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ú
m

40
,
d
es

em
br

e
20

09
.

D
ep

ar
ta

m
en

t
d
e

M
at

em
àt
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Abstract

In this note, we establish optimal lower and upper Gaussian bounds
for the density of the solution to a class of stochastic integral equations
driven by an additive spatially homogeneous Gaussian random field. The
proof is based on the techniques of the Malliavin calculus and a density
formula obtained by Nourdin and Viens in [14]. Then, the main result
is applied to the mild solution of a general class of SPDEs driven by a
Gaussian noise which is white in time and has a spatially homogeneous
correlation. In particular, this covers the case of the stochastic heat and
wave equations in Rd with d ≥ 1 and d ≤ 3, respectively. The upper and
lower Gaussian bounds have the same form and are given in terms of the
variance of the stochastic integral term in the mild form of the equation.
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1 Introduction and main result

Let X = {X(t, x), (t, x) ∈ [0, T ] × Rd} be a zero mean Gaussian process with
an homogeneous covariance function of the form

E(X(t, x)X(s, y)) = Φ(t, s, x− y),

where we assume that t 7→ Φ(t, t, 0) is continuous, Φ(t, t, 0) > 0 for any t > 0,
and Φ(t, 0, x) = 0 for all (t, x) ∈ [0, T ]× Rd.

The purpose of this note is to establish optimal Gaussian lower and up-
per bounds for the probability density of the solution u(t, x) to the following
stochastic integral equation:

u(t, x) = X(t, x) +
∫ t

0

∫
Rd

b(u(s, x− y))Γ(t− s, dy)ds, (1)

where (t, x) ∈ [0, T ]× Rd and Γ(t, dy) is a nonnegative measure such that

sup
0≤t≤T

Γ(t,Rd) < +∞. (2)

Note that if b : R → R is Lipschitz continuous, there exists a unique solution of
(1) and the process u is also homogeneous is the space variable.

In particular, these equations include mild solutions to a large class of SPDEs
with additive noise of the form

Lu(t, x) = b(u(t, x)) + σẆ (t, x), (t, x) ∈ [0, T ]× Rd, (3)

where L denotes a second order differential operator with constant coefficients,
the random perturbation Ẇ (t, x) stands for a Gaussian noise which is white in
time and has a spatially homogeneous correlation, and σ is constant. We as-
sume here vanishing initial conditions. Let us denote by µ the spectral measure
associated to the noise Ẇ (for the precise description of the noise, see Section
4). The process X(t, x) is in this case

X(t, x) = σ

∫ t

0

∫
Rd

Γ(t− s, x− y)W (ds, dy),

where Γ denotes the fundamental solution associated to L and, if we simply
denote Φ(t) := Φ(t, t, 0), then

Φ(t) =
∫ t

0

∫
Rd

|FΓ(s)(ξ)|2µ(dξ)ds,

This has to be a finite quantity for X(t, x) to be well-defined. Let us point
out that the main examples of SPDEs of the form (3) to which our results will
apply are the stochastic heat equation in any space dimension and the stochastic
wave equation in Rd with d ≤ 3. Indeed, these types of SPDEs have been widely
studied during the last two decades, see e.g. [24, 2, 12, 3, 20, 19].

The main result of the paper is the following:
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Theorem 1 Assume that Γ satisfies (2) and b is of class C1 with a bounded
derivative. Then, there exists T0 > 0 such that for all (t, x) ∈ (0, T0) × Rd,
the random variable u(t, x) solution to (1) has a density p satisfying, for almost
every z ∈ R:

E |u(t, x)−m|
C2Φ(t)

exp
{
− (z −m)2

C1Φ(t)

}
≤ p(z) ≤ E |u(t, x)−m|

C1Φ(t)
exp

{
− (z −m)2

C2Φ(t)

}
,

where m = E(u(t, x)) and the constants C1, C2 are positive and only depend on
b and T0.

In order to prove Theorem 1, we will apply the techniques of the Malliavin
calculus. Indeed, as it has been also done in [18], we will make use of the
recent results obtained by Nourdin and Viens in [14]. In this paper, the authors
provide sufficient conditions on a one-dimensional Wiener functional (that is,
on a random variable on the Wiener space) so that its law has a density and it
is given by an explicit formula (see [14, Theorem 3.1 and Corollary 3.3]). As it
will be made precise in the proof of Theorem 1 (see Section 3), the application of
the above-mentioned result of Nourdin and Viens will require a careful analysis
of the Malliavin derivative of the solution of equation (1).

We should also remark that recently, there have been an increasing inter-
est in applying the techniques of the Malliavin calculus in order to establish
Gaussian lower bounds for the probability density of a general class of Wiener
functionals. In particular, this has been applied to diffusion processes and solu-
tions to SPDEs, and the article by Kusuoka and Stroock [9] can be considered as
the starting point of this methodology. Therein, a Gaussian type lower bound
for the density of a uniformly hypoelliptic diffusion whose drift is a smooth com-
bination of its diffusion coefficient was established. Later on, Kohatsu-Higa [8]
got rid of that dependence constraint on the drift and, moreover, took the ideas
of Kusuoka and Stroock in order to construct a general method to prove that
the density of a multidimensional functional of the Wiener sheet in [0, T ]× Rd

admits Gaussian lower bounds (see [7]). Then, in the latter paper, Kohatsu-
Higa dealt with a one-dimensional stochastic heat equation in [0, 1] (for a related
result, see also [18, Theorem 3.1]) and his result was also applied by Dalang and
Nualart [4] in the case of a one-dimensional reduced wave equation. The ideas
of [7] have also been further developed by Bally [1] to obtain Gaussian lower
bounds for locally elliptic Itô processes. Eventually, another recent method for
deriving Gaussian lower bounds for multidimensional Wiener functionals has
been obtained by Malliavin and Nualart [10] (see [15] for a one-dimensional ver-
sion of this result). This method is based on an exponential moment condition
on the divergence of a covering vector field associated to the Wiener functional.

The paper is organised as follows. In Section 2, we will briefly recall the
main tools of the Malliavin calculus needed in the proof of the main result. In
particular, we will recall the main points of the method by Nourdin and Viens
[14]. Section 3 is devoted to prove Theorem 1. Finally, in Section 4, we apply
Theorem 1 to the solution of a general spatially homogeneous SPDE.
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2 Preliminaries

In this section, we will briefly describe the Gaussian setting in which we will
apply the techniques of the Malliavin calculus as well as the method of Nourdin
and Viens [14]. For a more complete account on these methodologies, we refer
the reader to [16] and [14, Sections 2 and 3], respectively.

We denote by H the Gaussian space generated by the Gaussian process
{X(t, x), (t, x) ∈ [0, T ] × Rd}; for a complete account on Gaussian Hilbert
spaces, we refer the reader to [6, Chapter 1].

Then, as usual, we denote by D the Malliavin derivative, defined as a closed
and unbounded operator from L2(Ω) into L2(Ω;H), whose domain is denoted
by D1,2. Thus, for any random variable F belonging to D1,2, its Malliavin
derivative DF defines an element in L2(Ω;H).

Another important operator in the Malliavin calculus theory that plays an
important role in [14] is the generator of the Orstein-Uhlenbeck semigroup (see
[16, Section 1.4]). It is usually denoted by L and can be defined by means of its
Wiener chaos expansion:

L =
∞∑

n=0

−nJn,

where Jn denotes the projection onto the nth Wiener chaos.
In [14], the authors consider a random variable F ∈ D1,2 with mean zero

and define the following function in R:

gF (z) := E[〈DF,−DL−1F 〉H|F = z],

where L−1 denotes the pseudo-inverse of the generator of the Orstein-Uhlenbeck
semigroup L. We observe that, by [13, Proposition 3.9], it holds g(z) ≥ 0 on
the support of F . Then, Nourdin and Viens prove the following result (see [14,
Theorem 3.1 and Corollary 3.3]):

Theorem 2 Assume that there exists a positive constant c1 such that

gF (F ) ≥ c1, a.s.

Then, the law of F has a density ρ whose support is R and satisfies, almost
everywhere in R:

ρ(z) =
E|F |

2gF (z)
exp

(
−
∫ z

0

y

gF (y)
dy

)
.

As stated in [14, Corollary 3.5], an immediate consequence of the above theorem
is that, if one also has that gF (F ) ≤ c2, a.s., then the density ρ satisfies, for
almost all z ∈ R:

E|F |
2c1

exp
(
− z2

2c2

)
≤ ρ(z) ≤ E|F |

2c2
exp

(
− z2

2c1

)
.
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In order to deal with particular applications of this method, [14, Proposition 3.7]
establishes an alternative formula for gF (F ). Indeed, given a random variable
F ∈ D1,2, one can write DF = ΦF (W ), where ΦF is a measurable mapping
from RH to H, determined (P ◦W−1)-almost surely (see [16], p. 54-55). Then,
it holds that

gF (F ) =
∫ ∞

0

e−θE
[
〈ΦF (W ),ΦF (e−θW +

√
1− e−2θW ′)〉H

∣∣F] dθ, (4)

where W ′ stands for an independent copy of W such that W and W ′ are defined
on the product probability space (Ω×Ω′,F⊗F ′, P×P ′). Eventually, E denotes
the mathematical expectation with respect to P × P ′.

Let us observe that formula (4) can be still rewritten in the following form:

gF (F ) =
∫ ∞

0

e−θE
[
E′
(〈
DF, D̃F

〉
H

) ∣∣F] dθ,
where, for any random variable X defined in (Ω,F , P ), X̃ denotes the shifted
random variable in Ω× Ω′

X̃(ω, ω′) = X(e−θω +
√

1− e−2θω′), ω ∈ Ω, ω′ ∈ Ω.

Notice that, indeed, X̃ depends on the parameter θ, but we have decided to
drop its explicit dependence for the sake of simplicity.

3 Proof of the main result

This section is devoted to prove Theorem 1. To begin with, we have the following
result, whose proof is straightforward and omitted.

Proposition 3 Suppose that Γ satisfies condition (2) and b : R → R is of class
C1 with a bounded derivative. Let u(t, x) be the solution to Equation (1). Then
u(t, x) belongs to the space D1,2 and

Du(t, x) = X(t, x) +
∫ t

0

∫
Rd

b′(u(s, x− y))Du(s, x− y)Γ(t− s, dy)ds, (5)

a.s. for all (t, x) ∈ (0, T ]× Rd.

Let us remark that the pathwise integral in (5) takes values in the Hilbert space
H and can be defined using a standard procedure (see e.g. [17, p. 292]).

Owing to Theorem 2, Theorem 1 will be a consequence of the following
proposition. For (t, x) ∈ (0, T ] × Rd we set F := u(t, x) − E(u(t, x)), so that
we need to find almost sure upper and lower bounds for the random variable
gF (F ):

gF (F ) =
∫ ∞

0

e−θE
[
E′
(
〈Du(t, x), D̃u(t, x)〉H

) ∣∣F] dθ. (6)
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Proposition 4 Under the same hypothesis as in Theorem 1, there exists T0 > 0
such that, for all t ∈ [0, T0):

C1Φ(t) ≤ g(F ) ≤ C2Φ(t), a.s.,

where C1, C2 are positive constants depending on b and T0.

For the proof of this proposition, we need the following lemma. Recall that
Φ(t) := Φ(t, t, 0) = E(X(t, x)2).

Lemma 5 There is a positive constant C such that, for all t > 0:

sup
0≤r≤t

y∈Rd

E [‖Du(r, y)‖H |F ] ≤ C
√

Φ(t), (7)

and
sup
θ≥1

sup
0≤r≤t

y∈Rd

E
[
E′
(
‖D̃u(r, y)‖H

) ∣∣∣F] ≤ C
√

Φ(t), a.s. (8)

Proof. From (5) and applying Minkowski inequality, we get:

‖Du(t, y)‖H ≤
√

Φ(t) + ‖b′‖∞
∫ t

0

∫
Rd

‖Du(s, y − z)‖H Γ(t− s, dz)ds.

As a consequence, we have the following estimate:

E [‖Du(t, y)‖H |F ] ≤
√

Φ(t) + ‖b′‖∞

×
∫ t

0

∫
Rd

E [‖Du(s, y − z)‖H |F ] Γ(t− s, dz)ds.

Set
Yt := sup

0≤r≤t

y∈Rd

E [‖Du(r, y)‖H |F ] .

Then, we have proved that

Yt ≤
√

Φ(t) + ‖b′‖∞
∫ t

0

Ys Γ(t− s,Rd) ds,

and a suitable generalisation of Gronwall lemma (e.g. [3, Lemma 15]) allows us
to conclude the proof.

Proof of Proposition 4. It follows the same lines as in the proofs of
Propositions 4.5 and 5.5 in [18]. Indeed, one just needs to be careful and try to
keep the sharpest bounds which appear throughout the proof. Let us be more
precise about this method, namely, by (5) and (6), we have that

gF (F ) = Φ(t) +
3∑

i=1

Ai(t, x),
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where

A1(t, x) = E

[∫ t

0

∫
Rd

b′(u(s, x− y))〈X(t, x), Du(s, x−y)〉HΓ(t−s, dy)ds
∣∣∣F]

A2(t, x) =
∫ ∞

0

e−θE

[
E′
(∫ t

0

∫
Rd

b′( ˜u(s, x− y))

× 〈X(t, x), ˜Du(s, x− y)〉HΓ(t− s, dy)ds
) ∣∣∣F] dθ,

A3(t, x) =
∫ ∞

0

e−θE

[
E′

(∫
[0,t]2

∫
R2d

b′(u(s, x− y))b′( ˜u(r, x− z))

×〈Du(s, x− y), ˜Du(r, x−z)〉HΓ(t−s, dy)Γ(t−r, dz)drds

)∣∣∣∣∣F
]
dθ.

Let us first prove the lower bound. For this, observe that we have

gF (F ) ≥ Φ(t)− |A1(t, x) +A2(t, x) +A3(t, x)|.

Let us bound |A1(t, x)|. We will use the following notation:

Ψ(t) :=
∫ t

0

Γ(s,Rd)ds. (9)

Notice that, by hypothesis, supt∈[0,T ] Ψ(t) < +∞ and in fact Ψ(t) converges to
0 as t tends to 0. We can write, applying (7) in Lemma 5 and using the notation
(9):

|A1(t, x)| ≤
√

Φ(t) ‖b′‖∞ E
[∫ t

0

∫
Rd

‖Du(s, x− y)‖H Γ(t− s, dy)ds
∣∣∣F]

≤
√

Φ(t) ‖b′‖∞

(∫ t

0

Γ(s,Rd)ds
)

sup
0≤s≤t

z∈Rd

E [‖Du(s, z)‖H |F ]

≤ C Φ(t) ‖b′‖∞

(∫ t

0

Γ(s,Rd)ds
)

= C ‖b′‖∞Φ(t)Ψ(t).

For the analysis of the term |A2(t, x)|, one can proceed using exactly the same
arguments (the expectation E′ and the integral with respect to θ do not affect
the final result), but here we will need to apply (8) in Lemma 5. Indeed, one
also obtains that

|A2(t, x)| ≤ C‖b′‖∞Φ(t)Ψ(t).

Eventually, in order to bound |A3(t, x)|, we observe that

|A3(t, x)| ≤ ‖b′‖2
∞

∫ ∞

0

e−θ

∫
[0,t]2

∫
R2d

×E
[
‖Du(s, x− y)‖HE′

(
‖ ˜Du(r, x− z)‖H

) ∣∣∣F]
×Γ(t− s, dy)Γ(t− r, dz)drdsdθ.
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for which we apply Cauchy-Schwartz inequality with respect to the conditional
expectation with respect to F and we use the estimate

sup
θ≥1

sup
0≤r≤t

y∈Rd

E
[
E′
(
‖D̃u(r, y)‖2

H dr
) ∣∣∣F] ≤ CΦ(t), a.s.,

whose proof is similar to that of (8). In this way, we obtain that

|A3(t, x)| ≤ C‖b′‖2
∞Φ(t)Ψ(t)2.

Putting together the bounds for |Ai(t, x)|, i = 1, 2, 3, we have that there are
positive constants k1 and k2 (only depending on b) such that, for all t ∈ (0, T ]
and x ∈ Rd (recall that F = u(t, x)− E(u(t, x))),

gF (F ) ≥ k1Φ(t)− k2

(
Φ(t)Ψ(t) + Φ(t)Ψ(t)2

)
= Φ(t)

(
k1 − k2

(
Ψ(t) + Ψ(t)2

))
,

where we remind that Ψ(t) =
∫ t

0
Γ(s,Rd)ds. Hence, if t is sufficiently small, say

t < T0 with T0 > 0 satisfying k1 − k2

(
Ψ(T0) + Ψ(T0)2

)
> 0, then

g(F ) ≥ C1Φ(t),

where C1 is a positive constant depending on b and T0. This proves the lower
bound in the statement.

Concerning the upper bound, observe that we have, for all t ∈ (0, T0):

gF (F ) ≤ Φ(t) +
3∑

i=1

|Ai(t, x)|

≤ CΦ(t)
(
1 + Ψ(T0) + Ψ(T0)2

)
≤ C2Φ(t),

where C2 is a positive constant depending on b and T0. This concludes the
proof.

4 Application to spatially homogeneous SPDEs

As we commented in the Introduction, the main examples of equations of the
form (1) which Theorem 1 can be applied to correspond to the mild formulation
of the following SPDEs:

Lu(t, x) = b(u(t, x)) + σẆ (t, x), (t, x) ∈ [0, T ]× Rd, (10)

where L is a second order differential operator with constant coefficients and Ẇ
is a Gaussian noise which is white in time and has some spatially homogeneous
correlation. More precisely, on some probability space (Ω,F , P ), we consider
a family of centered Gaussian random variables W = {W (ϕ), ϕ ∈ C∞0 (Rd+1)},

8



where C∞0 (Rd+1) denotes the space of infinitely differentiable functions with
compact support, with the following covariance functional:

E(W (ϕ)W (ψ)) =
∫ ∞

0

∫
Rd

(
ϕ(t) ∗ ψ(s)(t)

)
(x) Λ(dx)dt, ϕ, ψ ∈ C∞0 (Rd+1),

(11)
where ψ(s)(t, x) := ψ(t,−x) and Λ is a non-negative and non-negative definite
tempered measure. For the right-hand side of (11) to define a covariance func-
tional, it turns out that Λ has to be symmetric and the Fourier transform of
a non-negative tempered measure µ (see [23, Chapter VII, Théorème XVII]).
Usually, µ is called the spectral measure of the noise W . Let us denote by (Ft)t

the filtration generated by W , conveniently completed.
Usual examples of spatial correlations are given by measures of the form

Λ(dx) = f(x)dx, where f is a non-negative and continuous function on Rd \{0},
which is integrable in a neighbourhood of 0. For instance, one can consider
a Riesz kernel f(x) = |x|−ε, for 0 < ε < d, while the space-time white noise
corresponds to consider f = δ0; in this latter case, the spectral measure is the
Lebesgue measure on Rd.

By definition, a mild solution of (10) is a Ft-adapted stochastic process
{u(t, x), (t, x) ∈ [0, T ]× Rd} satisfying

u(t, x) = σ

∫ t

0

∫
Rd

Γ(t− s, x− y)W (ds, dy)

+
∫ t

0

∫
Rd

b(u(s, x− y))Γ(t− s, dy)ds, (12)

a.s. for all (t, x) ∈ [0, T ] × Rd, where Γ denotes the fundamental solution
associated to L. Without any loose of generality, we can assume that σ = 1. Let
us point out that the stochastic integral in the right-hand side of equation (12)
takes values in R and is considered as an integral with respect to the cylindrical
Wiener process associated to W , as described in [17, Section 3]. Note, however,
that this stochastic integral can be also defined in the sense of Dalang [3] (see
also [24]) or even in the more abstract framework of Da Prato and Zabczyk [5].

In this setting, the process X is given by

X(t, x) =
∫ t

0

∫
Rd

Γ(t− s, x− y)W (ds, dy),

for which one verifies that

E(X(t, x)X(s, y)) =
∫ s∧t

0

∫
Rd

e2πi(x−y)FΓ(t− r)(ξ)FΓ(s− r)(ξ)µ(dξ)dr.

Hence, in particular,

Φ(t) = E(X(t, x)2) =
∫ t

0

∫
Rd

|FΓ(r)(ξ)|2 µ(dξ)dr, t ∈ [0, T ].

At this point, we observe thatX(t, x) is a well-defined Gaussian random variable
whenever the following condition is satisfied (see e.g. [17, Lemma 3.2]):

9



Hypothesis 6 For all t > 0, Γ(t) defines a non-negative distribution with rapid
decrease such that ∫ T

0

∫
Rd

|FΓ(t)(ξ)|2µ(dξ)dt <∞.

Moreover, Γ is a non-negative measure of the form Γ(t, dx)dt such that, for all
T > 0,

sup
0≤t≤T

Γ(t,Rd) ≤ CT <∞.

Thus, Theorem 1 applied to equation (12) reads:

Theorem 7 Assume that Hypothesis 6 is satisfied and b is of class C1 with a
bounded derivative. Then, there exists T0 > 0 such that for all (t, x) ∈ (0, T0)×
Rd, the random variable u(t, x) solution to (12) has a density p satisfying, for
almost every z ∈ R:

E |u(t, x)−m|
C2Φ(t)

exp
{
− (z −m)2

C1Φ(t)

}
≤ p(z) ≤ E |u(t, x)−m|

C1Φ(t)
exp

{
− (z −m)2

C2Φ(t)

}
,

where m = E(u(t, x)) and the constants C1, C2 are positive and only depend on
b and T0.

Example 8 Theorem 7 applies to the case of the stochastic heat equation in
any space dimension and the stochastic wave equation in Rd with d ≤ 3. Indeed,
in both examples, Hypothesis 6 is fulfilled if and only if∫

Rd

1
1 + |ξ|2

µ(dξ) < +∞

(see e.g. [3, Section 3]). As a consequence, in the case of the stochastic wave
equation, Theorem 7 exhibits an improvement of [18, Theorem 5.3], where the
lower and upper Gaussian bounds were not optimal and a slightly stronger con-
dition on µ was assumed.

Remark 9 Independently of the results in [14], the study of the existence and
smoothness of the density for SPDEs of the form (10) (in particular for stochas-
tic heat and wave equations), has already been tackled by several authors. Namely,
let us mention the works [2, 12, 11, 21, 22, 17].
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