ is the Krönecker delta function.

Proposition 6.2

(i) For all p:
AijAij;p = φ;p.

(ii) For all p, q:
AijAij;pq = AimAjnAij;pAmn;q + φ;pq.

Proof: This follows by differentiating the equation Log(Det(A)) = φ. �

We recall the commutation rules of covariant differentiation in a Riemannian manifold:

Lemma 6.3

Let RΣ and RM be the Riemann curvature tensors of Σ and M respectively. Then:

(i) For all i, j, k:
Aij;k = Akj;i +RM

kiνj ,

where ν represents the direction normal to Σ; and

(ii) For all i, j, k, l:
Aij;kl = Aij;lk +RΣ

kli

p
Apj +RΣ

klj

p
Api.

Corollary 6.4

For all i, j, k and l:

Aij;kl = Akl;ij +RM
kjνi;l

+RM
liνk;j +RΣ

jlk

p
Api +RΣ

jli

p
Apk.

Proof:
Aji;kl = Aki;jl +RM

kjνi;l

= Aik;lj +RM
kjνi;l

+RΣ
jlk

p
Api +RΣ

jli

p
Apk

= Alk;ij +RM
kjνi;l

+RM
liνk;j +RΣ

jlk

p
Api +RΣ

jli

p
Apk

The result follows. �

Choose P ∈ Σ. Let λ1, ..., λn be the eigenvalues of A at P . Choose an orthonormal
basis, (e1, ..., en) of TP Σ with respect to which A is diagonal such that a := λ1 = A11

is the highest eigenvalue of A at P . We extend this to a frame in a neighbourhood of
P by parallel transport along geodesics. We likewise extend a to a function defined in a
neighbourhood of P by:

a = A(e1, e1).

Viewing λ1 also as a function defined near P , λ1 > a and λ1 = a at P .

Proposition 6.5

For all i, at P :
a;ii = A11;ii.

15
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Proof: Bearing in mind that ∇ei
ei = 0 at P :

a;ii = DeiDeia
= DeiDeiA(e1, e1)
= Dei

(∇A)(e1, e1; ei)− 2Dei
A(∇ei

e1, e1)
= (∇2A)(e1, e1; ei, ei)− 2A(∇ei

∇ei
e1, e1).

The result now follows since ∇ei
∇ei

e1 = 0 at P for all i. �

We define the Laplacian ∆ such that, for all functions f :

∆f = Aijf;ij .

Proposition 6.6

There exists K > 0, which only depends on M and φ such that, if a > 1, then:

∆Log(a)(P ) > −K(1 +
n∑

i=1

1
λi

).

Proof: By Corollary 6.4:

a;ii = A11;ii

= Aii;11 +RM
i1ν1;i +RM

i1νi;1 +RΣ
1ii

p
Ap1 +RΣ

1i1
p
Api.

However, at P :
n∑

i=1

1
λ1λi

Aii;11 =
n∑

i,j=1

1
λiλjλ1

Aij;1Aij;1 +
1
λ1
φ;11.

Thus, at P :

∆Log(a) > 1
λ1
φ;11 +

∑n
i,j=1

1
λiλjλ1

Aij;1Aij;1 −
∑n

i=1
1

λn
1 λi

A11;iA11;i

+
∑n

i=1
1

λ1λi
(RM

i1ν1;i +RM
i1νi;1)

+
∑n

i,j=1
1

λ1λi
(RΣ

1ii
p
Ap1 +RΣ

1i1
p
Api).

We consider each contribution seperately. Since, for all a, b ∈ R, (a+ b)2 6 2a2 + 2b2, by
Lemma 6.3, for all i > 2:

A2
11;i = (Ai1;1 +RM

i1ν1)
2 6 2A2

i1;1 + 2(RM
i1ν1)

2

Thus, bearing in mind that λ1 > 1, there exists K1, which only depends on M such that:

n∑
i,j=1

1
λiλjλ1

Aij;1Aij;1 −
n∑

i=1

1
λn

1λi
A11;iA11;i > −K1

n∑
i=1

1
λi
.
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For all ξ, X and Y :
∇Σξ(Y ;X) = ∇Mξ(Y ;X)−A(X,Y )ξ(N); and
Xξ(N) = ∇Mξ(N;X) + ξ(AX).

Thus:
RM

i1ν1;i = (∇MRM )i1ν1;i + λi(1− δi1)RM
1νν1 + λiR

M
i1i1,

RM
i1νi;1 = (∇MRM )i1νi;1 − λ1(1− δi1)RM

iννi + λ1R
M
i1i1.

Bearing in mind that λ1 > 1, there exists K3, which only depends on M such that:
n∑

i=1

1
λ1λi

(RM
i1ν1;i +RM

i1νi;1) > −K3(1 +
n∑

i=1

1
λi

).

Moreover:
RΣ

1ii

p
Ap1 +RΣ

1i1

p
Api = RM

1ii1(λ1 − λi) + λ1λi(λ1 − λi).

Bearing in mind that λ1 > 1 and that λ1 > λi for all i, there exists K2, which only depends
on M such that:

n∑
i,j=1

1
λ1λi

(RΣ
1ii

p
Ap1 +RΣ

1i1

p
Api) > −K2(1 +

n∑
i=1

1
λi

).

Since ∇Σ
e1
e1 = 0:

∇M
e1
e1 = ∇Σ

e1
e1 + 〈∇M

e1
e1,N〉N

= −A(e1, e1)N
= −λ1N

Thus:
φ;11 = ∂1∂1φ

= HessM (φ)(e1, e1)− dφ(∇M
e1
e1)

= HessM (φ)(e1, e1)− λ1dφ(N)
Bearing in mind that λ1 > 1, there thus exists K3, which only depends on M and φ such
that:

1
λ1
φ;11 > −K3.

The result now follows by combining the above relations. �

We recall that a function f is said to satisfy ∆f > g in the weak sense if and only if, for
all P ∈ Σ, there exists a smooth function ϕ, defined near P such that:

(i) f > ϕ near P ;

(ii) f = ϕ at P ; and

(iii)∆ϕ > g at P .

Corollary 6.7

With the same K as in Proposition 6.6, if λ1 > 1, then:

∆Log(λ1) > −K(1 +
n∑

i=1

1
λi

),

in the weak sense.
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Proof: Near P ∈ Σ, λ1 > a and λ1 = a at P . Since P ∈ Σ0 is arbitrary, and since a is
smooth at P , the result follows. �

Choose x0 ∈M . Define δ by:

δ =
1
2
d(x, x0)2.

Proposition 6.8

There exists c, which only depends on M , Ω, φ and x0 such that:

λ1 > c ⇒ ∆Σδ >
1
2
(1 +

n∑
i=1

1
λi

).

Proof: Since M has non-positive curvature:

HessM (δ) > Id
⇒ HessΣ(δ) > Id− d(x, x0)〈N,∇d〉A
⇒ ∆δ >

∑n
i=1

1
λi
− nd(x, x0).

By compactness of Ω, there exists K1 > 0 such that, throughout Ω:

eφ 6 K1.

Thus:
λ1λ

n−1
n 6 K1

⇒ λn 6 (K1λ
−1
1 )1/(n−1)

⇒ 1
λn

> (λ1/K1)1/(n−1)

⇒
∑n

i=1
1
λi

> (λ1/K1)1/(n−1).

There thus exists c1 > 0 such that, for λ1 > c1, and for x ∈ Ω:∑n
i=1

1
λi

> 2nd(x, x0) + 1
⇒ ∆Σδ > 1

2 (1 +
∑n

i=1
1
λ i

).

The result now follows. �

Corollary 6.9

There exists λ > 0 and c > 0, which only depend on M , Ω, φ and x0 such that:

λ1 > c ⇒ ∆(Log(a) + λδ) > 0,

in the weak sense.

Interior bounds now follow by the maximum principal:

Proof of Proposition 6.1: Consider the function ‖A‖eλδ = λ1e
λδ. If this function

achieves its maximum along ∂Σ, then the result follows since eλδ is uniformly bounded
above and below. Otherwise, it acheives its maximum in the interior of Σ, in which case,
by Corollary 6.9 and the Maximum Principal, at this point:

‖A‖ = λ1 6 c.

The result follows. �
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7 - Compactness.

Let Mn+1 be an (n + 1)-dimensional Hadamard manifold. Let (Σ0, ∂Σ0) ⊆ Mn+1 be a
smooth, strictly convex hypersurface. Let N0 and A0 be the unit exterior normal vector
field and the shape operator of Σ0 respectively. Using the exponential map, we identify
Σ×]−∞, 0] with a subset of M .

Let Conv ⊆ C∞(Σ0, ] − ∞, 0]) be the family of smooth, negative valued functions over
Σ0 which vanish along ∂Σ0 and whose graphs are strictly convex. We define the Gauss
Curvature operator K : Conv → C∞(Σ0) such that, for all f , (Kf)(x) is the Gauss
curvature of the graph of f at the point (x, f(x)). The formula forK is given by Proposition
3.1.

Let f0, f̂ ∈ Conv be such that:

f̂ 6 f0 < 0, Kf̂ − ε > Kf0 > 0,

for some ε > 0. Denote φ0 = Kf0 and φ̂ = Kf̂ . Denote by Conv(f0, f̂) the set of all
f ∈ Conv such that:

f̂ 6 f 6 f0, and φ̂− ε > Kf > φ0.

We prove a slightly stronger version of the assertion that the restriction of K to Conv(f0, f̂)
is a proper mapping:

Lemma 7.1

Let (fn)n∈N be a sequence in Conv(f0, f̂). Suppose there exists (φn)n∈N ∈ C∞(M)
such that, for all n, and for all x ∈ Σ0:

(Kfn)(x) = φn(x, fn(x)).

If there exists φ0 ∈ C∞(M) to which (φn)n∈N converges, then there exists f0 ∈
Conv(f0, f̂) to which (fn)n∈N subconverges.

Corollary 7.2

The restriction of K to Conv(f0, f̂) is a proper mapping.

Proof of Lemma 7.1: By Lemma 2.1 and Propositions 5.1 and 6.1, there exists C1 > 0
in B such that, for all n:

‖fn‖C2 6 C1.

By Proposition 3.1:
Kf = F (Hess(f),∇f, f, x),

where F (M,p, t, x) is elliptic in the sense of [4] and is concave in M . It follows by Theorem
1 of [4] that there exists α > 0 and C2 > 0 in B such that, for all n:

‖fn‖C2,α 6 C2.

Thus, by the Schauder Esimates (see [7]), for all k ∈ N, there exists Bk > 0 such that, for
all n:

‖fn‖Ck 6 Bk.

The result now follows by the Arzela-Ascoli Theorem. �
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8 - One Dimensional Families of Solutions.

Let Mn+1 be an (n + 1)-dimensional Hadamard manifold. Let (Σ0, ∂Σ0) ⊆ Mn+1 be a
smooth, convex hypersurface. Let N0 and A0 be the unit exterior normal vector field and
the shape operator of Σ0 respectively. Using the Exponential Map, we identify Σ×]−∞, 0]
with a subset of M .

Let f0,f̂ ,φ0 and φ̂ be as in the previous section. Let γ : [0, 1] → C∞(Σ0) be a smooth
family of smooth functions such that, for all τ :

φ0 + ε 6 γ(τ) 6 φ̂− ε,

for some ε > 0. As before, let K : Conv → C∞(Σ0) be the Gauss Curvature Operator.
For all φ ∈ C∞(Σ0), define Γφ ⊆ I × Conv(f0, f̂) by:

Γφ = {(t, f) s.t. Kf = γ(t) + φ} .

Viewing Conv as a Banach manifold (strictly speaking, the intersection of an infinite nested
family of Banach manifolds), we will prove:

Proposition 8.1

There exists (φn)n∈N ∈ C∞(Σ0) which converges to 0 such that, for all n:

(i) Γn := Γφn is a (possibly empty) smooth, embedded 1-dimensional submanifold
of I × Conv(f0, f̂); and

(ii) ∂Γn lies inside {0, 1} × Conv(f0, f̂).

Proposition 8.2

(i) For all φ, Γφ is compact; and

(ii) For any neighbourhood Ω of Γ0 in I×Conv(f0, f̂), there exists a neighbourhood
U of 0 in C∞(Σ0) such that if φ ∈ U , then Γφ ⊆ Ω.

Proof: (i). This assertion follows from Corollary 7.2.

(ii). Suppose the contrary. Let (τn)n∈N ∈ [0, 1], (φn)n∈N ∈ C∞(Σ0) and (fn)n∈N ∈
Conv(f0, f̂) be such that (τn)n∈N converges to τ0 ∈ [0, 1], (φn)n∈N converges to 0 and, for
all n:

(τn, fn) /∈ Ω.

Suppose moreover that, for all n:

Kfn = γ(τn) + φn.

By Lemma 7.1, (fn)n∈N subconverges to f0 ∈ Conv(f0, f̂) such that:

Kf0 = γ(τ0)
⇒ (τ0, f0) ∈ Γ0.
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Thus, for sufficiently large n, (τn, fn) ∈ Ω, which is absurd. The result follows. �

We denote by C∞0 (Σ0), the set of smooth functions on Σ0 which vanish along ∂Σ0, and
we identify this with the tangent space of Conv in the natural manner. We consider the
derivative of K:

Proposition 8.3

At every point of Conv, DK defines a uniformly elliptic operator from C∞0 (Σ0) to
C∞(Σ0).

Proof: This follows by differentiating the formula for the Gauss Curvature Operator given
by Proposition 3.1. �

DK is therefore Fredholm. Since it is defined on the space of smooth functions over a
compact manifold with boundary, which themselves vanish over the boundary, it is of
index zero.

Proof of Proposition 8.1: Define K̂ : [0, 1]× Conv(f0, f̂)× C∞(Σ0) → C∞(Σ0) by:

K̂(τ, f, φ) = γ(τ)−Kf + φ.

By compactness, there exists a neighbourhood, Ω, of Γ in [0, 1]×Conv(f0, f̂) and a subspace
E ⊆ C∞(Σ0) of dimension m < ∞ such that the restriction of DK̂ to Ω × E is always
surjective. This restriction is Fredholm of index (m+ 1). Define Γ̂ by:

Γ̂ = K̂−1({0}).

By the Implicit Function Theorem for Banach manifolds, Γ̂ is an (m + 1)-dimensional
smooth manifold. Let π3 : [0, 1] × Conv(f0, f̂) × E → E denote projection onto the third
factor. By Sard’s Lemma, there exists a sequence (φn)n∈N ∈ E which tends to 0 such that,
for all n, φn is a regular value of the restriction of π3 to Γ̂. However, for all n:

Γn := Γφn
= Γ̂∩π−1

3 (φn).

Moreover, since φn is a regular value of π3, Γn is a (possibly empty) smooth 1-dimensional
embedded manifold. By Proposition 8.2, for all n, Γn is compact, and for sufficiently large
n, Γn lies entirely inside [0, 1]× Ω. Therefore:

∂Γn ⊆ ∂(I × Ω) ⊆ ({0, 1} × Ω)∪([0, 1]× ∂Conv(f0, f̂)).

However, if (τ, f) ∈ Γn, then:

f0 6 f 6 f̂ , Kf0 + ε/2 6 Kf 6 Kf̂ − ε/2.

Thus, by the geometric maximum principal (away from ∂Σ0):

f0 < f < f̂.

Likewise, a similar relation holds for the derivative of f in the internal normal direction
along ∂Σ0. It follows that Γn lies in the interior of Conv(f0, f̂) and so:

∂Γn ⊆ {0, 1} × Ω.

The result follows. �
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9 - Local and Global Rigidity.

Let Mn+1 be an (n + 1)-dimensional Hadamard manifold. Let (Σ0, ∂Σ0) ⊆ Mn+1 be a
smooth, convex hypersurface. Choose f0 < f̂ ∈ Conv.

De�nition 9.1

(i) We say that φ ∈ C∞(Σ0) is locally rigid over Conv(f0, f̂) if and only if for all
f ∈ Conv(f0, f̂) such that Kf = φ, DK is invertible at φ (in other words, φ is a
regular value of K).

(ii) We say that φ ∈ C∞(Σ0) is globally rigid over Conv(f0, f̂) if and only if there
exists at most one f ∈ Conv(f0, f̂) such that Kf = φ.

Example: Let Hn+1 be (n+ 1)-dimensional hyperbolic space. Let H be a totally geodesic
hypersurface. ForD > 0, letH(D) be the equidistant hypersurface at a distanceD fromH.
H(D) has constant Gaussian curvature equal to tanh(D). Let Ω ⊆ H(D) be any bounded
open subset with smooth boundary and consider the hypersurface (Σ0, ∂Σ0) = (Ω, ∂Ω).
Define f0 = 0 and φ0 = Kf0 = tanh(D). By the strong Geometric Maximum Principal
and the homogeneity of Hn+1, φ0 is both globally and locally rigid. �

Example: The above example is a special case of a more general construction. Let M be a
Riemannian manifold. Let P ∈M be a point, let N ∈ UM be a unit vector at P , let A be
a positive-definite symmetric 2-form over N⊥ and let k = Det(A). There is no algebraic
obstruction to the construction of a hypersurface Σ such that:

(i) P ∈ Σ;

(ii) N is normal to Σ at P ;

(iii) the second fundamental form of Σ at P is equal to A; and

(iv) if ψ = Det(A) is the Gaussian curvature of Σ, then ψ = k up to infinite order at P .

Since ψ = k up to infinite order at P , for ε > 0 small, there exists a smooth family (ψt)t<ε

of smooth functions such that:

(i) ψ0 = ψ; and

(ii) for all t, ψt = k over the geodesic ball of radius t about P .

Suppose moreover that M has negative sectional curvature bounded above by −1 and
that A = kId for k < 1. In this case, the derivative of the Gauss Curvature Operator
is invertible over a geodesic ball of small radius about P (see [15] for details in the 2-
dimensional case). We may therefore assume by the Inverse Function Theorem for Banach
Manifolds that ψ = k over a geodesic ball of small radius about P . Moreover, Σ may
be extended to a foliation, (Σt)t∈]−ε,ε[, of a neighbourhood of P in M by hypersurfaces of
constant curvature equal to k. Now let B ⊆M be a geodesic ball in M centred on P which
is covered by this foliation. Let Ω ⊆ Σ be an open set with smooth boundary contained in
B ∩Σ. If Σ′ is any other hypersurface of constant Gaussian curvature equal to k such that
∂Σ′ = ∂Ω, then, by the Geometric Maximum Principal, Σ′ is contained inside B, and, by
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the strong Geometric Maximum Principal, Σ′ coincides with a leaf of the foliation. It is
therefore equal to Ω, and we have thus shown that ψ = k is both locally and globally rigid
over Ω. �

Proposition 9.2

(i) If φ0 is locally rigid, then φ′ is also locally rigid for all φ′ sufficiently close to
φ0.

(ii) If φ0 is locally and globally rigid, then φ′ is globally rigid for all φ′ sufficiently
close to φ0.

Proof: (i). Suppose the contrary. Let (φn)n∈N ∈ C∞(Σ0) be a sequence of non-locally
rigid functions converging to φ0. Since φ0 is locally rigid, DK is invertible at f for all
f ∈ K−1({φ}). There therefore exists a neighbourhood Ω of K−1({φ}) in Conv(f0, f̂) such
that DK is invertible at f for all f ∈ Ω. However, by Corollary 7.2, for all sufficiently
large n:

K−1({φn}) ⊆ Ω.

φn is therefore locally rigid for sufficiently large n, which is absurd, and the assertion
follows.

(ii). Suppose the contrary. There exists a sequence (φ′n)n∈N which converges to φ such
that φ′n is not globally rigid. Thus, for all n, there exists f1,n 6= f2,n ∈ Conv(f0, f̂) such
that:

Kf1,n = Kf2,n = φ′n.

By Corollary 7.2, there exist f1,0, f2,0 ∈ Conv(f0, f̂) to which (f1,n)n∈N and (f2,n)n∈N
respectively converge. In particular:

Kf1,0 = Kf2,0 = φ0.

Since φ0 is globally rigid, it follows that:

f1,0 = f2,0 = f0.

Since φ0 is locally rigid at f0, DK is invertible at f0 and thus K is locally invertible over
a neighbourhood of f0. In particular, for sufficiently large n:

f1,n = f2,n.

This is absurd, and the result follows. �
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10 - Existence.

Let Mn+1 be an (n + 1)-dimensional Hadamard manifold. Let (Σ0, ∂Σ0) ⊆ Mn+1 be a
smooth, convex hypersurface. Let N0 and A0 be the unit exterior normal vector field and
the shape operator of Σ0 respectively. Using the Exponential Map, we identify Σ×]−∞, 0]
with a subset of M . Let f0,f̂ ,φ0 and φ̂ be as in section 7.

Lemma 10.1

If Σ0 is locally and globally rigid, then, for all φ such that:

φ0 6 φ 6 φ̂− ε,

for some ε > 0, there exists a smooth, convex, immersed hypersurface Σφ such
that:

(i) Σ̂ < Σφ 6 Σ0, and

(ii) the Gaussian curvature of Σφ at the point p is equal to φ(p).

Proof: Assume first that:
φ0 + ε 6 φ 6 φ̂− ε.

By local rigidity, reducing ε is necessary, there exists f ′0 ∈ Conv(f0, f̂) such that:

f ′0 < 0; φ′0 := Kf ′0 > φ0 + ε.

By Proposition 9.2, we may assume moroever that φ′0 is both locally and globally rigid.
Let γ : [0, 1] → C∞(Σ0) be a smooth family of smooth functions such that:

(i) γ(0) = φ′0, γ(1) = φ, and

(ii) for all t ∈ [0, 1]:
φ0 + ε 6 γ(t) 6 φ̂− ε.

By Proposition 8.1, there exists (φn)n∈N ∈ C∞(Σ0) which converges to 0 such that, for
all n, Γn := Γφn

is a (possibly empty) smooth, 1-dimensional embedded submanifold of
[0, 1]× Conv(f0, f̂). Moreover, for all n, Γn is compact, and:

∂Γn ⊆ {0, 1} × Conv(f0, f̂).

By Proposition 9.2, we may assume that, for all n, φ′0 + φn is both locally and globally
rigid. Likewise, since φ′0 is locally rigid, we may assume that, for all n, there exists
fn ∈ Conv(f0, f̂) such that:

(0, fn) ∈ Γn.

Γn is therefore non-empty for all n. Since it is compact, it is either an embedded, compact
interval or an embedded closed loop. We claim that Γn is not a closed loop. Indeed, by
local rigidity, DK is invertible at (0, fn). Consequently, if π1 : [0, 1]×Conv(f0, f̂) → [0, 1]
is the projection onto the first factor, the restriction of Dπ1 to TΓn is invertible at fn.
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Since 0 = π1(fn) is an end point of [0, 1], we deduce that Γn is not a closed loop and the
assertion follows.

For all n, let gn by the other end of Γn. Since (φ′0 + φn) is globally rigid:

gn ∈ {1} × Conv(f0, f̂).

In other words:
Kgn = φ+ φn.

By Corollary 7.2, there exists g0 ∈ Conv(f0, f̂) to which (gn)n∈N subconverges. In partic-
ular:

Kg0 = φ.

This proves existence in the case where φ0 + ε 6 φ 6 φ̂ − ε. The general case follows by
taking limits. �

11 - Affine Flat Manifolds.

Let Mn+1 be an (n + 1)-dimensional Riemannian manifold. Let g be the metric on M
and let ∇ be the Levi-Civita covariant derivative of g. Let g′ be another metric on M .
We say that g and g′ are affine equivalent if and only if their geodesics coincide up to
reparametrisation. In particular, we say that g is affine flat if and only if g is everywhere
locally affine equivalent to a flat metric (see [16] and [17]).

We will prove:

Proposition 11.1

Suppose that M is affine flat. Choose k > 0, and let (Kn)n∈N ⊆M be a sequence
of convex subsets of M with smooth boundary such that, for all n, the Gaussian
curvature of ∂Kn is equal to k. Suppose that (Kn)n∈N converges to K0 ⊆ M and
that K0 has non-empty interior. Then the set of points on ∂K0 where K0 is not
strictly convex is closed

Example: Consider a convex polygon, P , in Rn. The set of boundary points where P is
not strictly convex is the complement of the set of vertices of P , which is not closed. �

Remark: If K0 is not strictly convex at P ∈ ∂K0, then there exists a geodesic segment
passing through P which is contained in ∂K0.

Trivially, if M is affine flat, then, for every P ∈ M and for every subspace E ⊆ TPM ,
there exists a (unique) totally geodesic submanifold whose tangent space at P is E. We
recall the following characterisation of affine flat metrics:

Lemma 11.2

Let ∇′ be the Levi-Civita covariant derivative of g′ and let Ω′ = ∇′ − ∇ be the
connection 2-form of ∇′ with respect to ∇. g′ and g are affine equivalent if and
only if there exists a 1-form, α such that, for all X,Y ∈ TM :

Ω(X,Y ) = α(X)Y + α(Y )X.
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Proof: (⇒). Choose P ∈ M and X ∈ TPM . Let γ :] − ε, ε[→ M be a ∇-geodesic in M
passing through P such that ∂tγ(0) = X. We extend X to a vector field defined near P
such that, for all t:

X(γ(t)) = ∂tγ.

Since, up to reparametrisation, γ is a ∇′-geodesic, there exists λ ∈ R such that:

Ω(X,X) = λX.

Since Ω is bilinear, λ depends linearly on X, and the result follows by polarisation.

(⇐). Let γ :]− ε, ε[→M be a ∇-geodesic. Then:

∇′∂tγ∂tγ = ∇∂tγ∂tγ + Ω(∂tγ, ∂tγ) = 2α(∂tγ)∂tγ.

It follows that, up to reparametrisation, γ is also a ∇′-geodesic, and g′ and g are therefore
affine equivalent. This completes the proof. �

When M is a locally affine manifold, we recover a simple form for the Gauss Curvature
Equation:

Proposition 11.3

Let U ⊆ Rn+1 be an open set containing the origin. Let g be a metric over U which
is affine equialent to the Euclidean metric. Let Bε(0) be the ball of radius ε in Rn

and let f : Bε(0) →]− ε, ε[ be a smooth function. There exists a smooth function
ψ which depends only on g (and n) such that, if Kf the Gaussian curvature with
respect to g of the graph of f , then:

Kf = ψ(x, f,∇f)−1Det(Hess(f))1/n.

Proof: Let Ω be the connection 2-form of g with respect to the Euclidean metric. By
Lemma 11.2, using the notation of Proposition 3.1, for all i and j:

df̂(Ω(∂̂i, ∂̂j)) = 0.

The result follows. �

Proof of Proposition 11.1: We identifyM with a subset of Rn+1 furnished with an affine
flat metric, g0. Choose P ∈ ∂K0 and let H be a supporting totally geodesic hyperspace
to K0 at P . We identify H with Rn. Since K0 has non-empty interior, there exists a
neighbourhood U ⊂ Rn of P over which K0 is the graph of some convex function f0, say.
Moreover, there exists a sequence of affine flat smooth metrics (gn)n∈N and a sequence of
convex functions (fn)n∈N such that:

(i) (gn)n∈N converges to g0 in the C∞ sense;

(ii) (fn)n∈N is uniformly bounded in the C0,1 sense and converges to f in the C0,α sense
for all α; and
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(iii) for all n, the Gaussian curvature with respect to gn of the graph of fn is equal to k.

Thus, by Proposition 11.3, there exists 0 < λ < Λ such that, for all n:

λ 6 Det(Hess(fn)) 6 Λ.

Taking limits yields:
λ 6 Det(Hess(f0)) 6 Λ,

in the Alexandrov sense (see, for example, [13]), and the result now follows by [1]. �

In particular, using the Kleinian representation of Hn+1, we see that Hn+1 is locally affine.

Lemma 11.4

Let Hn+1 be (n+ 1)-dimensional hyperbolic space, and let H ⊆ Hn+1 be a totally
geodesic hypersurface. Choose k > 0, and let Ω ⊆ H be a bounded open set such
that there exists a convex hypersurface, Σ̂ such that:

(i) Σ̂ is a graph below Ω;

(ii) the second fundamental form of Σ̂ is at least ε in the Alexandrov sense, for
some ε > 0; and

(iii)the Gaussian curvature of Σ is at least k in the Alexandrov sense.

There exists a unique convex, immersed hypersurface (Σ, ∂Σ) such that:

(i) Σ is a graph below Ω and ∂Σ = ∂Ω;

(ii) Σ lies above Σ̂;

(iii)Σ has C∞ interior and is C0,1 up to the boundary; and

(iv)the Gaussian curvature of Σ is equal to k.

Moreover if ∂Ω is smooth, then Σ is smooth up to the boundary.

Proof: We begin by smoothing the upper barrier. Choose k′ < k. As in Lemma 2.13
of [20], there exists a sequence (εn)n∈N ∈]0, k − k′[ of positive numbers and a sequence of
smooth, convex immersed hypersurfaces (Σ̂n)n∈N such that:

(i) (εn)n∈N converges to 0 and (Σ̂n)n∈N converges to Σ̂ in the C0,α sense for all α;

(ii) for all n, Σ̂n is a graph over a bounded open subset of H; and

(iii) for all n, the Gaussian curvature of Σ̂n is greater than k − εn.

Let (δn)n∈N > 0 be a sequence of positive numbers converging to 0. For all n, let Hn be
the equidistant hypersurface at distance δn from H. We may assume that, for all n, a
portion of Σ̂n is a graph over Hn. Let Ωn be the subset of Hn over which it as a graph.

For all n, since (Ωn, ∂Ωn) is locally and globally rigid, it follows by Theorem 1.1 that there
exists a smooth, convex hypersurface, Σn, which is a graph below Ωn such that Σn > Σ̂n

and whose Gaussian curvature is equal to k′.
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Suppose now that ∂Ω is smooth. There exists ε > 0 such that, for all n and for all P ∈ ∂Ωn,
there exists a geodesic ball B ⊆ Ωn such that P ∈ ∂B. For all such B, we consider the
foliation of constant Gaussian curvature hypersurfaces which are graphs below B and whose
boundary is ∂B (in the upper half space model of Hn+1, these are merely intersections of
spheres in Rn+1 with Hn+1). Using these foliations and the Geometric Maximum Principal,
we find that there exists θ > 0 such that, for all n, TΣn makes an angle of at least θ with
Hn along ∂Σn. Bearing in mind the remark following Proposition 5.1, this yields uniform
lower bounds for the restriction to ∂Ωn of the the second fundamental form of Σn. Taking
limits now yields the desired hypersurface, Σ.

Consider now the general case. By Lemma 2.1, we may nonetheless assume that (Σ̂n)n∈N
converges to a C0,1, convex hypersurface Σ which is a graph below Ω such that Σ > Σ̂.
Let B be a geodesic ball such that B ⊆ Ω. Using the geometric maximum principal, by
considering the foliation of constant Gaussian curvature hypersurfaces which are graphs
below B and whose boundary is B, we may show that Σ lies strictly below Ω over its
interior. We now assert that Σ is everywhere strictly convex. Indeed, suppose the contrary.
By Proposition 11.1 the set of points where ∂Σ is not strictly convex is closed. Thus, if
P ∈ ∂Σ is a point where ∂Σ is not strictly convex, and if H ′ is a supporting totally geodesic
hyperplane of ∂Σ at P , then P lies in the convex hull of the intersection of H ′ with ∂Ω
(see, for example, [21]). In particular, P lies in H and thus, by convexity, Σ = Ω, which is
absurd. The assertion follows and it now follows by [2] that Σ is smooth over its interior,
and this proves existence (see also Appendix A).

Let Σ be a graph over Ω of constant Gaussian curvature equal to k. Let f be the graph
function of Σ in conformal coordinates about H (see the example following Proposition
3.1). f satisfies the following equation:

Det(f;ij − tan(f)(f;jf;j + δij))1/n = k
1

cos(f)3
(1 + ‖∇f‖2)(n+2)/2n.

Let Σ′ be another such hypersurface and suppose that Σ′ 6= Σ. Let f ′ be the graph function
of Σ′ in conformal coordinates about H. Without loss of generality, there exists P ∈ H
such that f ′(P ) > f(P ) and f ′ − f is maximised at P . Define the field of matrices, A, by:

A = (Hess(f)− tan(f)(∇f ⊗∇f + Id))−1.

(This matrix is invertible by convexity of Σ). A is positive definite. Thus, near P , by
concavity of Det1/n, and since f ′ > f , for some ε, k̂ > 0 that we need not calculate:

k̂Tr(A−1(f ′;ij − f;ij))− k̂tan(f)Tr(A−1(f ′;if
′
;j − f;if;j))

> ε+ k
cos(f)3 ((1 + ‖∇f ′‖2)(n+2)/2 − (1 + ‖∇f‖2)(n+2)/2).

At P , since (f ′ − f) is maximised, ∇f ′ = ∇f . Thus, near P ;

Tr(A−1(f ′;ij − f;ij)) > 0

This yields a contradiction by the Maximum Principal. Uniqueness follows and this com-
pletes the proof. �

28



Constant Gaussian Curvature Hypersurfaces in Hadamard Manifolds

12 - Relations to Existing Results.

With small modifications, these techniques may be adapted to yield existing results. First,
considering Rn as a subspace of Rn+1 in the natural manner, we recover the following
theorem of Guan (see [8]), which is the analogue in Euclidean space of Lemma 11.4:

Theorem 12.1, [Guan, 1998]

Choose k > 0, and let Ω ⊆ Rn be a bounded open set. Suppose that there exists
a convex hypersurface, Σ̂ such that:

(i) Σ̂ is a graph below Ω;

(ii) the second fundamental form of Σ̂ is at least ε in the Alexandrov sense, for
some ε > 0; and

(iii)the Gaussian curvature of Σ is at least k in the Alexandrov sense.

There exists a unique convex, immersed hypersurface (Σ, ∂Σ) such that:

(i) Σ is a graph below Ω and ∂Σ = ∂Ω;

(ii) Σ lies above Σ̂;

(iii)Σ has C∞ interior and is C0,1 up to the boundary; and

(iv)the Gaussian curvature of Σ is equal to k.

Moreover, if ∂Ω is smooth, then Σ is smooth up to the boundary.

Remark: Although, as in Lemma 11.4, if we identify (Σ0, ∂Σ0) = (Ω, ∂Ω), then the Gauss
Curvature Equation is not elliptic at f0 = 0, this, in itself, does not present a serious
difficulty since there exist functions arbitrarily close to f0 where the Gauss Curvature
Equation is elliptic. The particular difficulty in Euclidean space lies in obtaining functions
near f0 for which the Gauss Curvature Equation is also locally rigid. We circumvent this
by approximating Rn by spaces of constant negative sectional curvature.

Proof: Using polar coordinates for Rn, we identify Rn+1 with Σn−1×]0,∞[×R, where
Σn+1 is the unit sphere. We thus denote a point in Rn+1 by the coordinates (θ, r, t) ∈
Σn−1×]0,∞[×R. Let gΣ denote the standard metric over Σn−1. For ε > 0, we define the
metric gε over Rn+1 such that, at (θ, r, t):

g = cosh2(εt)(sinh2(εr)gΣ ⊕ dr2)⊕ dt2.

This metric is smooth and has constant curvature equal to −ε. Indeed, this formula is
obtained by using polar coordinates for Hn about a point and subsequently by identifying
Hn+1 with Hn×R using the foliation by geodesics normal to a totally geodesic hypersurface.

With respect to this metric, Rn is identified with a totally geodesic hypersurface, and, for
all k′ < k, there exists ε > 0 such that Σ̂ satisfies the hypotheses of Lemma 11.4, with k′

instead of k. There therefore exists Σε ⊆ Rn+1 possessing the desired properties and of
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constant Gaussian curvature equal to k′ with respect to the metric gε. Existence follows
by taking limits as in Lemma 11.4.

To prove uniqueness, let Σ1 and Σ2 be two solutions. Suppose that Σ1 6= Σ2. Without loss
of generality, there is a point of Σ1 lying below Σ2. There therefore exists a translate Σ′1
of Σ1 in the vertical direction which lies strictly above Σ1 and which is an exterior tangent
to Σ2 at some point P ′. Since ∂Σ′1 lies strictly above ∂Σ2, P ′ is an interior point of Σ′1
and Σ2. It follows by the strong Geometric Maximum Principal that Σ′1 and Σ2 coincide,
which is absurd. Uniqueness follows and this completes the proof. �

If M is a Riemannian manifold, we say that a bounded open subset Ω ⊆ M satisfies a
uniform exterior ball condition if and only if there exists ε > 0 such that for every P ∈ ∂Ω,
there exists an open geodesic ball B ⊆ Ωc of radius ε such that:

P ∈ ∂B ∩ ∂Ω.

By compactness, Ω satisfies a uniform exterior ball condition for a given metric over M
if and only if it satisfies this condition for any metric over M , and we thus extend this
condition to subsets of arbitrary C∞ manifolds.

Example: Any compact, open subset with smooth boundary satisfies a uniform exterior
ball condition. �

Example: Any convex, open subset satisfies a uniform exterior ball condition. �

We now recover the following theorem of Rosenberg and Spruck (see [19]), which has also
recently been proven in a more general setting by Guan, Spruck and Szapiel (see [11]):

Theorem 12.2, [Rosenberg, Spruck, (1994)]

Let Ω ⊆ ∂∞Hn+1 be a non-trivial open subset whose boundary satisfies the uniform
exterior ball condition. Then, for all k ∈]0, 1[, there exists a convex, immersed
hypersurface Σk ⊆ Hn+1 such that:

(i) identifying ∂∞Hn+1 with Rn ∪{∞} and viewing Ω as a subset of Rn, Σk is a
graph over Ω;

(ii) Σk is smooth and C0,1 up to the boundary;

(iii)∂Σk = ∂Ω; and

(iv)Σk has constant Gaussian curvature equal to k.

Moreover, if Ω is star-shaped, then Σk is unique.

Proof: We identify Hn+1 with the upper half space Rn×]0,∞[ in the standard manner.
We thus identify ∂∞Hn+1 with Rn ∪{∞} and view Ω as a subset of Rn. For ε > 0, let
Hε = Rn × {ε} be the horosphere at height ε above Rn. We define Ωε ⊆ Hε by

Ωε = {(x, ε) s.t. x ∈ Ω} .

By the uniform exterior ball condition, for ε sufficiently small, ∂Ωε is uniformly strictly
convex as a subset of Hn+1 with respect to the outward pointing unit normal in Hε.
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Let Kε be the complement of Ωε in Hε. Let K̂ε be the convex hull of Kε in Hn+1. We
denote by Σ0,ε the portion of ∂K̂ε lying above Hε. In other words:

∂K̂ε = (∂K̂ε ∩Hε)∪Σ0,ε.

Since it is locally ruled, Σ0,ε serves as a lower barrier for the problem (see [21]). We
define (Σ̂ε, ∂Σ̂ε) = (Ω, ∂Ω). The only difference between our current framework and that
of Theorem 1.1 is that it is the upper barrier, Σ̂ε that is smooth and the lower barrier, Σ0,ε

that is not. The only change required to adapt the proof to our framework is therefore to
replace (f−f0) in Corollary 5.5 with (f−f̂). The uniform strict convexity of Ωε as a subset
of Hn+1 with respect to the normal in Hε ensures uniform lower bounds of the restriction
to ∂Ω of the second fundamental form of any surface Σ which is a graph above Ω such that
∂Σ = ∂Ω. Thus proceeding as in Theorem 1.1, we show that there exists a graph Σε over
Ωε which is smooth up to the boundary and has constant Gaussian curvature equal to k.

Taking limits yields a C0,1 graph, Σ, over Ω such that ∂Σ = ∂Ω. By Proposition 11.1, the
set where Σ is not strictly convex is closed. It is therefore the convex hull of the intersection
of some totally geodesic hyperplane H with ∂Ω (see [20] for details). In particular, if Σ
is not strictly convex at some point, then, viewed as a graph, it is vertical at some point
on the boundary. However, consider a point P ∈ ∂Ωε and geodesic ball B ⊆ Hε such that
B ⊆ Ωc and P ∈ ∂B. Using the foliation of constant Gaussian curvature hypersurfaces in
Hn whose boundary coincides with ∂B, we deduce by the Geometric Maximum Principal
that there exists θ > 0 such that, for ε sufficiently small, Σε makes an angle at P of at least
θ with the foliation of vertical geodesics along ∂Ω. Moreover, θ may be chosen independant
of P . Taking limits, it follows that Σ is everywhere strictly convex and is therefore smooth
over the interior by [2]. This proves existence.

Suppose now that Ω is star-shaped, and let Σ1 and Σ2 be two solutions. Suppose that
Σ1 6= Σ2. Without loss of generality, there exists a point P ∈ Σ1 lying below Σ2. As
before, we identify Hn+1 with Rn×]0,∞[. Without loss of generality, we may suppose that
Ω is star-shaped about (0, 0). Consider the family (Mλ)λ>1 of isometries of Hn+1 given
by:

Mλ(x, t) = (λx, λt).

There exists λ > 1 such that MλΣ1 is an exterior tangent to Σ2 at some point P ′. Since
Mλ∂Σ1 ∩ ∂Σ2 = ∅, P ′ is an interior point of Σ1 and Σ2. It follows by the strong Geometric
Maximum Principal that MλΣ1 = Σ2, which is absurd. Uniqueness follows and this
completes the proof. �

A - Regularity of Limit Hypersurfaces.

Let Mn+1 be an (n+1)-dimensional Riemannian manifold. Choose k > 0 let (Σm)m∈N be a
sequence of smooth, convex, immersed hypersurfaces in M of constant Gaussian curvature
equal to k. Suppose that there exists a C0,1 locally convex, immersed hypersurface, Σ0 to
which (Σm)m∈N converges in the C0,α sense for all α. For all m ∈ N, let Nm and Am be
the unit normal vector field and the second fundamental form respectively of Σm. Choose
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p0 ∈ Σ0 and let (pm)m∈N ∈ (Σm)m∈N be a sequence converging to p0. For all r > 0, and
for all m ∈ N∪{0}, let Bm,r be the ball of radius r (with respect to the intrinsic metric)
about pm in Σm.

We will say that Σ0 is functionally strictly convex at p0 if there exists a smooth function,
ϕ, defined on M near p0 such that:

(i) ϕ is strictly convex;

(ii) ϕ(p0) > 0; and

(iii) the connected component of ϕ−1([0,∞[)∩Σ0 containing p0 is compact.

Observe that if M is affine flat (in particular, if M = Hn+1), then Σ0 is functionally strictly
convex whenever it is strictly convex. We will prove:

Lemma A.1

If Σ0 is funtionally strictly convex at p0, then there exists r > 0 such that
(Bm,r, pm)m∈N converges to (B0,r, p0) in the pointed C∞-Cheeger Gromov sense.
In particular, B0,r is a smooth, convex immersion of constant Gaussian curvature
equal to k.

As in section 5, we denote by B the family of constants which depend continuously on the
data: M , k, (Σ0, p0) and the C1 jets of (Σm, pm)m∈N. In this section, for any positive
quantity, X, we denote by O(X) any term which is bounded in magnitude by K |X| for
some K in B.

The following elementary lemma will be of use in the proof:

Lemma A.2

For λ > 0 and for all a, b ∈ R:

(a+ b)2 6 (1 + λ)a2 + (1 + λ−1)b2.

Proof of Lemma A.1: Since (Σm)n∈N converges to Σ0 and since Σ0 is functionally strictly
convex at p0, there exists ε, h > 0, open sets Ω0, (Ωm)m∈N ⊆M and, for every m, a smooth
function ϕm : Ωm → [0,∞[ such that:

(i) for all m, Ωm is a neighbourhood of pm and (Ωm)m∈N converges to Ω0 in the Hausdorff
sense;

(ii) (ϕm)m∈N converges to ϕ0 in the C∞ sense;

(iii) for all m, Hess(ϕm) > εId;

(iii) for all m, ϕm(p0) = 2h; and

(iv) for all m, the connected component of pm in Σm ∩Ωm is compact with smooth bound-
ary and ϕm equals zero along the boundary: we denote this connected component by
Σm,0.
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We may assume that, for all m, ϕm 6 1 over Σm,0. Finally, after reducing ε if necessary,
there exists a smooth, unit length vector field X defined over a neighbourhood of p0 such
that, for all m, throughout Σm,0, 〈X,Nm〉 > ε. We now follow an adaptation of reasoning
presented by Pogorelov in [18].

Choose α > 1. For all m, we define the function Φm by:

Φm = αLog(ϕm)− 〈X,Nm〉+ Log(‖Am‖),

where ‖Am‖ is the operator norm of Am, which is equal to the highest eigenvalue of Am.
We aim to obtain a priori upper bounds for Φm for some α. We trivially obtain a-priori
bounds whenever ‖Am‖ 6 1. We thus consider the region where ‖Am‖ > 1. Choose m ∈ N
and P ∈ Σm,0. Let λ1 > ... > λn be the eigenvalues of Am at P . In particular, λ1 = ‖Am‖.
Let e1, ..., en be the corresponding orthonormal basis of eigenvectors. In the sequel, we will
suppress m.

Let the subscript “;” denote covariant differentiation with respect to the Levi-Civita co-
variant derivative of Σ. Thus, for example:

Aij;k = (∇Σ
ek
A)(ei, ej).

We consider the Laplacian, ∆, defined on functions by:

∆f =
n∑

i=1

1
λi
f;ii.

We aim to use the Maximum Principal in conjunction with ∆. Thus, in the sequel, we will
only be interested in the orders of magnitude of potentially negative terms.

In analogy to Corollary 6.7, at P :

∆Log(λ1) >
n∑

i,j=1

1
λ1λiλj

Aij;1Aij;1 −
n∑

i=1

1
λ1λ1λi

A11;iA11;i −O(1)−O(‖A−1‖),

in the weak sense. However, by Lemma 6.3, for all i:

A11;i = Ai1;1 +RM
i1ν1,

where ν represents the exterior normal direction to Σ. Thus, bearing in mind Lemma A.2,
and that λ1 > 1, we obtain:

∆Log(λ1) >
n∑

i=2

1
2λ1λ1λi

Ai1;1Ai1;1 −O(1)−O(‖A−1‖),

in the weak sense. Differentiating the Gauss Curvature Equation yields, for all j:

n∑
i=1

1
λi
Aii;j = 0,
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Thus:
−∆〈X,N〉 > 〈X,N〉Tr(A)−O(1)−O(‖A−1‖)

> ελ1 −O(1)−O(‖A−1‖).

Finally:

∆(αLog(ϕ)) >
α

ϕ
εTr(A−1)− α

ϕ2

n∑
i=1

1
λi
ϕ;iϕ;i −O(α).

However, bearing in mind Lemma 6.3:

Φ;i =
α

ϕ
ϕ;i −Xν

;i −Xiλi +
1
λ1
Ai1;1 +

1
λ1
RM

i1ν1,

where ν is the exterior normal direction over Σ. Thus, by induction on Lemma A.2, modulo
∇Φ: ∣∣∣∣αϕϕ;i

∣∣∣∣2 6
4
λ2

1

Ai1;1Ai1;1 +
4
λ2

1

(RM
i1ν1)

2 + 4(Xiλi)2 + 4(Xν
;i)

2.

Thus, bearing in mind that λ1 > λi for all i and that λ1 > 1, we obtain, modulo ∇Φ:

α

ϕ2

n∑
i=2

1
λi
ϕ;iϕ;i = O(α−1‖A−1‖) +O(α−1λ1) +

n∑
i=2

4
αλ2

1λi
Ai1;1Ai1;1.

Since ϕ is bounded above (and thus ϕ−1 is bounded below), for sufficently large α we
obtain, modulo ∇Φ:

∆Φ > ε
2λ1 −O(λ−1

1 ϕ−2)−O(1)
= (ϕ2α‖A‖)−1( ε

2 (ϕα‖A‖)2 −O(ϕα‖A‖)−O(1)).

There therefore exists K1 > 0 in B such that if (ϕα‖A‖) > K, then the right hand side
is positive. However, for all m ∈ N, Φm = −∞ along ∂Σm,0. There thus exists a point
P ∈ Σm,0 where Φm is maximised. By the Maximum Principal, at this point, either
‖A‖ 6 1 or ϕα‖A‖ 6 K1. Taking exponentials, there therefore exists K2 > 0 in B such
that, for all m ∈ N, throughout Σm,0:

ϕα〈X,Nm〉−1‖Am‖ 6 K2.

Since 〈X,Nm〉 6 1, this yields a-priori bounds for ‖Am‖ over the intersection of Σm,0

with ϕm > h. Using, for example, an adaptation of the proof of Theorem 1.2 of [22] in
conjunction with the Bernstein Theorem [6], [14] & [18] of Calabi, Jörgens, Pogorelov, we
obtain a-priori Ck bounds for Σm,0 over the region ϕm > 3h for all k. The result now
follows by the Arzela-Ascoli Theorem. �
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