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SOME RESULTS ON HOMOCLINIC AND HETEROCLINIC
CONNECTIONS IN PLANAR SYSTEMS

A. GASULL∗, H. GIACOMINI, AND J. TORREGROSA∗

Abstract. Consider a family of planar systems depending on two parameters
(n, b) and having at most one limit cycle. Assume that the limit cycle disappears
at some homoclinic (or heteroclinic) connection when Φ(n, b) = 0. We present
a method that allows to obtain a sequence of explicit algebraic lower and upper
bounds for the bifurcation set Φ(n, b) = 0. The method is applied to two qua-
dratic families, one of them is the well-known Bogdanov-Takens system. One of
the results that we obtain for this system is the bifurcation curve for small val-
ues of n, given by b = 5

7
n1/2 + 72

2401
n− 30024

45294865
n3/2− 2352961656

11108339166925
n2 +O(n5/2).

We obtain the new three terms from purely algebraic calculations, without eva-
luating Melnikov functions.

1. Introduction

Consider a smooth family of planar differential equations (ẋ, ẏ) = (P (x, y;n, b),
Q(x, y;n, b)), (n, b) ∈ R2, for which the existence of at most one limit cycle is
already known and moreover all the bifurcations occurring in the family are well
understood. For this family we could say that the Qualitative theory of ordinary
differential equations has achieved all its goals and all the job is done. Nevertheless,
from an analytic and quantitative point of view there remains a crucial question:
to determine the bifurcation curves in the bifurcation diagram of the family.

Some of these bifurcation curves are not difficult to find. This is the case for
instance of the curves that control the changes in the behavior of the flow near
the critical points. These bifurcation curves correspond to local phenomena and
so, in principle, are easier to study. A paradigmatic example of this kind is the
bifurcation curve associated to the birth of a limit cycle due to an Andronov-
Hopf bifurcation. The curves governing global phenomena are in general much
more difficult to determine. This is, for instance, the case of the appearance of
homoclinic or heteroclinic connections.

We propose a method that, in some cases, allows to obtain explicit lower and
upper bounds in the parameter plane for the location of the bifurcation curves
associated to these global phenomena. As illustration, we will apply it to two 2-
parametric families of quadratic systems having at most one limit cycle. Since our
examples are polynomial, we will consider their phase portraits on the Poincaré
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sphere, see for instance [11, Chap. 5] or [14, Chap. 3.10], and the homoclinic or
heteroclinic connections will also take into account the critical points at infinity.

We start by giving a description of the method for finding the relation between
the parameters (n, b) for which this homoclinic or heteroclinic connection exists.
As a first step we consider an algebraic curve C = {(x, y) ∈ R2 : C(x, y) = 0},
as general as possible, but having some of the geometrical properties of the phase
portrait of the system. For instance, it has to pass through the two critical points
of the vector field that are connected by the heteroclinic orbit; if the critical point
is a saddle it has to be tangent to one of its separatrices; if the critical point is at
infinity, it has to have a branch going to infinity in the direction corresponding to
this point, etc.

The second step consists in using all the free parameters in C to impose that, near
the critical points, the curve be as close as possible to the separatrix connecting
orbit. In most cases this can be done by finding a local analytical expression of this
separatrix in the neighborhood of each critical point. There are several possibilities
to impose that C be as close as possible to the separatrix. If the separatrix is a
heteroclinic orbit we can fix all the free parameters of C imposing this condition
only in the neighborhood of one of the critical points or in the neigbourhood of
both critical points at the same time. If the separatrix is a homoclinic orbit we
can impose the condition only on one of the branches of the orbit that arrives to
the critical point or on the two at the same time. In the two families of quadratic
systems studied in the next sections all these possibilities will be explored.

Once all the parameters of the curve C are fixed, we impose one more level
of closeness between both objects (the connecting orbit and the algebraic curve)
by forcing a relation among the parameters (n, b) ∈ R2. This procedure gives a
curve B = {(n, b) ∈ R2 : Φ(n, b) = 0} in the bifurcation space. In fact, up to this
point the method proposed is essentially the one followed in [2] to obtain analytic
approximations to separatrices for some two-point boundary value problems.

The last step is our main contribution and is the one that leads to explicit
algebraic upper and lower bounds of the bifurcation curve associated to the ex-
istence of connections between the two critical points. This is the most difficult
and computationally involved part of the method. We have to prove that there
are parameters (n, b) near the curve B such that the corresponding curves C are
without contact for the flow of the vector field and moreover that there are values
for which the flow crosses the curve in one sense and values for which the crossing
is in the opposite direction. This will be clearer in our applications.

Notice that the aim of our work is in the spirit of what Coppel proposed in his
well-known paper [5]: “Ideally one might hope to characterize the phase portraits
of quadratic systems by means of algebraic inequalities on the coefficients”, taking
into account the results of [7] where the authors proved that there are bifurcation
curves in quadratic systems which are neither algebraic nor analytic. Since there
is no hope to find analytic or algebraic expressions of the bifurcation curves, we
try to sandwich them between two algebraic curves.

We present below our main results. The first one deals with a family of quadratic
systems already studied in [15] and the second one with the Bogdanov-Takens
system. For both systems there is at most one (hyperbolic) limit cycle. The value
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b = b∗(n) corresponds, for each n, to the value where this limit cycle, which is
born in an Andronov-Hopf bifurcation, disappears giving rise to a heteroclinic or
homoclinic connection, respectively, see more details in the next sections.

Theorem 1.1. Let b = b∗(n) be the bifurcation curve corresponding to the hete-
roclinic connection for the quadratic system

{

ẋ = P (x, y) = y,
ẏ = Q(x, y) = −x+ by + xy − ny2,

(1)

with b > 0, n > 0. Then:

(i) For n > 14,
∣

∣

∣

∣

1

4n
− b∗(n)

∣

∣

∣

∣

<
1

8n3
.

(ii) For n > 5,
∣

∣

∣

∣

1

4n
− 1

64n3
− b∗(n)

∣

∣

∣

∣

<
1

2n5
.

(iii) For n > 26,
∣

∣

∣

∣

1

4n
− 1

64n3
− 5

512n5
− b∗(n)

∣

∣

∣

∣

<
1

8n7
.

Theorem 1.2. Let b = b∗(n) be the bifurcation curve corresponding to the saddle
loop homoclinic connection for the Bogdanov-Takens system

{

ẋ = y,
ẏ = −n + by + x2 + xy,

(2)

with n > 0. Then b∗(n) = H(
√
n), where H is an analytic function. Moreover,

(i) For 0 ≤ n ≤ 1/40,
∣

∣

∣

∣

5

7

√
n+

72

2401
n− b∗(n)

∣

∣

∣

∣

<
11

4
n5/4.

(ii) For n small enough,

b∗(n) =
5

7
n1/2 +

72

2401
n− 30024

45294865
n3/2 − 2352961656

11108339166925
n2 +O(n5/2).

The fact that b∗(n) = H(
√
n), where H is an analytic function, is an easy

consequence of some results of [13], see Corollary 3.5. Our main contributions
are items (i) and (ii). Notice that they improve the well-known local knowledge
of the function b = b∗(n) = 5

7

√
n + O(n), proved for instance in [8] by using a

blowing-up process and scaling of the time and the computation of a Melnikov
function. In Section 3.5 we compare them with other results of Perko obtained in
the mentioned paper [13]. Finally, in Subsection 3.6 we prove that

b∗(1/4) ∈
(

951225059
2609347034

, 258052528
707875165

)

≃ (0.364545247, 0.3645452486).

We use this information to improve the results of [9]. This subsection also serves
to show how to use our approach when the problem that we face depends only on
one parameter.

At the best of our knowledge, it is the first time that this type of results are
obtained for global bifurcation problems.
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2. The first family of quadratic systems

Our starting point is the following theorem:

Theorem 2.1. Consider the system (1),
{

ẋ = P (x, y) = y,
ẏ = Q(x, y) = −x+ by + xy − ny2,

with (n, b) ∈ R2. Then there exits a function b = b∗(n) such that b∗(−n) = −b∗(n),
nb∗(n) > 0 for n 6= 0 for which:

(i) The system has exactly one hyperbolic limit cycle if either n > 0 and 0 < b <
b∗(n) or n < 0 and b∗(n) < b < 0.

(ii) Otherwise the system has no limit cycles.

See Figure 1 for a numeric plot of the function b = b∗(n).

Figure 1. Limit cycles of system (1) for n > 0. The curve b = b∗(n)
is obtained numerically.

Essentially its proof follows from [15] and the theory of rotated vector fields
[6, 12]. See also [4] and [15]. The property b∗(−n) = −b∗(n) is a consequence of
the fact that the transformation (x, y, t) → (−x, y,−t) changes the sign of b and
n in system (1).

The phase portraits of system (1) in the Poincaré sphere appear in [4]. Indeed
the phase portrait corresponding to b = b∗(n), for n 6= 0, corresponds to the one
having a heteroclinic connection of the two infinite semi-hyperbolic critical points
which are on the directions y = 0 and x− ny = 0, see Figure 2. From the above
considerations we already know that we can restrict our attention to the region
n > 0 and b > 0. The origin is the only finite critical point of the system. Moreover
the line y−1 = 0 is transversal to the flow associated to this system. A key result
for knowing, once n is fixed, if some value b is smaller or bigger than b∗(n) is the
following lemma.
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b ≤ 0 0 < b < b∗(n) b = b∗(n) b∗(n) < b < n

Figure 2. Phase portraits of system (1) for n > 0 and b < n.

Lemma 2.2. Let φ(x, y) = q(y)x−p(y) = 0, with p(y) and q(y) polynomials, be an
algebraic curve having a non-singular branch connecting the two critical points at
infinity of system (1), which correspond with the directions y = 0 and x−ny = 0.
Assume also that φ(0, 0) > 0. If for some n > 0 and b > 0 it holds that

M(x, y) :=
∂φ(x, y)

∂x
P (x, y) +

∂φ(x, y)

∂y
Q(x, y)

∣

∣

∣

∣

{φ(x,y)=0}

≥ 0 (resp. ≤ 0)

and the zeroes of M are isolated, then b < b∗(n) (resp. b > b∗(n)), see Figure 3.

M < 0 M > 0

Figure 3. Flow on the curve φ(x, y) = 0.

Proof. Consider for instance the case where M is positive or zero. The inequality
M(x, y) ≥ 0 implies that the connected component of the curve {φ(x, y) = 0}
described in the statement is crossed by the flow of the vector field (P,Q) from
the region {φ(x, y) < 0} to the region {φ(x, y) > 0}. Since for b > 0 the origin
is a repellor, by applying the Poincaré-Bendixson Theorem on the sphere to the
positive invariant region formed by the curve and a piece of the equator (which is
invariant by the flow), we can prove the existence of at least one periodic orbit of
system (1). By using Theorem 2.1 we get that b < b∗(n), as we wanted to prove.
The other case follows similarly. �

The main goal of this section is to get good lower and upper bounds for the
function b = b∗(n).

2.1. A first approach to the bifurcation curve. Our first result takes advan-
tage of a direct application of Lemma 2.2 by taking the curves φ(x, y) = 0 as
hyperbolas. As can be seen in Figure 4, the curve b = b∗(n) is quite well delimited
by this simple approach.
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Figure 4. Observe how the bifurcation curve b = b∗(n) of sys-
tem (1), obtained numerically, lies between the two dashed curves
given in Proposition 2.3.

Proposition 2.3. Let b = b∗(n) be the bifurcation curve for the quadratic sys-
tem (1), with n > 0 and b > 0. Then, for all n > 0:

n

4n2 + 1
< b∗(n) <







n, when n ≤ 1/2,
8n2 − 1

16n3
, when n ≥ 1/2.

Proof. Consider φ(x, y) = a0 + a1x+ a2y+ xy − ny2. Clearly, inside this family of
hyperbolas there are many of them having the geometrical restrictions described
in Lemma 2.2. By computing M(x, y), since on φ(x, y) = 0, we can isolate x
in terms of y, we get that M depends only on y. Moreover its numerator is a
polynomial of degree 4 in y and its denominator is a polynomial of degree 2 which
is a perfect square. There are several ways of forcing it to have a given sign in
the region where the connected component of φ(x, y) = 0 of our interest lies. For
instance, by taking n > 1/2,

a0 =
1 + 4n2

8n3
, a1 = −1, a2 = −1 + 8n2

16n3
and b =

8n2 − 1

16n3
,

we force this polynomial to be (y − 1) times a polynomial of degree two which is
a perfect square. Concretely we get that

M(x(y), y) =
(4n2 + 1)(4n2y − 1)2

128n6(y − 1)
< 0

in the region {y < 1} and that the hyperbola connects the two infinite critical
points, as shown in Figure 3. By using Lemma 2.2 we get that for n > 1/2,
(8n2 − 1)/(16n3) > b∗(n), as we wanted to prove.
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By imposing that the polynomial in the numerator of M(x(y), y) be the product
of y2 and another polynomial of degree two, which is also a perfect square, we get

a0 =
(2n2 + 1)2(8n2 + 1)2

2n(4n2 + 1)4
, a1 = −(2n2 + 1)(8n2 + 1)

(4n2 + 1)2
,

a2 = −(2n2 + 1)(8n2 + 1)

2n(4n2 + 1)2
, b =

n

4n2 + 1
.

Moreover M(x(y), y) = y2R2
1(y)/S

2
1(y) > 0, where R1 and S1 are polynomials of

degree one in y, and S1(y) 6= 0 in the region {y < 1}. Again by Lemma 2.2 we get
that for all n > 0, n/(4n2 + 1) < b∗(n).

To end the proof it only remains to show that for 0 < n < 1/2, b∗(n) < n.
Indeed this is true for all n > 0. Notice that the straight line {y = 1} can not be
cut by the periodic orbits of the system. Since, when b− n ≥ 0,

div

(

y

1 − y
,
−x+ by + xy − ny2

1 − y

)

=
b− 2ny + ny2

(1 − y)2
≥ 0,

by applying the Bendixson-Dulac criterion we get that the system has no limit
cycles. Thus b∗(n) < n, as we wanted to prove. �

Remark 2.4. By imposing that the polynomial of degree four appearing in the
above proof be a multiple of y4 we get another quite satisfactory lower bound for b =
b∗(n) given by the function b = (4n2 − 1)/(16n3). Notice that (4n2 − 1)/(16n3) <
n/(4n2 + 1).

2.2. Proof of Theorem 1.1. For simplicity, we only give all the details of the
proof of the weaker result, which is the one given in item (i), which asserts that
for n > 14,

∣

∣

∣

∣

1

4n
− b∗(n)

∣

∣

∣

∣

<
1

8n3
.

Nevertheless its proof includes all the ingredients for the proof of the other results.
To see the main difference for proving the other two statements see the footnote of
next page. Before starting the proof we want to comment that although it seems
natural to improve item (iii) of the theorem going further in our computations,
our results are on the limit of what we can do with the algebraic manipulator that
we use (Maple) and the capacity of our computers1.

To prove item (i) we will apply in this case the general method described in
the previous section. Recall that when b = b∗(n) there is a heteroclinic connec-
tion between two critical points at infinity of the Poincaré compactification of
system (1), see Figure 2. Recall also that the directions corresponding to these
critical points are given by the lines R(x, y) := xQ2(x, y) − yP2(x, y) = 0, where
P2 and Q2 are the quadratic homogeneous parts of P and Q, respectively. In our
case R(x, y) = xy(x−ny). The behaviour near infinity of the separatrices of these
critical points can be easily obtained. For instance the one corresponding to the
direction x− ny = 0, from the center manifold theorem, can be written as

x = Ψ(y) = ny + ψ

(

1

y

)

,

1We have used a computer with 32Gb of RAM and 2.4GHz.
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with ψ being an analytic function at zero of the form

ψ(w) =
1 + n2 − nb

n

(

1 + w +
n2 + 1

n2
w2 +

(n2 + 2)(n2 + 1)

n4
w3 +O(w4)

)

.

Indeed we will use this expansion at much higher order.
Now we search an algebraic curve of the form2

x = f(y) :=
pu(y)

qv(y)
=
u0 + u1y + u2y

2 + u3y
3 + u4y

4 + ny5

(y − 1) (v0 + v1y + v2y2 + y3)
= ny +

∞
∑

k=0

fky
−k,

which is as close as possible to the searched separatrix. This is done by imposing
that Ψ(y) and f(y) coincide at the highest order possible at infinity. Concretely,
the eight free constants in f(y) are used to vanish the coefficients of y−k, k =
0, 1, . . . , 7 of Ψ(y) − f(y), obtaining the asymptotic expansion

Ψ(y) − f(y) =
C8(n, b)

y8
+
C9(n, b)

y9
+ · · · ,

where

C8(n, b) =
(−1 − n2 + nb)N8(n, b)

D8(n, b)
,

being

N8(n, b) =4n19b− 23n18b2 + 70n17b3 − 87n16b4 + 36n15b5 − n18 − 231n17b

+ 475n16b2 − 143n15b3 − 100n14b4 + 59n16 − 2488n15b+ 3668n14b2

− 886n13b3 − 232n12b4 + 567n14 − 11151n13b+ 10886n12b2 − 1284n11b3

+ 2561n12 − 28350n11b+ 16332n10b2 − 272n9b3 + 7718n10 − 44884n9b

+ 12264n8b2 + 17160n8 − 44920n7b+ 3648n6b2 + 27000n6 − 26112n5b

+ 27024n4 − 6624n3b+ 14976n2 + 3456

and

D8(n, b) = − 9n9b+ 9n8b2 − 33n7b+ 8n6b2 + 2n8 + 16n6

− 52n5b+ 50n4 − 28n3b+ 60n2 + 24.

Therefore, given n = n̄, some of the values of b satisfying N8(n̄, b) = 0 could be
a good candidate to approximate b∗(n̄). It is not difficult to prove that one of the
connected components of N8(n, b) = 0 has an asymptotic expansion at infinity of
the form b = 1

4n
+ 3

64n3 + · · · . From this expansion, and taking into account the
results of Proposition 2.3, we decide to fix

b =
1

4n
+
α

n3
,

2To prove statements (ii) and (iii), the only difference is that we take a rational function
with the same structure but having higher degrees in both the numerator and the denominator.
Concretely, having respectively degrees 6 and 5 for (ii), and 8 and 7 for (iii).
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for some α to be determined afterwards and the ui = ui(n, α) and vi = vi(n, α)
obtained above. Taking φn,α(x, y) = qv(y)x− pu(y) in Lemma 2.2 we get that

Mn,α(f(y), y) = t(n, α)

∑4
i=0 ri(n, α)zi

z
(
∑3

i=0 si(n, α)zi
)2 , where z = 1 − y, (3)

and f(y) = pu(y)/qv(y). In the above expression all the functions ri(n, α) are
polynomials in n of degree 40, and all si(n, α) are also polynomials in n. The
function t(n, α) is a rational function, which is always negative, and the coefficients
of n40 for each ri(n, α), for i = 0, . . . , 4 are, respectively,

− 5

256
− α

4
, − 3

64
− α, − 3

128
− 3α

2
,

1

64
− α,

3

256
− α

4
.

When α = 1/8 (resp. −1/8) all the expressions of the above list are negative
(resp. positive). Hence we can assure that for this value of α there exist n±

0

such that for all z > 0 and all n > n+
0 (resp. n > n−

0 ) the numerator of (3)
is positive (resp. negative). Similarly it can be proved that the denominator
never vanishes on the same region. Indeed it can be seen that the biggest value
of n which vanishes some of the eighteen functions, ri(n,±1/8), i = 0, . . . , 4, and
si(n,±1/8), i = 0, . . . , 3 corresponds to a zero of a factor of r4(n, 1/8). This factor
is

2560n16 − 446720n14 − 2294624n12 + 1116256n10 + 33662656n8

+ 98872176n6 + 131940378n4 + 85765842n2 + 21990713,

and its biggest zero is approximately 13.397. In short, by using for instance the
Sturm algorithm, it can be proved that for α = 1/8 (resp. α = −1/8), n > 13.4
and z > 0 it holds that the expression in (3) is positive (resp. negative). By using
Lemma 2.2 the theorem follows.

Remark 2.5. It is clear that our method to choose the curve φ(x, y) = 0, which is
one of the key points of our approach, that consists in imposing that it coincides as
much as possible with one of the separatrices, can be done by using the separatrix of
the other infinite critical point. Also it can be imposed that the curve φ(x, y) = 0
coincides in both extremes, i.e. simultaneously as much as possible, with both
separatrices. Although we obtain also other bounds for b = b∗(n), the ones given
in Theorem 1.1 are, at least for n big, better than the ones obtained by using these
slightly different approaches.

3. The Bogdanov-Takens system

For the Bogdanov-Takens system all its bifurcation diagram, including the num-
ber of limit cycles is known, see for instance [3, 8, 10, 13]. We summarize these
results about limit cycles in the next theorem:

Theorem 3.1. Consider the system (2),
{

ẋ = y,
ẏ = −n + by + x2 + xy,
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with n and b real numbers. Then it has a limit cycle (which is unique and hyper-
bolic) if and only if

n > 0 and b∗(n) < b <
√
n.

Here the function b∗ : R+ → R gives the curve b = b∗(n), n ≥ 0, where the phase
portrait of (2) has a homoclinic loop, which is hyperbolic and unstable. Moreover

b∗(n) =
5

7

√
n +O(n), n ∼ 0.

See Figure 5 for a numeric plot of b = b∗(n).

Figure 5. Limit cycles of the Bogdanov-Takens system. The curve
b = b∗(n) is obtained numerically.

Similarly that in the previous section our main goal is to give analytic informa-
tion on the function b = b∗(n) above. Following [3, 8] we know that, fixed n > 0,
a hyperbolic unstable limit cycle is created when b =

√
n, via a Hopf bifurcation,

that this limit cycle increases size when b decreases and disappears for some value
b = b∗(n), for which the system presents a homoclinic unstable saddle loop. This
behavior of the limit cycle is due to the fact that the system is a semi-complete
family of rotated vector fields with parameter b, see for instance [6, 12], see Figu-
re 6. The uniqueness and hyperbolicity of the limit cycle is proved for instance
in [10].

b < b∗(n) b = b∗(n) b∗(n) < b <
√
n b ≥ √

n

Figure 6. Saddle loop and Hopf bifurcations for the Bogdanov-
Takens system.
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3.1. A first approach to b∗(n). When n ≥ 0, instead of working with the ex-
pression (2), by using the translation x1 = x − √

n, y1 = y, after dropping the
subindexes, we obtain the equivalent system

{

ẋ = y,
ẏ = 2

√
nx+ (b+

√
n)y + x2 + xy.

(4)

A simple first estimation of the function b = b∗(n) is given in next lemma:

Lemma 3.2. Let b = b∗(n) be the value corresponding to a homoclinic saddle loop
for system (2), then

max(−
√
n,

√
n− 1) < b∗(n) <

√
n.

Proof. We work with the expression (4) of the Bogdanov-Takens system. Recall
that the limit cycle is born, via a Hopf bifurcation, when b =

√
n and b decreases.

Hence, by using the non-intersection property of the limit cycles of a semi-complete
family of rotated vector fields it suffices to prove that, when either b =

√
n− 1 or

b = −√
n, system (4) has no limit cycles. When b =

√
n − 1, note that the line

x+ y = 0 is invariant by the flow of (4), because

∂L(x, y)

∂x
y +

∂L(x, y)

∂y

(

2
√
nx+ (b+

√
n)y + x2 + xy

)

=
(

2
√
n+ x

)

L(x, y), (5)

where L(x, y) = x+ y. In other words, L(x, y) is an invariant algebraic curve with
cofactor K(x, y) := 2

√
n + x.

Assume that, when b =
√
n− 1, system (4) has a limit cycle Γ = {(x(t), y(t))},

with period T . Since the divergence of the system is b+
√
n + x = 2

√
n− 1 + x,

the characteristic exponent of Γ is

κ :=

∫ T

0

(

2
√
n− 1 + x(t)

)

dt.

On the other hand notice that from (5) we get that
∫ T

0

(

2
√
n+ x(t)

)

dt =

∫ T

0

d
dt
L(x(t), y(t))

L(x(t), y(t))
= 0.

Hence κ = −T and so Γ would be a hyperbolic stable limit cycle. This fact is in
contradiction with the known results, see for instance Figure 6. Hence the limit
cycle does not exist in this case.

To end the proof let us show that b∗(n) > −√
n. It is well-known that the

stability of a hyperbolic saddle loop is given by the sign of the divergence at the
saddle point, see [1, Chap. XI]. In our case, the divergence at the saddle point
is b∗(n) +

√
n. For the Bogdanov Takens system (2), when the loop exists it is

hyperbolic and unstable. Hence it holds that b∗(n) +
√
n > 0, as we wanted to

prove. �

3.2. Proof of Theorem 1.2.(i). We introduce the new parameter m = n1/4 and
we consider the equivalent system given in (4),

{

ẋ = y,
ẏ = 2m2x+ (b+m2)y + x2 + xy.

(6)
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We will prove our result in a constructive way. Indeed our first steps could
be skipped but we believe that they are useful to understand the way we have
obtained the approximations for b∗(n).

System (6) has a focus or a node at the point (−2m2, 0) and a saddle point at
the origin. The linear approximation to its separatrices at the origin is given by
the two lines:

C2(x, y) := −2m2x2 − (b+m2)xy + y2 = 0,

or equivalently, y = a1x, where a1 is one of the values

a±1 :=
b+m2 ±

√

(b+m2)2 + 8m2

2
. (7)

As in the proof of Theorem 1.1 we start by finding the first terms in the Taylor
expansion of the separatrices of a critical point. In this occasion the critical point
is the origin. In its neighborhood we can write these separatrices as

y = Ψ(x) :=

∞
∑

k=1

akx
k,

where a1 is one of the values a±1 , or in other words, C2(1, a1) = 0. The next terms
can be found recurrently by imposing that

∂(y − Ψ(x))

∂x
y +

∂(y − Ψ(x))

∂y

(

2m2x+ (b+m2)y + x2 + xy
)

∣

∣

∣

∣

y=Ψ(x)

≡ 0.

We have, for instance,

a2 =
−1 − a1

b− 3a1 +m2
, a3 =

a2 (2a2 − 1)

b− 4a1 +m2
,

a4 =
a3 (−1 + 5a2)

b− 5a1 +m2
, a5 =

3a3
2 − a4 + 6a2a4

b− 6a1 +m2
.

We remark that b− ka1 +m2 never vanishes for k > 1.
Now we consider a cubic algebraic curve of the form

C(x, y) := C2(x, y) + c3,0x
3 + c2,1x

2y + c1,2xy
2 + c0,3y

3 = 0 (8)

and we search the four free coefficients by imposing that {C = 0} be as close
as possible to the separatrices of the saddle point. In particular notice that the
quadratic terms of C imply that this curve is tangent to both separatrices. This
can be done by imposing that the function

F (x) := C(x,Ψ(x)) =
∞
∑

k=3

fk(m, b)x
k,

be as flat as possible at the origin. By choosing suitable ci,j in terms of b and m
we get that

F (x) = f7(m, b)x
7 +O(x8).

After some cumbersome computations, done with an algebraic manipulator, we
obtain that all the solutions of the equation f7(m, b) = 0 are contained in the
algebraic curve
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(2 + b)(b+ 1 −m2)(b2 + 9m2 + 2bm2 +m4)2×
(

3726m20 + 21951m18 + 25110bm18 − 671220m16 + 68040b2m16

+ 109512bm16 + 169452b2m14 + 87480b3m14 − 3005247m14

− 1882701bm14 − 1560330b2m12 − 40176b3m12 − 5046048bm12

+ 17286120m12 + 34020b4m12 − 703539b3m10 − 432702b4m10

− 2360050m10 − 1021503b2m10 − 39074153bm10 − 47628b5m10

− 848112b3m8 + 31843300b2m8 + 640000m8 − 530064b5m8

− 1329192b4m8 − 68040b6m8 + 9121240bm8 − 1181763b5m6

− 29160b7m6 − 1792000bm6 − 238788b6m6 − 2892813b4m6

− 11432588b2m6 − 18903846b3m6 − 89544b5m4 + 1254400b2m4

+ 22032b7m4 + 56862b6m4 + 4247140b4m4 + 2430b8m4

+ 4429720b3m4 + 974859b6m2 + 5670b9m2 + 243950b4m2

+ 54999b8m2 + 307107b7m2 + 863815b5m2 + 1296b10

+ 13608b9 + 42984b8 + 39000b7 + 11400b6
)

= 0.

The branches passing through the origin of the algebraic curve given above are

b =
5

7
m2 +

72

2401
m4 ± 4428

2401

√
2m5 +O(m6).

Hence to continue our study we decide to fix

b =
5

7
m2 +

72

2401
m4 + αm5, (9)

with α to be given afterwards.
With b given in (9) we will try to fix α in such a way that the curve C be without

contact in the negative half-plane {(x, y) : x < 0} where the saddle separatrices
lie. To impose this constrain we compute the resultant of C(x, y) and

D(x, y) :=
∂C(x, y)

∂x
y +

∂C(x, y)

∂y

(

2m2x+ (b+m2)y + x2 + xy
)

,

with respect to y. This a very huge task. After many computations3, done again
with an algebraic manipulator, we obtain that

P (x;α,m) := Res(C,D, y) = x10m36
(

r0(α,m) + r1(α,m)x+ r2(α,m)x2
)

,

where for i = 0, 1, 2, it holds that

ri(α,m) = r0
i (α,m) + r1

i (α,m)∆(α,m),

3Notice that this is a main difference between the proof of this theorem and the one of
Theorem 1.1, because there the algebraic curve considered is of the form x = f(y), and so the
problem goes easily to a one variable problem, while in this case we have to evaluate the resultant
of two polynomials.
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where

∆(α,m) :=
(

5764801α2m8 + 345744αm7 + 5184m6 + 19765032αm5

+ 592704m4 + 16941456m2 + 46118408
)1/2

and all the functions rj
i (α,m) are polynomials in α and m. Solving the quadratic

equation
p2(x;α,m) := r0(α,m) + r1(α,m)x+ r2(α,m)x2 = 0,

we obtain the solutions

x = x+(α,m) =
−r1(α,m) +

√

r2
1(α,m) − 4r0(α,m)r2(α,m)

2r2(α,m)

=

(

−63

25
+

16807

18450

√
2α +

282475249

326786400
α2

)

m2 +O(m3),

x = x−(α,m) =
−r1(α,m) −

√

r2
1(α,m) − 4r0(α,m)r2(α,m)

2r2(α,m)

=
247107

304580
+O(m).

Notice that the two roots of the coefficient of m2 in x+(α,m) are

α = α+ :=
13284

16807

√
2 ≃ 1.12, α = α− := −4428

2401

√
2 ≃ −2.61.

Hence, taking for instance α = ±11/4 = ±2.75 we obtain two values of α for which,
for m small enough, the two roots of the quadratic polynomial in p2(x;α,m) are
positive and so the curve C is without contact, for m small enough, in {(x, y) :
x < 0}. To know until which values of m this last property holds we fix α = ±11/4
and study the signs of the functions ri(±11/4, m), i = 0, 1, 2.

As an example we give some details for

r2(−11/4, m) = r0
2(−11/4, m) + r1

2(−11/4, m)∆(−11/4, m). (10)

It can be seen that the degrees of r0
2(−11/4, m) and r1

2(−11/4, m) are 180 and 184,
respectively. Notice that the above expression does not change sign when

(

r0
2(−11/4, m)

)2 −
(

r1
2(−11/4, m)

)2
(∆(−11/4, m))2 (11)

does not change sign. Hence we have to study the zeroes of this function which
is a polynomial in m. This can be done analytically by using its Sturm se-
quence. The smallest positive root of the polynomial (11) which also vanishes (10)
is m ≃ 0.40289. Hence we have proved that for m ∈ (0, 4/10), it holds that
r2(−11/4, m) < 0. Similarly we can prove that, on the interval (0, 4/10),

r0(11/4, m) < 0, r1(11/4, m) > 0, r2(11/4, m) < 0,

r0(−11/4, m) < 0, r1(−11/4, m) > 0, r2(−11/4, m) < 0.

As a consequence, the curve C with b given in (9), α = ±11/4, and m ∈ (0, 4/10)
is without contact in {(x, y) : x < 0}. It is easy to prove that for m sufficiently
small the curve C has a loop in the half-plane {(x, y) : x < 0}. Moreover with
the same type of algebraic methods that we have used above it can be seen that
the loop also exists in the interval m ∈ (0, 4/10). Furthermore, in this half-plane
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the loop is crossed transversally by the flow of (6), inwards when α = −11/4 and
outwards when α = 11/4. Hence we have proved that when

b = b±(m) :=
5

7
m2 +

72

2401
m4 ± 11

4
m5,

and m ∈ (0, 4/10) it holds that b−(m) < b∗(m) < b+(m). From these inequalities
the statement (i) of the theorem follows by noticing that (4/10)4 = 16/625 > 1/40.

3.3. Proof of Theorem 1.2.(ii). Clearly the ideas of the method used to prove
Theorem 1.2.(i) can be applied when the curve C given in (8) is taken of higher
degree. Consider now the algebraic curve

C4(x, y) := C2(x, y) +
∑

3≤i+j≤4

ci,jx
iyj = 0. (12)

By employing the same procedure applied to the cubic algebraic curve we obtain
the following relation between b and n = m4:

b =
5

7
n1/2 +

72

2401
n− 30024

45294865
n3/2 − 2352961656

11108339166925
n2 +O(n5/2). (13)

By using the variables n and b, the necessary calculations to obtain analogous
results, for a given interval [0, n0], to those obtained in Theorem 1.2.(i) for the
cubic curve are beyond our computational capacity. In particular we can not
obtain a compact expression of the resultant that would give a proof that C4 is
without contact in the half-plane {(x, y) : x < 0}. Nevertheless, once n is fixed
we can perform all the computations and prove for instance that for n = 1/20,

∣

∣

∣

∣

5

7
n1/2 +

72

2401
n− 30024

45294865
n3/2 − b∗(n)

∣

∣

∣

∣

< 10−4n7/4,

and for n = 1/100,
∣

∣

∣

∣

5

7
n1/2 +

72

2401
n− 30024

45294865
n3/2 − 2352961656

11108339166925
n2 − b∗(n)

∣

∣

∣

∣

< 10−5n9/4.

In any case, we will prove that the expression (13) gives us, at least locally, the
function b∗(n). This can be done by introducing the new variables B > 0 and
M > 0 as

B =
b+m2

2
, M2 =

(b+m2)2 + 8m2

4
. (14)

This change of variables is motivated by equation (7). Notice that by using them,
a±1 = B±M. Now we repeat all the procedure developed in the previous subsection
but with the curve C4(x, y) = 0 given in (12) and these new variables. By forcing
the curve C4(x, y) = 0 to coincide as much as possible with both separatrices of
the saddle point (four conditions of contact with one of them and five with the
other one) we determine all the parameters of the quartic. After that we obtain
the relation

B =
3

7
M2 − 180

2401
M4 +

2366307

90589730
M6 − 505643614857

44433356667700
M8 +O(M9), (15)

that ensures one more level of closeness between one of the separatrices and the
algebraic curve, for M sufficiently small.
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Fortunately, with these new variables it is now possible to explicitly get the
resultant P (x;M,B), between C4(x, y) and

D4(x, y) :=
∂C4(x, y)

∂x
y +

∂C4(x, y)

∂y

(

2m2x+ (b+m2)y + x2 + xy
)

,

with respect to y. We obtain that

P (x;M,B) := Res(C4, D4, y) = x14

(

S0(M,B)

5
∑

i=0

Ti(M,B)xi

)

,

where S0 and Ti, i = 0, . . . , 5 are rational functions in B and M. To have an idea of
their complexity we introduce the following notation: we will say that a rational
function S(M,B) is of type {i, j}/{k, l} if after simplifying it, its numerator has
monomials of degree between i and j and its denominator between k and l. Then

S0 is {0, 1}/{114, 132},
T0 is {91, 120}/{0, 0}, T1 is {109, 143}/{20, 24},
T2 is {124, 162}/{37, 44}, T3 is {137, 179}/{52, 62},
T4 is {137, 179}/{53, 63}, T5 is {137, 180}/{55, 65}.

Note that six of the above functions are singular at B = M = 0. Inspired by (15)
we express B in terms of M and α as

B = β(M,α) :=
3

7
M2 − 180

2401
M4 +

2366307

90589730
M6 − 505643614857

44433356667700
M8 + αM9,

(16)

where α is an arbitrary parameter to be determined later. We obtain that

P (x; β(M,α),M)

x14

∣

∣

∣

∣

M=0

=
5
∑

i=0

Pi(α) xi,

where now all the functions Pi, i = 0, 1, . . . , 5 are polynomials in α with degrees
{2, 5}, {0, 6}, {0, 11}, {0, 15}, {0, 15}, and we use a notation similar to above. We
remark that to have the cancelations between the respective numerators and de-
nominators in the expression of P, that allow us to evaluate it at M = 0, it is
necessary to take B as in the expression (16).

The polynomial P0 is

P0(α) = kα2
(

296751659628833594552482011388242366232495503625α3

+ 719549554938315584569470362390245200816649200α2

+ 532161050006783873283311272385459961077760α

+ 112647235678813465306115059636253208576
)

,

for some positive integer k. It has α = 0 as a double root and three negative
simple roots, which are approximately −0.001166, −0.000895 and −0.000364. In
particular

P0(−2500−1) < 0 and P0(2500−1) > 0.

If we fix any of the two values α± = ±2500−1 it holds that P (x; β(M,α±),M)
does not vanish if M and |x| 6= 0 are small enough. This implies that shrinking, if
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necessary, the value of M we obtain that the oval of the algebraic curve C4(x, y) =
0, which lies in the negative half plane {x < 0} and starts and ends at the origin,
is without contact with the flow of the system (except at (0, 0)). Notice that this
oval is born from the cusp point existing when M = 0 and B = β(α±, 0) = 0.

The fact that the resultant between C4 and D4 has different sign when α = α+

and when α = α− induces to think that the flow crosses the oval outwards in one
case of plus sign and inwards in the other one. To prove this fact it suffices to
check this property, for each case, on a single point of the oval. We have chosen
the cutting point of the oval of C4(x, y) = 0 and the x-axis.

The four points of the curve C4(x, y) = 0 on the x-axis are 0, which is a double
one, and

x1(α,M) =−3
2
M2 + 99

392
M4 − 14661

168070
M6 + 1097361567

28988713600
M8

− 57336960516777
3110334966739000

M10 +
(

429
1280

α− 1360220314860156764457
758276772825613000960000

)

M11 +O(M12),

x2(α,M) =−3266440450
1212150477

+
(

−688506579126746016577
52895116040087791044

+ 868315765444642387622750
357042033270592589547

α
)

M +O(M2).

Notice that the point on the loop is (x1(α,M), 0). After many computations we
obtain that

D4(x1(α,M), 0) =37182801006000
184877

αM11

−
(

1233580648740454800
3107227739

α + 644635919327316538269855546
575604427043451909103

)

M12 +O(M13).

Hence the sign on C4(x, y) = 0 of D4 is different for α = α+ > 0 and for
α = α− < 0, as we wanted to prove. Therefore, for M small enough4, the value of
B corresponding to the existence of the homoclinic loop, say B∗(M), satisfies

β(M,−2500−1) < B∗(M) < β(M, 2500−1).

Collecting all the above results and writing expression (15) in the old variables
b and n we get the proof of Theorem 1.2.(ii).

To get an idea of how far the approximation given in Theorem 1.2.(ii) works we
compare it with a numerical approximation of the bifurcation curve. Concretely
we have obtained a numerical approximation, working with precision 10−16, of
b = b∗(n) for n ∈ (0, 10−2) by using a Taylor’s method for solving the differential
equation. If we denote it by b = b∗num(n) it holds that
∣

∣

∣

∣

5

7
n1/2 +

72

2401
n− 30024

45294865
n3/2 − 2352961656

11108339166925
n2 − b∗num(n)

∣

∣

∣

∣

< 6 × 10−10,

for n ∈ (0, 10−2).

4To determine an explicit value of M until which the result holds we could try a similar study
to the one done in the previous subsection, but it would be extremely long and tedious.
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3.4. More terms in b∗(n). By applying again the procedure described in the
previous subsections, but starting with a sextic algebraic curve

C6(x, y) := C2(x, y) +
∑

3≤i+j≤6

ci,jx
iyj = 0,

we arrive to a relation similar to (15) that writes as:

B =3
7
M2 − 180

2401
M4 + 2366307

90589730
M6 − 505643614857

44433356667700
M8 + 121044460222851597

21794117111940173000
M10

− 75409774306549331412249
25960934362572014675870000

M12 + 344552497352535858777709804917
216470837823465107132247097100000

M14

− 43306460616773431694096161799928995367
48013140478550999259657196328505023800000

M16

+ 91720311301427439675156623493153846098504753619
174952692015527559148011719369634259959684998000000

M18

− 990748106733217809261982123885784358373281388289053276929
3187507017704227098311349623537514328886463857480747900000000

M20

+ 2174773094339151212022525670857933567647566708078598123403162358137
11614798115838021630069501971110592530190950393238633306372059000000000

M22

+O(M24).

From it and the change of variables (14) we obtain the following relation between
b and n,

b∗ =5
7
n1/2 + 72

2401
n− 30024

45294865
n3/2 − 2352961656

11108339166925
n2 + 161066618396136

2724264638992521625
n5/2

− 28575844096870898712
1622558397660750917241875

n3 + 37409973403083644863711656
6764713681983284597882721784375

n7/2

− 1301593321483486009213262204378664
750205319977359363432143692632890996875

n4

+ 750633455019308628819042126726886218707352
1366817906371309055843841557575267655935039046875

n9/2

− 2188961083333347178341822657596953981848275462851032
12451199287907137102778709466943415347212749443284171484375

n5

+ 1289326941251660725073133052778275691207040442626311930438856
22685152569996135996229496037325376035529199986794205676507927734375

n11/2

+O(n6). (17)

We believe that it is an improvement of the expression of b∗(n) given in Theo-
rem 1.2.(ii), with seven new terms of the expansion of b∗(n), but we have not been
able to prove this fact due to the complexity of the necessary algebraic calculations.
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Notice that the prime decompositions of the denominators of (17) have a nice
and regular structure:

7 = 7,

2401 = 74,

45294865 = 5 · 77 · 11,

11108339166925 = 52 · 710 · 112 · 13,

2724264638992521625 = 53 · 713 · 113 · 132,

1622558397660750917241875 = 54 · 715 · 114 · 133 · 17,

67647136819832845978827217843756 = 55 · 718 · 115 · 134 · 172,

750205319977359363 · · ·92632890996875 = 55 · 722 · 116 · 135 · 173 · 19,

136681790637090558 · · ·55935039046875 = 56 · 725 · 117 · 136 · 174 · 192 · 23,

124511992879137102 · · ·43284171484375 = 58 · 728 · 118 · 137 · 175 · 193 · 232,

226851525699359962 · · ·76507927734375 = 59 · 731 · 119 · 138 · 176 · 194 · 233,

where the small irregularity with the number of fives and sevens could be produced
by some cancelations with the respective numerators. Unfortunately no regularity
appears in the numerators.

This regularity in the denominators of the asymptotic expansion of b = b∗(n)
at the origin could give some clues about a possible closed form expression of this
function but, by the moment, we have not been able to obtain it.

3.5. Relation between our results and Perko’s approach. In [13], the au-
thor faces the problem of the global bifurcation diagram, on the Poincaré sphere,
of a different representation of the Bogdanov-Takens system. Concretely he con-
siders the system

{

ẋ = y,
ẏ = x(x− 1) + µ1y + µ2xy

(18)

and, among other results, he proves the following theorem:

Theorem 3.3 ([13]). There exists a unique analytic function h(µ2) defined for
all µ2 ∈ R that satisfies h′(0) = −1/7, h(−µ2) = −h(µ2), and max(−1,−µ2

2) <
µ2h(µ2) < 0 for all µ2 6= 0 such that

(a) System (18) has a unique, hyperbolic limit cycle if and only if µ1µ2 < 0 and
0 < |µ1| < |h(µ2)|; the limit cycle is stable if µ1 > 0, and unstable if µ1 < 0;

(b) For µ2 6= 0, system (18) has a fine focus of multiplicity one at the origin if
and only if µ1 = 0; for µ2 < 0, a unique, stable, limit cycle is generated in
a supercritical Hopf bifurcation at the origin of (18) at the bifurcation value
µ1 = 0, and it expands monotonically with increasing µ1 until it intersects the
saddle at (1, 0) and forms a homoclinic loop at the bifurcation value µ1 = h(µ2);

(c) System (18) has a homoclinic loop at the saddle (1, 0) if and only if µ1 = h(µ2);
the separatrix cycle is hyperbolic if and only if µ2 6= 0; it is stable (unstable)
on its interior for µ2 < 0 (µ2 > 0).
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Let us relate the results of the above theorem with our results. We need the
following simple lemma.

Lemma 3.4. When µ2 6= 0 the change of variables and time

u =
µ2

2

2
(2x− 1) , v = µ3

2y, τ =
t

µ2

transforms system (18) into










u′ =
du

dτ
= v,

v′ =
dv

dτ
= −µ

4
2

4
+
µ2(2µ1 + µ2)

2
v + u2 + uv.

As a consequence of the above lemma and Theorems 3.1, 1.2.(ii) and 3.3 we
obtain:

Corollary 3.5. (i) The following relation holds

h(µ2) = −µ2

2
+
b∗
(

µ4

2

4

)

µ2

(19)

= −1

7
µ2 +

18

2401
µ3

2 −
3753

45294865
µ5

2 −
294120207

22216678333850
µ7

2 +O(µ9
2), (20)

where the functions b∗ and h are the ones defined in Theorems 3.1 and 3.3, re-
spectively.

(ii) The function b∗(n) is given by b∗(n) = H(
√
n), for some analytic function

H.

Proof. By using Lemma 3.4 we get that the relations between the variables in
system (18) and the ones of system (2) are

n =
µ4

2

4
, b =

µ2(2µ1 + µ2)

2
.

By using them we easily obtain the proof, because the relation b = b∗(n) writes as

µ2(2µ1 + µ2)

2
= b∗

(

µ4
2

4

)

,

which immediately leads to (19). From this relation and the expression of b = b∗(n)
given in Theorem 1.2.(ii), the expansion (20) follows. Item (ii) is a consequence
of (19), Theorem 3.3 and the fact that h is an odd function. �

We end this section with several remarks.

Remark 3.6. (i) Expression (20) improves the local knowledge of the function h
given in Theorem 3.3. The proof of [13] that h′(0) = −1/7, is equivalent to the
classical one which appears in [8] and gives the term 5

7

√
n in expression (13). Our

approach goes much further and it is completely different.
(ii) By using Theorem 1.2.(i) we obtain the following global result: for |µ2| ≤

10−1/4 ≃ 0.562,
∣

∣

∣

∣

−1

7
µ2 +

18

2401
µ3

2 − h(µ2)

∣

∣

∣

∣

≤ 11

29/2
|µ2|4 .
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Notice that this inequality proves that for µ2 ∈ (−10−1/4, 0),

h(µ2) < −1

7
µ2.

This result is coherent with the conjecture made in [13] that affirms that the above
inequality holds for all µ2 < 0.

(iii) The inequalities of Lemma 3.2 translated to system (18) read as

max(−1,−µ2
2) < µ2h(µ2) < 0.

This information is already contained in Theorem 3.3, but our proof is different
to the one given in [13].

(iv) In [13] there is another conjecture that says that µ2h(µ2) + 1 = O(1/µ2) as
µ2 → −∞. In the parameters of the Bogdanov-Takens system (2) it reads as

b∗(n) =
√
n− 1 +O

(

n− 1

4

)

as n→ ∞.

(v) The case µ2 = 0 includes new systems which are not contained in the ex-
pression of the Bogdanov-Takens system written as in (2). For instance the case
µ1 = µ2 = 0 corresponds to a Hamiltonian system with a center at the origin.

3.6. A final application. In [9] it is proved the following result:

Theorem 3.7 ([9]). The system
{

ẋ = y,
ẏ = βy − αx2 + α2x− xy, with α < 0,

(21)

has a limit cycle if and only if γ < β/α < 1, where γ is a positive constant.

This constant γ is computed numerically in that paper as γ ≃ 0.864546. We
remark that for the values α and β satisfying β/α = γ, the system (21) has a
homoclinic loop through the origin. We will improve the results of that paper.
We start by proving the following lemma.

Lemma 3.8. The constant γ defined above is

γ = b∗(1/4) + 1/2,

where b∗(n) is the function introduced in Theorem 3.1.

Proof. By applying the change of variables

u =
1

2
− x

α
, v = − y

α2
, τ = αt,

to the system (21) we obtain










u′ =
du

dτ
= v,

v′ =
dv

dτ
= −1

4
+

(

β

α
− 1

2

)

v + u2 + uv.

Hence, the correspondence between the parameters of system (21) and the ones
of the Bogdanov-Takens system (2) is

n = 1/4 and b = β/α− 1/2.

From these relations the lemma follows. �
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As we have already explained at the end of Subsection 3.3 we have computed
b∗num(n) at several values of n, obtaining in particular that

γ ≃ b∗num(1/4) + 1/2 = 0.864545247421507 =: γnum. (22)

Notice that only the first five significative digits agree with that computed in [9],
0.864546. As we will prove in Theorem 3.10, at least eight of the significative
digits of γnum are correct and |γ − γnum| < 1.2 × 10−9.

Let us call γk := b∗k(1/4)+1/2,where b∗k(n) is the function obtained by adding the
first k terms of the asymptotic expansion of b∗(n) at the origin, see Theorem 1.2.(ii)
and expression (17). For instance

b∗1(n) =
5

7
n1/2, b∗2(n) =

5

7
n1/2 +

72

2401
n

and so on. Although we have not proved neither the validity of these expressions
until n = 1/4 nor the validity of b∗k(1/4), k = 5, . . . , 11 we can compute the values
b∗k(1/4) + 1/2 and compare with the numerical approximation of γ. We obtain

γ1 = 6
7
≃ 0.857142857143, |γ1 − γnum| ≤ 7.5 × 10−3,

γ2 = 2076
2401

≃ 0.864639733444, |γ2 − γnum| ≤ 9.5 × 10−5,

γ3 = 39159987
45294865

≃ 0.864556876370, |γ3 − γnum| ≤ 1.2 × 10−5,

γ4 = 19207287903423
22216678333850

≃ 0.864543637658, |γ4 − γnum| ≤ 1.7 × 10−6,

γ5 = 9421002777077246787
10897058555970086500

≃ 0.864545485251, |γ5 − γnum| ≤ 2.4 × 10−7,

γ6 = 11222200726046133491344191
12980467181286007337935000

≃ 0.864545210070, |γ6 − γnum| ≤ 3.8 × 10−8,

γ7 = 935744176562···60335616104987
108235418911···66123548550000

≃ 0.864545253274, |γ7 − γnum| ≤ 5.9 × 10−9,

γ8 = 2075476618505···38798344748153
2400657023927···64252511900000

≃ 0.864545246497, |γ8 − γnum| ≤ 9.2 × 10−10,

γ9 = 7562725921574···99070483500549
8747634600776···79842499000000

≃ 0.864545247569, |γ9 − γnum| ≤ 1.5 × 10−10,

γ10 = 1377872021601···10350610970071
1593753508852···40373950000000

≃ 0.864545247398, |γ10 − γnum| ≤ 2.4 × 10−11,

γ11 = 5020759255426···85210508369767
5807399057919···86029500000000

≃ 0.864545247425, |γ11 − γnum| ≤ 3.9 × 10−12.

Notice that the values γk given above approach well to γnum, and by using again
the results of Theorem 3.10, also approach to γ.

In fact in the sequel we will see how the method introduced in this paper allows
to give a concrete interval where the actual value of γ lies.

Recall that our approach for obtaining information of whether a homoclinic
connection appears passes trough the construction of the two polynomials

Ck(x, y) = C2(x, y) +
∑

3≤i+j≤k

cki,jx
iyj, (23)

Dk(x, y) =
∂Ck(x, y)

∂x
y +

∂Ck(x, y)

∂y
(2m2x+ (b+m2)y + x2 + xy),

with k ≥ 3, and their resultant. From a computational point of view it is much
simpler the case where all the numbers implied in their obtention are rational
and then Ck(x, y) and Dk(x, y) are in Q[x, y]. It is easy to see that this happens
when b and the eigenvalues of the saddle point given in (7) are rational numbers.
From now one we will particularize our study to case n = 1/4, that is m2 = 1/2,
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although clearly our approach can be adapted to all values of n such that
√
n is a

rational number. In our case, the rationality conditions are reduced to

b =
p

q
and

(

p

q
+

1

2

)2

+ 4 =
(r

s

)2

for some integer numbers p, q, r and s. This is equivalent to find integer solutions
p, q and t of the quadratic diophantine equation

4p2 + 4pq + 17q2 = t2. (24)

It is well-known how to study this type of equations. More concretely, if (p0, q0, t0) ∈
Z3 is a particular solution of the diophantine equation

Ap2 +Bpq + Cq2 = Dt2,

where A, B, C and D are integers numbers, then

p =p(u, v) = (Ap0 +Bq0)u
2 + 2Cq0uv − Cp0v

2,

q =q(u, v) = −Aq0u2 + 2Ap0uv + (Bp0 + Cq0)v
2,

t =t(u, v) = t0(Au
2 +Buv + Cv2),

for any (u, v) ∈ Z2, is also an integer solution of the diophantine equation, because
it holds that

Ap(u, v)2+B p(u, v) q(u, v) + C q(u, v)2 −D t(u, v)2 =

(Au2 +Buv + Cv2)2(Ap2
0 +Bp0q0 + Cq2

0 −Dt20).

For equation (24) it is clear that (p0, q0, t0) = (1, 0, 2) is a particular solution.
By applying the above procedure we obtain the new solutions

p =p(u, v) = 4u2 − 17v2,

q =q(u, v) = 4v(2u+ v),

t =t(u, v) = 2(4u2 + 4uv + 17v2).

From them we obtain the suitable candidates to perform our study. We consider,
for (u, v) ∈ Z2, with v(2u+ v) 6= 0,

b = g(u, v) =
4u2 − 17v2

4v(2u+ v)
∈ Q, (25)

for which the eigenvalues of the saddle point given in (7), a±1 , are

a+
1 =

2u+ v

4v
∈ Q and a−1 = − 4v

2u+ v
∈ Q.

The above results will allow us to prove the following lemma.

Lemma 3.9. Fix n = 1/4 and b ∈ R. Then there are infinitely many sequences
of rational numbers {bj}j∈N such that limj→∞ bj = b and the eigenvalues a±1 of the
saddle point

bj + 1/2 ±
√

(bj + 1/2)2 + 4

2
are also rational numbers. Moreover these sequences can be explicitly obtained.
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Proof. Notice that, for v 6= 0, the map g(u, v) given in (25) can be written as

b = g(u, v) =
4
(

u
v

)2 − 17

8
(

u
v

)

+ 4
.

Then the first part of the proof follows by noticing that the graph of the map

w 7−→ G(w) =
4w2 − 17

8w + 4
, w ∈ R (26)

covers all the real line. To prove the second part it suffices to consider any sequence
of rational numbers {wj}j∈N tending to one of the preimages for G of b, say G−1(b).
Then, clearly, it holds that for any j ∈ N

bj := G(wj) =
4w2

j − 17

8wj + 4
∈ Q,

bj + 1/2 ±
√

(bj + 1/2)2 + 4

2
∈ Q

and limj→∞ bj = b as we wanted to prove. �

Finally, we prove:

Theorem 3.10. Let γ be the real number introduced in Theorem 3.7. Then

γ ∈
(

1127949288
1304673517

, 1223980221
1415750330

)

≃ (0.864545247, 0.8645452486).

Notice that the length of the interval given in the above theorem is smaller than
1.61 × 10−9.

Proof. By using Lemma 3.8, γ = b∗(1/4) + 1/2. So we will fix n = 1/4 and we
study b∗ := b∗(1/4), for system (2). For the sake of simplicity we only give the full
details of the range of values of b∗ that we obtain by applying our method with
k = 3, that is by using a cubic curve (23). The proof of the theorem follows by
taking k = 6.

The numerical approximation (22) of b∗ gives an orientation for the actual value
of b∗. After some trials we consider the values

bℓ3 := G
(19

8

)

=
89

368
and bu3 := G

(8

3

)

=
103

228
,

where G is the function given in (26), and we prove that b∗ ∈ (bℓ3, b
u
3). Notice that

(89/368, 103/228) ≃ (0.242, 0.452).
We will apply the procedure introduced in Section 3 for n = 1/4 and b ∈ (bℓ3, b

u
3)

for searching suitable cubic curves, both having an oval through the origin and
being without contact with the flow of the system. Moreover we will prove that
for one of the ovals the flow goes inwards and for the other one the flow goes
outwards.

Fix one of the values, say b = 89/368. Then we apply our procedure to determine
C3(x, y), by imposing all the coincidence conditions between the cubic and the
separatrix associated to the eigenvalue a+

1 = 23/16. Recall that due to our choice
of b we can ensure that all our computations will be with polynomials in Q[x, y].
We obtain

Cℓ
3(x, y) = (16x+23y)(16y−23x)

368
− 30470974207443747849

44286028769220680429
x3 − 48084904789188461109

88572057538441360858
x2y

+ 300486284549883520
44286028769220680429

xy2 − 78703862917780480
132858086307662041287

y3.
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We omit the explicit expression of Dℓ
3(x, y) ∈ Q[x, y], which has degree 4. The

resultant of Cℓ
3(x, y) and Dℓ

3(x, y), with respect to y, Res(Cℓ
3, D

ℓ
3, y) is a polynomial

of the form x10(Ax2+Bx+C) ∈ Q[x], for some huge rational numbers (numerators
and denominators with more than 60 digits), and A > 0, B < 0 and C > 0. Hence
the resultant is positive in {(x, y) : x < 0}.

If we compute the resultant of Cℓ
3(x, y) and ∂Cℓ

3(x, y)/∂y with respect to y we
obtain a polynomial of the form x2P4(x), with P4(x) ∈ Q[x]. The roots of P4 can
be explicitly obtained (or located by using the Sturm sequences of P4, in view
of the application of our approach for k > 3). Their approximate values are
−24.478, −9.855, x0 ≃ −1.454 and 32.737.

The following facts are not difficult to prove for the cubic Cℓ
3(x, y) = 0:

• Its only multiple point is the origin, which is a double point. On it, the
curve has two smooth branches tangent to the lines (16x + 23y)(16y −
23x) = 0;

• The polynomial Cℓ
3(0, y) has the 0 as a double root and a simple nonzero

root;
• For each x ∈ (x0, 0) the polynomial y 7−→ Cℓ

3(x, y) has exactly three simple
real roots;

• The polynomial y 7−→ Cℓ
3(x0, y) has a simple root and a root of multiplicity

two;
• For each x ∈ [−2, x0) the polynomial y 7−→ Cℓ

3(x, y) has exactly one simple
real root.

The tool that we use to prove the first item is the computation of the resultants
between Cℓ

3(x, y), ∂C
ℓ
3(x, y)/∂x and ∂Cℓ

3(x, y)/∂y. To prove the other ones we com-
pute the Sturm sequences of the polynomials Cℓ

3(x, y) considered as polynomials
in y, with coefficients in the rational functions with numerators and denominators
in Q[x]. This can be done, except at finitely many points, given by the zeros of
some polynomial of x that appear during the process. In particular, we can see
that studying the four polynomials Cℓ

3(x, y) for x ∈ {−2, x0,−1, 0} we have all the
information for y 7−→ Cℓ

3(x, y) and x ∈ [−2, 0].
The above list of properties prove that the curve Cℓ

3(x, y) = 0 has a loop which
starts and ends at the origin being tangent to the lines (16x+23y)(16y−23x) = 0
and is contained in the strip {(x, y) : x0 ≤ x ≤ 0}. Since we have proved that the
resultant Res(Cℓ

3, D
ℓ
3, y) does not vanish on the left hand plane {(x, y) : x < 0}

we know that the oval is without contact for the flow of the system. By studying
the sign of Dℓ

3 on the loop we prove that the flow crosses it inwards. Hence we
have proved that b∗ > bℓ3 = 89/368.

Working similarly, for b = 103/228 and a1 = 19/12 we obtain the cubic

Cu
3 (x, y) = (12x+19y)(12y−19x)

228
− 42394240475656582327

66085291294166321043
x3 − 24891674002318104595

44056860862777547362
x2y

+ 320066250082464600
22028430431388773681

xy2 − 37723016690931312
22028430431388773681

y3

and we prove that b∗ < bu3 = 103/228.
Before considering greater values of k we want to comment that, also keeping

k = 3, but taking rational numbers with big numerators and denominators, we
could improve a little bit the knowledge of the interval where b∗ lies. For instance
we can prove that
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b∗ ∈
(

G
(

951
398

)

, G
(

29
11

))

=
(

28898
114425

, 1307
3036

)

≃ (0.2525, 0.4305).

By applying our method for k > 3 we obtain that

b∗ ∈
(

1300991
3571092

, 411011
1125740

)

≃ (0.364312, 0.365103) for k = 4,

b∗ ∈
(

357550843
980814604

, 67268863
184528084

)

≃ (0.3645448, 0.3645454) for k = 5,

b∗ ∈
(

951225059
2609347034

, 258052528
707875165

)

≃ (0.364545247, 0.3645452486) for k = 6.

We notice that the theorem follows from the result when k = 6.
All the computations for the six values of b to be studied follow a similar proce-

dure to the one described above. The main computational difficulties appear for
proving that the algebraic curve of degree k has a transversal oval passing through
the origin due to the high degree and huge size of the coefficients of the polynomi-
als involved. For all cases we prove for the algebraic curve Ck(x, y) = 0, Ck(x, y) ∈
Q[x, y], the following properties, which are similar to the ones given for k = 3. In
each of the six cases there is a different value, say z0 ∈ (−2,−1), which is given
as a zero of a polynomial with rational coefficients computed through a suitable
resultant.

• The only multiple point is the origin, which is a double point. On it, the
curve has two smooth branches tangent to two given lines with rational
slopes;

• the polynomial Ck(0, y) has the 0 as a double root and k−2 simple nonzero
roots;

• for each x ∈ (z0, 0) the polynomial y 7−→ Ck(x, y) has exactly k simple real
roots;

• the polynomial y 7−→ Ck(z0, y) has k− 2 simple roots and a root of multi-
plicity two;

• for each x ∈ [−2, z0) the polynomial y 7−→ Ck(x, y) has exactly k−2 simple
real roots.

�
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