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The Perron Method and the Non-Linear Plateau Problem

1 - Introduction.

In this paper we describe a novel technique for constructing solutions to the Plateau prob-
lem for convex hypersurfaces of constant Gaussian curvature, which we illustrate through
the proof of the following theorem:

Theorem 1.1

Let K̂ ⊆ Rn+1 be a compact, strictly convex set with smooth boundary. Let Ω be
an open subset of ∂K̂ with (non-trivial) smooth boundary. Suppose there exists
k > 0 such that the Gaussian curvature of K̂ is everywhere at least k. Then, for
all t ∈]0, k], there exists a convex subset Kt ⊆ K̂ such that:

(i) Kt ∩ ∂K̂ = Ωc; and

(ii) the boundary of Kt is smooth in the interior of K and is of constant Gaussian
curvature equal to t.

Remark: This follows directly from Lemma 4.1 and Theorem 5.1 of [5].

Hypersurfaces of constant Gaussian curvature are interesting objects of study for various
reasons. When n = 2, the Gaussian curvature is (more or less) equivalent to the intrinsic
curvature of the surface, which only depends on one variable. In higher dimensions, al-
though no such relation exists, Gaussian curvature continues to provide relatively simple
PDEs that make it a good model for the study of more general non-linear notions of cur-
vature. A tremendous literature exists devoted to the study of this problem, of which the
most significant results are perhaps [3] of Caffarelli, Nirenberg and Spruck and [5] of Guan
and Spruck. We refer the reader to the introduction of the paper [7] by the second author
for a broader overview.

The novel technique that we introduce is a version of the Perron Method recently developed
by Harvey and Lawson in [1] and [2]. This yields convex sets whose boundaries are of
constant Gaussian curvature in the viscosity sense (c.f. [4]). We then show that these
hypersurfaces are smooth away from their boundaries by appealling to Theorem 5.1 of [5].
The elementary nature of this proof as well as the remarkable generality of the results
of [1] and [2] hint at potential generalisations. Indeed, it can easily be extended to yield
(not necessarily unique) viscosity solutions in any Hadamard manifold, and the regularity
result of [5] can then be applied whenever the ambient manifold is also affine flat (c.f. [7]).
This is, in particular, the case for hyperbolic space.

This approach can also be extended to treat other notions of curvature. In fact, it is
currently applicable to any notion of curvature which constitutes a “convex condition” in
the sense of Section 2. In particular, this includes special Lagrangian curvature, which has
been studied extensively by the second author in [8] and [9].

An important aspect of this technique that departs from the approach of Harvey and
Lawson is its dependance on convex sets. We have introduced this essentially in order to
make the problem more tractable, and it does so in two ways. The first is by eliminating
complicated geometric considerations such as self intersections. This is not an issue in [1]
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and [2], since Harvey and Lawson are working there with functions, where the geometry
is constant, as it were. The second is by allowing us to use the C0,1 regularity properties
of convex sets, and thus neatly sidestep the problem of proving regularity, which is the
hardest step in Harvey and Lawson’s proof and in the study of viscosity solutions in general.
Naturally, however, this dependance on convex sets is very restrictive, and excludes large
families of interesting curvature functions (see, for example, [3] or [6]). We nonetheless
expect appropriate modifications to yield stronger results in the near future.

This paper is structured as follows:

(i) in Section 2, we define the basic notions used throughout this paper, recalling the
definition of Dirichlet set as introduced by Harvey and Lawson in [1];

(ii) in Section 3, we define what it means for a convex set to be of type F . We show that
this constitutes a “Perron system” in the sense that it satisfies the basic axioms required
for the Perron Method; and

(iii) in Section 4, we apply the Perron Method to obtain viscosity solutions to the Plateau
problem, and, appealing to Theorem 5.1 of [5], this proves Theorem 1.1.

The second author would like to thank Prof. Lawson for bringing [2] to his attention.

2 - Dirichlet Sets.

Let Symm(Rn) denote the space of symmetric matrices over Rn. We define P ⊆ Symm(Rn)
to be the set of all symmetric, non-negative semi-definite matrices. Thus A is an element
of P if and only for all x ∈ Rn:

〈Ax, x〉 > 0.

Trivially, P is a closed convex cone. Let F be a closed subset of Symm(Rn). Following [1],
we will say that F is a Dirichlet set if and only if:

F + P ⊆ F.

Moreover, we will say that F is invariant if and only it is preserved by conjugation by
matrices in O(n). In other words, F is invariant if and only if, for all A ∈ F , and for all
M ∈ O(n):

M tAM ∈ F.

Finally, we will say that F defines a convex condition if and only if:

F ⊆ P.

In this paper, we are interested in invariant Dirichlet sets which define convex conditions.

Example: For k > 0 define Fk by:

Fk = {A ∈ P s.t. Det(A) > k} .

It is easily verified that Fk is an invariant Dirichlet set which trivially also defines a convex
condition. In fact, Fk is also convex with smooth boundary. �
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3 - The Perron System.

Let N be a unit normal vector field over a smooth hypersurface, Σ. In the sequel, we adopt
the convention whereby the shape operator, A, of Σ satisfies:

A ·X = ∇XN.

Let F be an invariant Dirichlet set. Let X ⊆ Rn+1 be a compact set. We say that X is of
type F if and only if, for all p ∈ ∂X, if Ω is an open subset of Xo (the interior of X) such
that:

(i) ∂Ω is smooth; and

(ii) p ∈ ∂Ω,

then the shape operator of ∂Ω at p with respect to the outward pointing normal is conjugate
to a matrix in F .

Remark: The shape operator of ∂Ω is conjugate to a matrix in F if and only if its matrix
with respect to an orthonormal basis for T∂Ω lies in F . Since F is O(n)-invariant, this
does not depend on the orthonormal basis chosen.

Remark: Observe that if F is not a Dirichlet set, then this definition is essentially empty.

Following [1] and [2], we obtain the following characterisation of subsets of type F :

Lemma 3.1

Let X ⊂ Rn+1 be a compact set. X is not of type F if and only if there exists
p ∈ ∂X, r > 0 and f : Br(p) → R such that:

(i) f(p) = 0;

(ii) f−1(]−∞, 0]) ⊆ X ∩Br(p);

(iii)(∇f)(q) 6= 0 for all q ∈ Br(p); and

(iv)Hess(f)|(∇f)⊥(q) is conjugate to an element of ‖∇f(q)‖F c for all q ∈ Br(p).

Proof: We recall that if f is smooth and if ∇f 6= 0 at a point q, then ∇f is colinear
with the normal vector to the level set of f passing through q, which we denote by Σq.
Moreover, if Aq is the shape operator of Σq with respect to the normal pointing in the
same direction as ∇f , then:

Aq = ‖(∇f)(q)‖−1Hess(f)|(∇f)⊥(q).

The result follows directly from these relations and the contrapositive of the definition of
being of type F . �

In the case of smooth boundary, we obtain:

Lemma 3.2

Let X ⊆ Rn+1 be a compact set. Suppose that ∂X is smooth, then X is of type
F if and only if the shape operator of ∂X with respect to the outward pointing
normal is conjugate to an element of F at every point of ∂X.
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Now suppose, moreover, that F defines a convex condition. The Perron method is based
on the following result:

Lemma 3.3

Let F be a family of compact, convex sets of type F . Let X be the intersection
of all members of F . Then X is also a compact, convex set of type F .

Proof: X is trivially compact and convex. Suppose that X is not of type F . By Lemma
3.1, there exists p ∈ ∂X, r > 0 and f : Br(p) → R such that:

(i) f(p) = 0;

(ii) f−1(]−∞, 0]) ⊆ X ∩Br(p);

(iii) (∇f)(q) 6= 0 for all q ∈ Br(p); and

(iv) Hess(f)|(∇f)⊥(q) is conjugate to an element of ‖∇f(q)‖F c for all q ∈ Br(p).

Moreover, since F c is open, by reducing r if necessary, f may be chosen such that there
exists ε > 0 such that, for all q ∈ Xc ∩ ∂Br(p):

f(q) > ε.

Choose q ∈ Br(p)∩Xc such that f(q) 6 ε/2. There exists Y ∈ F such that q /∈ Y .
However, since X ⊆ Y :

f−1(]−∞, 0]) ⊆ Y.

Let p′ ∈ Br(p) be the point in the closure of Y c ∩Br(p) realising the infimum of f over
this set, and let δ be the value of this infimum. Trivially 0 6 δ 6 ε/2. Since, for all
q ∈ Y ∩ ∂Br(p), f(q) > ε, p′ is an interior point of Br(p), so there exists r′ > 0 such that:

Br′(p′) ⊆ Br(p).

Defining f ′ : Br′(p) → R by f ′ = f − δ, we deduce by Lemma 3.1 that Y is not of type F .
This contradicts the hypothesis on F , and the result follows. �

4 - Duality and the Viscosity Solution.

Let K̂ ⊆ Rn+1 be a compact, strictly convex subset with smooth boundary of Gaussian
curvature at least k > 0. Let Ω ⊆ ∂K be an open subset with smooth boundary. Let K0

be the convex hull of Ωc. Observe that, since Ω has smooth boundary, K0 has non-trivial
interior.

Let X ⊆ Rn+1 be a compact set. We say that X is of type F ′ if and only if, for all p ∈ ∂X,
if Ω is an open subset of Xc such that:

(i) ∂Ω is smooth; and

(ii) p ∈ ∂Ω,
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then the shape operator of ∂Ω at p with respect to the inward pointing normal is conjugate
to a matrix in F c.

Remark: In the language of [1] and [2], this is the dual property to the property of being of
type F . The duality becomes evident when we observe that F̃ := −F c is also an invariant
Dirichlet set (c.f. [1]), and, when X is the closure of its interior, X is of type F ′ if and
only if Xc is of type F̃ .

For all t > 0, we define Ft ⊆ Symm(Rn) by:

Ft = {A ∈ P s.t. Det(A) > t} .

As discussed in section 2, Ft is an invariant Dirichlet set which defines a convex condition.

Lemma 4.1

For all t ∈]0, k], there exists a compact, convex subset Kt of K̂ such that:

(i) K0 ⊆ Kt;

(ii) Kt ∩ ∂K̂ = Ωc; and

(iii)Kt is of type Ft and of type F ′
t over the interior of K̂.

Remark: Thus, for all t, Kt has constant Gaussian curvature in the viscosity sense (c.f.
[4]).

Proof: Choose t ∈]0, k]. Let F denote the set of all convex subsets of K̂ which contain K0

and which are of type Ft. F is non-empty since K̂ ∈ F . Let Kt be the intersection of all
members of F . Trivially, K0 ⊆ Kt. Since K̂ is strictly of type Ft, Kt ∩ ∂K̂ = Ωc. Finally,
by Lemma 3.3, Kt is of type Ft over the interior of K̂. It thus remains to prove that Kt

is of type F ′
t over the interior of K̂.

Suppose the contrary. Observe that, since K0 has non-trivial interior, so does Kt. More-
over, Kt ∈ F . By Lemma 3.1 (reversing orientation), there exists p ∈ ∂Kt ∩ K̂, r > 0 and
a smooth function f : Br(p) → R such that:

(i) f(p) = 0;

(ii) Kt ∩Br(p) ⊆ f−1(]−∞, 0]);

(iii) (∇f)(q) 6= 0 for all q ∈ Br(p); and

(iv) Hess(f)|(∇f)⊥(q) is conjugate to an element of ‖(∇f)(q)‖F o
t for all q ∈ Br(p), where

F o
t is the interior of Ft.

Moreover, since F o
t is open, by reducing r if necessary, f may be chosen such that there

exists ε > 0 such that, for all q ∈ Kt ∩ ∂Br(p):

f(q) 6 −ε.

For all t ∈]− ε, 0], define Σt by:
Σt = f−1({t}).
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For all such t, ∂Σt, which lies in ∂Br(p) is a subset of Kc
t and therefore also of Kc

0.
Moreover, for all such t, Σt is strictly convex over its interior. We recall that, since K0 is a
convex hull of a subset of ∂K̂, ∂K0 is locally ruled throughout the interior of K̂. In other
words, for all p ∈ ∂K0 lying in the interior of K̂, there exists a straight line segment, Γ,
containing p in its interior and which also lies in ∂K0. Thus, since Σ0 lies in the closure
of the complement of K0, we deduce by the geometric maximum principal that so does Σt

for all t ∈]− ε, 0]. In particular, if we define K ′
t by:

K ′
t = (Kt ∩ f−1(]−∞,−ε/2]))∪(Kt ∩Br(p)c),

then K0 ⊆ K ′
t. However, K ′

t is a compact, convex subset of K̂. Moreover, being locally
the intersection of two convex sets of type Ft, by Lemma 3.3, Kt is also of type Ft. In
particular, it is an element of F which is a strict subset of Kt, which yields a contradiction.
The result follows. �

We thus obtain Theorem 1.1:

Proof of Theorem 1.1: Lemma 4.1 yields convex sets whose boundaries are of constant
Gaussian curvature in the viscosity sense (c.f. [1] and [2]). By Theorem 5.1 of [5], the
boundaries of these sets are smooth, and this completes the proof. �

5 - Bibliography.

[1] Harvey F. R., Lawson H. B. Jr., Dirichlet Duality and the Nonlinear Dirichlet Prob-
lem, Comm. Pure Appl. Math. 62 (2009), no. 3, 396–443

[2] Harvey F. R., Lawson H. B. Jr., Dirichlet Duality and the Nonlinear Dirichlet Problem
on Riemannian Manifolds, arXiv:0907.1981

[3] Caffarelli L., Nirenberg L., Spruck J., Nonlinear second-order elliptic equations. V.
The Dirichlet problem for Weingarten hypersurfaces, Comm. Pure Appl. Math. 41
(1988), no. 1, 47–70

[4] Crandall M. G., Ishii H., Lions P.-L., User’s guide to viscosity solutions of second
order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), no. 1, 1–67

[5] Guan B., Spruck J., The existence of hypersurfaces of constant Gauss curvature with
prescribed boundary, J. Differential Geom. 62 (2002), no. 2, 259–287

[6] Guan B., Spruck J., Locally Convex Hypersurfaces of Constant Curvature with
Boundary, Comm. Pure Appl. Math. 57 (2004), 1311–1331

[7] Smith G., Constant Gaussian Curvature Hypersurfaces in Hadamard Manifolds,
arXiv:0912.0248

[8] Smith G., Special Lagrangian curvature, arXiv:math/0506230

[9] Smith G., The Non-Linear Dirichlet Problem in Hadamard Manifolds,
arXiv:0908.3590

6


