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ON THE INTEGRABILITY OF POLYNOMIAL VECTOR FIELDS IN THE
PLANE BY MEANS OF PICARD-VESSIOT THEORY

PRIMITIVO B. ACOSTA-HUMÁNEZ, J. TOMÁS LÁZARO, JUAN J. MORALES-RUIZ,
AND CHARA PANTAZI

Abstract. We study the integrability of polynomial vector fields using Galois theory of
linear differential equations when the associated foliations is reduced to a Riccati type folia-
tion. In particular we obtain integrability results for some families of quadratic vector fields,
Liénard equations and equations related with special functions such as Hypergeometric and
Heun ones. The Poincaré problem for some families is also approached.

Introduction

Given a polynomial differential system in C2,

dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y), (1)

with P,Q ∈ C[x, y], we consider its associated differential vector field

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
, (2)

whose integral curves are intimately related to the solutions of system (1). These solutions,
taken as curves on the plane and leaving for a while its time-dependence, constitute its so-
called foliation and satisfy the first order differential equation

y′ =
dy

dx
=
Q(x, y)

P (x, y)
. (3)

This expression (3) is often written as a Pfaff equation

Ω = 0, (4)

where Ω = Q(x, y)dx − P (x, y)dy is the corresponding differential 1-form. The connection
between integral curves of the vector field X and solutions of Ω = 0 is clear:

• geometrically, it is given by Ω ·X = 0, which means that the vector field X is tangent
to the leaves of the foliation (the orbits) defined by (4);
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• dynamically, the general solution of equation (4), H(x, y) = ctt , is given by a first
integral H of the original vector field X, that is, a non-constant scalar function which
remains constant along any of its solutions (x(t), y(t)). Since Ω · X = 0, this is
equivalent to say that X(H) = 0 and to the existence of a suitable scalar function
f such that Ω = fdH. In fact, 1/f is an integrating factor of the field X, or of the
1-form Ω. Later we will say something more about the geometrical meaning of the
integrating factors (Remark 1.3).

From a geometrical point of view, we focus our attention on invariant algebraic curves, that is,
polynomial integral curves of the vector field X. This is the natural framework where Darboux
Theory can be applied. Dynamically speaking, we restrict ourselves to first integrals H(x, y)
which are Liouvillian, i.e., written as a combination of algebraic functions, quadratures and
exponential of quadratures in C(x, y), the field of rational functions on x, y. As we will see
later, Galois Theory provides very useful and powerful tools to approach it.

Two classical problems remain still open for complex polynomial fields:

(i) Concerning the existence of invariant algebraic curves of system (1) or, equivalently,
of algebraic solutions of the foliation equation (3).

(ii) About the existence of Liouvillian first integrals for systems (1) (or, in other words,
to determine when the general solution of equation (3) is Liouvillian).

For general polynomial vector fields, problems (i) and (ii) are very difficult and we are still
far from obtaining an effective method to decide whether a given arbitrary polynomial field
has or not an invariant curve or admits a Liouvillian first integral. In fact, problem (i) is
connected with the (also unsolved) classical Poincaré problem, which seeks for a bound of
the degree of the invariant algebraic curves as a function of the degree of the vector field (or
of the associated foliation defined by (3)). It is known that Darboux Theory and adjacent
results, as the ones due to Prelle–Singer and Singer [48, 50], provide connections between this
two problems.

In this work we are concerned with the study of the (Darboux, Galois) integrability of
some families of equations of type (4) inside the complex analytic category, that is, when the
original vector field X defining Ω is complex polynomial or can be reduced to it. Precisely,
we restrict ourselves to those systems which can be reduced to a Riccati type equation

v′ = a0(x) + a1(x)v + a3(x)v2, (5)

a1, a2 and a3 being rational functions with complex coefficients. For Riccati equations there
is a very nice theory of integrability in the context of the Galois theory of its associated
second order linear differential equation. This is, in our opinion, a natural framework where
several known results concerning integrability of Riccati equations (5) should be considered.
Kovacic provided in 1986 (see [30]) an effective algorithm which allows to decide whether an
equation(5) has got an algebraic solution or not. And, additionally, a theorem of Liouville
(see [31]) proved that the existence of an algebraic solution is exactly the definition of the
integrability for (5) in the context of the Galois theory for linear differential equations. Thus,
for foliations of type (5) problems (i) and (ii) are equivalent and Kovacic algorithm becomes
an extremely powerful tool to approach them.

In some sense, this work can be considered as a very particular case of the Malgrange
approach to the Galois theory of codimension-1 foliations [39, 40, 9], that is, for Riccati
codimension-1 foliations on the complex plane. Our target is not to obtain general theoretical
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classification results, but several effective criteria of integrability for such foliations. We
will provide integrability criteria for some families of polynomial quadratic vector fields and
some Liénard equations involving special functions, allowing this to recover previous results
established by several authors. For instance, we will solve completely the integrability problem
for the family of Liénard type equations of the form (see [46])

yy′ = (a(2m+ k)x2k + b(2m− k)xm−k−1)y − (a2mx4k + cx2k + b2m)x2m−2k−1,

with a, b, c,m, k complex parameters. It is known that when this equation comes from a
polynomial vector field the constants m and k must be rational numbers.

We also approach the Poincaré problem for some particular families of systems (see Propo-
sition 3.1 and Theorem 3.4).

The paper is structured as follows. To make it as self-contained as possible, we introduce
in Section 1 a basic background about Galois theory of linear differential equations and
Darboux theory of integrability of polynomial vector fields. In Section 2 we remind some
useful properties concerning Riccati equations and Section 3 is devoted to applications. For
completeness we include two Appendixes about Kovacic algorithm and some special functions.

1. Two notions of integrability for planar polynomial vector fields

1.1. Darboux theory of Integrability. We give a very brief overview of Darboux’s inte-
grability ideas [20], his terminology and some essential results.

Let us consider a vector field (2) and an irreducible polynomial f ∈ C[x, y]. The curve
f = 0 is called an invariant algebraic curve of vector field (2) if it satisfies

ḟ |f=0 = 0.

This condition is equivalent to the existence of a polynomial K ∈ C[x, y], called cofactor,
such that

X(f(x, y)) = P (x, y)
∂f

∂x
+Q(x, y)

∂f

∂y
= K(x, y)f(x, y),

or, equivalently, that
X(f)

f
= X(log(f)) = K. (6)

From this expression it follows that the curve f = 0 is formed by leaves and critical points of
the vector field X = (P,Q) defined by (2). If the polynomial system (1) has degree d, that is
d = max {degP, degQ}, then we have that degK ≤ d− 1, independently of the degree of the
curve f(x, y) = 0. From definition (6) it follows that if the cofactor K vanishes identically
then the polynomial f is a first integral of the vector field X. In terms of the associated
foliation, this invariant curve f = 0 is a particular solution of y′ = Q/P and Qdx−Pdy = 0.

An analytic C-valued non-constant function µ is called an integrating factor of system (1)
if the expression

X(µ)

µ
= X(log(µ)) = −∇ ·X,

holds, where ∇ · X = (∂P/∂x) + (∂Q/∂y) is the divergence of the vector field X = (P,Q).
In case that the domain of definition of X is simply connected, from the integrating factor µ
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it follows that

H(x, y) =

∫
µ(x, y)P (x, y) dy + ϕ(x),

is a first integral of X, provided that ∂H/∂y = −µQ.
To ensure the existence of a first integral for a system (1) is, in general, a very difficult

problem. In [20], Darboux introduced a method to detect and construct first integrals using
invariant algebraic curves. Namely, he proved that any planar polynomial differential system
of degree d having, at least, d(d + 1)/2 invariant algebraic curves, admits a first integral or
an integrating factor which can be obtained from them (see also Jouanolou [27] for a study in
a general context for codimension-1 foliations). Furthermore, Darboux’s original ideas have
been improved by taking into account the multiplicity of the invariant algebraic curves (see
[19] for more details). Related to them some other invariant objects have been introduced
(see [14]). They are the so-called exponential factors : given h, g ∈ C[x, y] relatively prime,
the function F = exp (g/h) is called an exponential factor of the polynomial system (1) if

there exists a polynomial K̃ ∈ C[x, y] (also called cofactor) that satisfies the equation

X(F )

F
= X

(g
h

)
= K̃. (7)

It is known that if h is not a constant polynomial then h = 0 is an invariant algebraic curve

of (1) of cofactor Kh satisfying that X(g) = gKh + hK̃.
The following theorem (coming originally from Darboux) shows how the construction of

first integrals and integrating factors of (2) can be carried out from its invariant algebraic
curves.

Theorem 1.1. Let consider a planar polynomial system (1) of degree m, having

• p invariant algebraic curves fi = 0 with cofactors Ki, for i = 1, . . . , p and

• q exponential factors Fj = exp(gj/hj) with cofactors K̃j, j = 1, . . . , q.

Then the following assertions hold:

(a) There exist constants λi, λ̃j ∈ C not all vanishing such that

p∑
i=1

λiKi +

q∑
j=1

λ̃jK̃j = 0,

if and only if the multivalued function

fλ11 . . . fλpp F λ̃1
1 . . . F λ̃q

q , (8)

is a (Darboux) first integral of system (1).

(b) There exist constants λi, λ̃j ∈ C not all vanishing such that

p∑
i=1

λiKi +

q∑
j=1

λ̃jK̃j + divX = 0,

if and only if the function defined by (8) is a (Darboux) integrating factor of X.

For more recent versions of Theorem 1.1 see [37, 38] and for some generalizations see [34, 7].
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Functions of the form (8) are called Darboux functions. We say that the polynomial system
(1) is Darboux integrable if it admits a first integral or an integrating factor which is given by
a Darboux function.

Remark 1.2. Prelle and Singer [48] showed that if system (1) admits an elementary first
integral then it admits an integrating factor which is the n-th root of a rational function (a
slightly improved version of this result can be found in [33, Corollary 4]). Later, Singer in [50]
showed that if system (1) admits a Liouvillian first integral then it has an integrating factor
which is given by a Darboux function. This is an important argument to motivate sentences
like “Darboux functions capture Liouvillian integrability” or “Liouvillian first integrals are
either Darboux first integrals or integrals coming from a Darboux integrating factor”.

Given a polynomial system (1) of degree m, the computation of all its invariant algebraic
curves becomes a complicated problem since nothing is known a priori about the maximum
degree of these curves. This makes necessary to impose additional conditions either on the
structure of the system (1) or on the nature of such curves (see for instance, [45, 8, 10, 17]
or references therein). This difficulty has motivated the study of different types of inverse
problems of the Darboux theory of integrability [43, 17, 15, 18, 16, 35].

We finish this subsection with a remark about a geometrical meaning of the integrating
factor, pretty known to people coming from the Sophus Lie mathematical community. It is
an established fact in Fluid Dynamics that integrating factors arise as a density in stationary
planar regimes: the equation ∇· (µX) = 0 is the continuity equation for the field of velocities
X, with density function µ = µ(x, y) (considered in the context of the Symplectic geometry
and Hamiltonian dynamics).

Remark 1.3. Let µ = µ(x, y) be an integrating factor of the vector field (2) defined in some
domain of the plane. Then the vector field X is a hamiltonian vector field with respect to the
symplectic form ω = µdx ∧ dy (this form degenerates only at the zeros of µ). In fact from
iXω = dH, we obtain

−µQ = ω

(
X,

∂

∂x

)
=
∂H

∂x
, µP = ω

(
X,

∂

∂y

)
=
∂H

∂y
.

Hence, the vector field (2) can be rewritten

X = P
∂

∂x
+Q

∂

∂y
=

1

µ

(
∂H

∂y

∂

∂x
− ∂H

∂x

∂

∂y

)
,

which is hamiltonian with Hamilton function the first integral H. It is straightforward to
verify that the symplectic form ω is invariant under the action of the flow of X, i.e.,

LXω = diXω + iXdω = diXω = ddH = 0.

From this point of view, the dynamics of the vector fields in the plane can be formally con-
sidered as an Ergodic theory problem: the existence of an invariant measure, the one defined
by the associated integrating factor of the flow.

1.2. Picard-Vessiot theory. Picard-Vessiot theory is the Galois theory of linear differential
equations. We will just remind here some of its main definitions and results but we refer the
reader to [49] for a wide theoretical background.
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We start recalling some basic notions on algebraic groups and, afterwards, Picard-Vessiot
theory will be introduced.

An algebraic group of matrices 2 × 2 is a subgroup G ⊂ GL(2,C) defined by means of
algebraic equations in its matrix elements and in the inverse of its determinant. That is,
there exists a set of polynomials Pi ∈ C[x1, . . . , x5], for i ∈ I, such that A ∈ GL(2,C) given
by

A =

(
x11 x12

x21 x22

)
,

belongs to G if and only if Pi
(
x11, x12, x21, x22, (detA)−1) = 0 for all i ∈ I and where detA =

x11x22 − x21x12. It is said that G is an algebraic manifold endowed with a group structure.
Recall that a groupG is called solvable if and only if there exists a chain of normal subgroups

e = G0 / G1 / . . . / Gn = G,

satisfying that the quotient Gi/Gj is abelian for all n ≥ i ≥ j ≥ 0.
It is well known that any algebraic group G has a unique connected normal algebraic

subgroup G0 of finite index. In particular, the identity connected component G0 of G is
defined as the largest connected algebraic subgroup of G containing the identity. In case that
G = G0 we say that G is a connected group. Moreover, if G0 is solvable we say that G is
virtually solvable.

The following result provides the relation between virtual solvability of an algebraic group
and its structure.

Theorem 1.4 (Lie-Kolchin). Let G ⊆ GL(2,C) be a virtually solvable group. Then, G0 is
triangularizable, that is, it is conjugate to a subgroup of upper triangular matrices.

Now, we briefly introduce Picard-Vessiot Theory.
First, we say that (K, ′ ) - or, simply, K - is a differential field if K is a commutative field

of characteristic zero, depending on x and ′ is a derivation on K (that is, satisfying that
(a + b)′ = a′ + b′ and (a · b)′ = a′ · b + a · b′ for all a, b ∈ K). We denote by C the field of
constants of K, defined as C = {c ∈ K | c′ = 0}.

We will deal with second order linear homogeneous differential equations, that is, equations
of the form

y′′ + b1y
′ + b0y = 0, b1, b0 ∈ K, (9)

and we will be concerned with the algebraic structure of their solutions. Moreover, along this
work, we will refer to the current differential field as the smallest one containing the field of
coefficients of this differential equation.

Let us suppose that y1, y2 is a basis of solutions of equation (9), i.e., y1, y2 are linearly
independent over K and every solution is a linear combination over C of these two. Let
L = K〈y1, y2〉 = K(y1, y2, y

′
1, y
′
2) be the differential extension of K such that C is the field of

constants for K and L. In this terms, we say that L, the smallest differential field containing
K and {y1, y2}, is the Picard-Vessiot extension of K for the differential equation (9).

The group of all the differential automorphisms of L over K that commute with the deriva-
tion ′ is called the Galois group of L over K and is denoted by Gal(L/K). This means, in
particular, that for any σ ∈ Gal(L/K), σ(a′) = (σ(a))′ for all a ∈ L and that σ(a) = a for
all a ∈ K. Thus, if {y1, y2} is a fundamental system of solutions of (9) and σ ∈ Gal(L/K)
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then {σy1, σy2} is also a fundamental system. This implies the existence of a non-singular
constant matrix

Aσ =

(
a b
c d

)
∈ GL(2,C),

such that

σ
(
y1 y2

)
=
(
σ(y1) σ(y2)

)
=
(
y1 y2

)
Aσ.

This fact can be extended in a natural way to a system

σ

(
y1 y2

y′1 y′2

)
=

(
σ(y1) σ(y2)
σ(y′1) σ(y′2)

)
=

(
y1 y2

y′1 y′2

)
Aσ,

which leads to a faithful representation Gal(L/K) → GL(2,C) and makes possible to con-
sider Gal(L/K) as a subgroup of GL(2,C) depending (up to conjugacy) on the choice of the
fundamental system {y1, y2}.

One of the fundamental results of the Picard-Vessiot Theory is the following theorem
(see [28, 31]).

Theorem 1.5. The Galois group Gal(L/K) is an algebraic subgroup of GL(2,C).

We say that equation (9) is integrable if the Picard-Vessiot extension L ⊃ K is obtained
as a tower of differential fields K = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L such that Li = Li−1(η) for
i = 1, . . . ,m, where either

(i) η is algebraic over Li−1, that is η satisfies a polynomial equation with coefficients in
Li−1.

(ii) η is primitive over Li−1, that is η′ ∈ Li−1.
(iii) η is exponential over Li−1, that is η′/η ∈ Li−1.

Usually in terms of Differential Algebra’s terminology we say that equation (9) is integrable
if the corresponding Picard-Vessiot extension is Liouvillian. Moreover, the following theorem
holds.

Theorem 1.6 (Kolchin). Equation (9) is integrable if and only if Gal(L/K) is virtually
solvable, that is, its identity component (Gal(L/K))0 is solvable.

For instance, for the case a = 0 in equation (9), i.e. y′′ + by = 0, it is very well known [28,
31, 49] that Gal(L/K) is an algebraic subgroup of SL(2,C) (remind that A ∈ SL(2,C) ⇔
A ∈ GL(2,C) and detA = 1). For a more detailed study see the Appendix A.

2. Some remarks about Riccati equation

Ricatti equation is probably one of the most studied equations in Dynamical Systems.
Its rôle in the study of the Darboux and Picard-Vessiot integrability leads us to devote
this section to some of its properties. Even though these results are known, their proofs
have been included for completeness. We divide these properties in two types: the first one
(see Subsection 2.1) concerning transformations leading a general second order differential
equation into a Riccati equation (written in the so-called reduced form). Remind that this
becomes the starting point of the celebrated Kovacic algorithm (see Appendix A). A second
type, more Darboux-like, that studies first integrals and integrating factors for a Riccati
equation (Subsection 2.2).
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2.1. Transformations related to Riccati equations. It is known that any second order
differential equation can be led into a general Riccati equation through a classical logarith-
mic change of variable (see, for instance, [46, 26]). The following proposition recall it and
summarises some other related transformations.

Proposition 2.1. Let K be a differential field and let consider functions a0(x), a1(x), a2(x),
r(x), ρ(x), b0(x), b1(x) belonging to K that, for simplicity, will be denoted without their
explicit dependence on x. Consider now the following forms associated to any second order
differential equation (ode) and Riccati equation:

(i) Second order ode (in general form):

y′′ + b1y
′ + b0y = 0. (10)

(ii) Second order ode (in reduced form):

ξ′′ = ρξ. (11)

(iii) Riccati equation (in general form):

v′ = a0 + a1v + a2v
2, a2 6= 0. (12)

(iv) Riccati equation (in reduced form):

w′ = r − w2, (13)

Then, there exist transformations T , B, S and R leading some of these equations into the
other ones, as showed in the following diagram:

v′ = a0 + a1v + a2v
2 T // w′ = r − w2

y′′ + b1y
′ + b0y = 0

S //
��

B

ξ′′ = ρξ.
��
R

The new independent variables are defined by means of

T : v = −
(
a′2
2a2

2

+
a1

2a2

)
− 1

a2

w, B : v = − 1

a2

y′

y
,

S : y = ξe−
1
2

∫
b1dx, R : w =

ξ′

ξ
,

and the functions r, ρ, b0 and b1 are given by

r =
1

β

(
a0 + a1α + a2α

2 − α′
)
, (14)

α = −
(
a′2
2a2

2

+
a1

2a2

)
, β = − 1

a2

, (15)

b1 = −
(
a1 +

a′2
a2

)
, b0 = a0a2, (16)

ρ = r =
b2

1

4
+
b′1
2
− b0. (17)

Proof. The proof is quite standard.



PLANAR POLYNOMIAL FIELDS AND PICARD-VESSIOT THEORY 9

[T ]: Applying the change v = α + βw we get the equation

α′ + β′w + βw′ = a0 + a1α + a1βw + a2α
2 + 2a2αβw + a2β

2w2

that, regrouping terms, leads to

w′ =
1

β

(
a0 + a1α + a2α

2 − α′
)

+

(
a1 + 2a2α−

β′

β

)
w + a2βw

2.

Since a2 6= 0 we can take β = −1/a2 and, therefore, a2β = −1. Having this into
account, the value of α satisfying that the coefficient in w vanishes is given by

α =
1

2a2

(
β′

β
− a1

)
.

The expressions for α, β and r follow straightforwardly,

r =
1

β

(
a0 + a1α + a2α

2 − α′
)
, α = −

(
a′2
2a2

2

+
a1

2a2

)
, β = − 1

a2

.

Moreover, it is clear that α, β and r belong to K.

[B ]: Imposing α = 0 and taking β = −1/a2 in transformation T we have v = −w/a2

and we obtain the Riccati equation

w′ = −a0a2 +

(
a1 +

a′2
a2

)
w − w2.

Performing now the change of variables w = (log y)′ (or, equivalently, v = −a2y
′/y)

we obtain the differential equation y′′ + b1y
′ + b0y = 0 with

b1 = −
(
a1 +

a′2
a2

)
, b0 = a0a2.

Obviously, b0 and b1 belong to K.

[S ]: The change of variable y = µξ, with µ = µ(x) and ξ = ξ(x), lead us to

ξ′′ +

(
2
µ′

µ
+ b0

)
ξ′ +

(
µ′′

µ
+ b0

µ′

µ
+ b1

)
ξ = 0.

In order to obtain the equation ξ′′ = ρξ we need to impose

2
µ′

µ
+ b0 = 0,

µ′′

µ
+ b0

µ′

µ
+ b1 = −ρ,

which gives rise to

µ = e−
1
2

∫
b0 , ρ =

b2
0

4
+

b′0
2
− b1.

Moreover, it is straightforward to check that ρ ∈ K.

[R ]: This is a particular case of transformation [B] with the particular choice a0 = r,
a1 = 0 and a2 = −1.
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Finally, composing the transformations provided by [B], [R] and [S]:

−a2v =
y′

y
, y = ξe−

1
2

∫
b0 , b0 = −

(
a1 +

a′2
a2

)
ξ′

ξ
= w,

we recover the result given by [T ],

v = −
(
a1

2a2

+
a′2
2a2

2

)
− 1

a2

w = α + βw,

which implies that, in some sense and taking ρ = r, the diagram commutes: S ◦ B = R ◦ T .
2

From this Lemma, it follows that the function v is algebraic over K if and only if the
function w is also algebraic over K. Furthermore, in such case, the degree over K of both
functions v and w is the same.

It is known that a Riccati equation (12) has an algebraic solution over K if and only if the
differential equation (10) is integrable in a Picard-Vessiot sense. In this situation we say that
the Riccati equation is integrable over K. We notice that Kovacic algorithm (see Appendix A)
starts from an equation in form (11).

2.2. Integrating factor and first integrals for Riccati vector fields. We briefly show
some relations between the existence of invariant curves of a certain type of vector fields and
the integrability, via Kovacic algorithm (see Appendix A), of its associated Riccati foliation.

From Singer [50] (see Remark 1.2) we know that if a planar polynomial vector field (2)
admits a Liouvillian first integral then it has also an integrating factor given by a Darboux
function. However, very few results are known about the relation between the existence of
an algebraic invariant curve of a general planar vector field and the Liouvillian integrability
of its foliation.

Let us consider a family of planar vector fields of the form

X = (p(x)− q(x)w2)
∂

∂w
+ q(x)

∂

∂x
, (18)

with p(x), q(x) ∈ C[x] complex polynomials. Introducing an independent variable t, usually
called time, we can associate to them the following system of differential equations

ẇ = p(x)− q(x)w2,
ẋ = q(x),

where we denote by ˙ = d/dt. Its foliation, governed by the equation

w′ =
dw

dx
=
p(x)− q(x)w2

q(x)
=
p(x)

q(x)
− w2,

is a Riccati equation given in reduced form w′ = r(x)−w2 with r = p/q ∈ C(x). Next lemma
shows that the integrability of this “Riccati foliation” is closely related to the existence of an
algebraic invariant curve of its vector field (18). A similar approach for this problem can be
found in [24, 25].
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Lemma 2.2. Let w1 = w1(x) be a solution of a Riccati equation in reduced form

w′ = r(x)− w2,

with r(x) = p(x)/q(x) ∈ C[x]. Then the associated vector field (18) has an integrating factor
given by

µ1(w, x) =
e
−2

∫
w1(x)dx

(−w + w1(x))2
. (19)

Proof. It is straightforward to check that if w1(x) is a solution of w′ = p/q − w2 then
it holds X(f1) = K1f1 with f1(w, x) = −w + w1(x) = 0 and K1 = −q(w + w1(x)). In
addition, F1(x) = e−

∫
ω1(x)dx satisfies X(F1) = L1F1 with L1 = −qω1. Notice that X has

divergence divX = −2qw, and additionally it holds −2K1 + 2L1 + divX = 0. Proceeding as
in Theorem 1.1, vector field (18) admits the integrating factor

µ1(w, x) =
F 2

1

f 2
1

=
e−2

∫
w1(x)dx

(−w + w1(x))2
,

as it was claimed. 2

Remark 2.3. We stress that the result in Lemma 2.2 is independent of the nature of the
solution w = w1(x). In general, the integral

∫
ω1(x)dx is an abelian integral.

The important fact is that, conversely, Picard-Vessiot theory and in particular, Kovacic
algorithm, supply information about first integrals and integrating factors of the equation
w′ = r(x)−w2 from the knowledge of some of its solutions, w1, w2, w3. Indeed, from the first
three cases in Kovacic algorithm [30] (the integrable ones) one obtains the following types of
first integrals (see Weil [54] and Żo la̧dek [57]).

Proposition 2.4. The following statements hold.

Case 1: One has two possibilities:
- If only w1 ∈ C(x) then X admits a first integral of Darboux–Schwarz–Christoffel

type.
- If both w1, w2 ∈ C(x) then X admits a first integral of Darboux type. In particular,

from Lemma 2.2 we can construct two integrating factors µ1 and µ2 and so µ1/µ2

is a first integral of X. Thus, we have

H(w, x) =
(−w + w2(x))

(−w + w1(x))
e
∫

[(w2(x)−w1(x))dx].

Case 2: If w1 is a solution of a quadratic polynomial then X admits a first integral of hyper-
elliptic type.

Case 3: If all w1, w2, w3 are algebraic over C(x) then X admits a rational first integral.

The following result characterises the rational integrability of the polynomial vector fields
that we are considering in this work.

Corollary 2.5. The Galois group of (11) is finite if and only if its corresponding planar
polynomial vector field has a rational first integral.
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Proof. Notice that Gal(L/K) is finite if and only if we fall in case 3 of Kovacic Algorithm or
in case 1 of the type

Gal(L/K) =

{(
c 0
0 c−1

)
, cn = 1

}
.

Hence, only remains to study this last case (the cyclic one). Let ξ1, ξ2 be solutions of ξ′′ = ρξ.

Then there exists g ∈ C(x) such that ξ1 = g
1
n and ξ2 = g−

1
n . We define ω1 = ξ′1/ξ1, ω2 = ξ′2/ξ2,

and we obtain

ω1 =
1

n

g′

g
, ω2 = − 1

n

g′

g
.

Thus, the corresponding vector field (11) admits the first integral

H1(ω, x) =
−ω + ω2

−ω + ω1

e
∫

(ω2−ω1)dx =

−ω − 1

n

g′

g

−ω +
1

n

g′

g

g
−2
n ,

and so also admits the first integral

H(ω, x) = H1(ω, x)n =
1

g2

(
−ngω − g′

−ngω + g′

)n
∈ C(ω, x),

which completes the proof. 2

Remark 2.6. Let P ∈ C[x] be a polynomial of odd degree. It is known that the planar
polynomial vector field ẋ = 1, ẏ = P (x) + y2 (with associated foliation y′ = P (x) + y2) is not
integrable, that is, it has no invariant curves, since it falls in case 4 of Kovacic Algorithm [30].

2.3. Riccati foliations. Let us recall some well-known geometrical properties of Riccati
foliations defined by planar polynomials vector fields (see, for instance, [32]). Although we
are not using these properties along the paper, we include them for completeness.

Let
Ω = q(x)dy − (p1(x) + p2(x)y + p3(x)y2)dx, pi, q ∈ C[x] (20)

be the 1-form defining a Riccati foliation on the complex plane. Since the equation Ω = 0 is
the projective version of the corresponding second order linear differential equation defined
over the vector bundle P1 × C2 (i.e., the fibre C2 is projectivized to P1, see subsection 2.1),
the Riccati equation Ω = 0 is defined in a natural way over (x, y) ∈ P1 ×P1.

The singular points of Ω = 0 are the zeros of the polynomial q(x) and, possibly, the
point at infinity x = ∞ ∈ P1. Moreover, these singular points are exactly the poles of
the coefficients of the associated second order linear differential equation. We define d :=
max(deg(p1), deg(p2), deg(p3), deg(q) − 2). Thus the point x = ∞ is a singular point if and
only if deg(q) is less than d + 2. In Kovacic algorithm, which applies to the reduced form
of the second order linear differential equation (see Appendix A), this set of singular points
is denoted by Γ. Therefore it seems natural to call it in the same way also here, that is,
Γ = {x1, ..., xr}. Thus the Riccati foliation is holomorphic on (P1 − Γ) × P1, because the
singular points of the associated linear differential equation are exactly the set Γ, given by the
singularities of their coefficients. We notice that the (“singular”) sets {xi}×P 1 are invariant
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by the foliation and are usually called invariant fibres because they are already fibres of the
fibration π : P1 ×P1 → P1, (x, y) 7→ x. This fibration is transversal to the Riccati foliation
since fibres T (x) := π−1(x) = {x} × P1, with x non singular, are global and transversal to
the foliation, i.e., transversal to all the leaves. Over any of these transversals the holonomy
group of the foliation is defined as a representation

π1(P1 − Γ, x0)→ Diff(T (x0)),

(where Diff(T (x0)) is the group of diffeomorphisms on the transversal), given by lifting the
loops in the fundamental group to the leaves of the foliation, this is, by solving the Riccati
equation with initial conditions and final points on the transversal T (x0). As the Riccati equa-
tion is the projectivization of a second order linear differential equation, the holonomy group
must be the projectivization of the monodromy group of the linear second order equation
acting on the vector space fibre of the meromorphic vector bundle P1 × C2, {x} × C2 ≈ C2.
By fixing a base of fundamental solutions, this can be considered as the space of solutions of
the linear differential equation. Hence, as the monodromy group is represented by the linear
group GL(2,C), the holonomy group is represented by the projective linear group PGL(2,C),
the Möbius transformations

π1(P1 − Γ, x0)→ PGL(2,C).

The Riccati foliations are the most well-known class of a family of foliations, the projective
foliations, with holonomy group represented in the projective group. For Riccati foliations,
the holonomy group is contained in the Galois group of the foliation either in the Malgrange
approach [39, 40, 9] or in the Lie-Vessiot-Kolchin approach [6, 5]. In fact, if the singular
points of the associated linear differential equations are singular regular ones, then the Zariski
adherence of the holonomy group is the Galois group of the foliation, because in this case the
Zariski adherence of the monodromy group of the linear differential equation is the Galois
group of the associated linear differential equation.

The critical points of the associated vector field, i.e., zeroes of q(x) and of p1(x) + p2(x)y+
p3(x)y2 are obviously contained in the invariant fibres. For general Riccati foliations there
are two critical points on the invariant fibre for each point in Γ. For some special Riccati
foliations there are no critical points. This is the case, for example, of Riccati foliations
given in reduced form by Ω = q(x)dy − (p(x) + q(x)y2)dx (with p and q relatively primes),
corresponding to the field (18).

3. Applications

In this section we analyse some examples involving integrability and non-integrability of
some families of Riccati planar vector fields or planar vector fields whose foliation can be
reduced into a Riccati form.

3.1. Quadratic polynomials fields. The study of the integrability of the quadratic poly-
nomial vector field

ẋ = a20x
2 + a11xy + a02y

2 + a10x+ a01y + a00,
ẏ = b20x

2 + b11xy + b02y
2 + b10x+ b01y + b00,

with aij, bi,j ∈ C is, in its general form, a hard problem. One of its possible approaches is the
so-called linear-quadratic case, when one of the two components is a polynomial of degree
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one. In [36, Prop.3] it is proved that its study around a finite equilibrium point (the origin)
can be reduced to consider two families of systems. Using the notation introduced therein,
we refer to these families as (S1)-type,

ẋ = x,
ẏ = εx+ λy + b20x

2 + b11xy + b02y
2,

(S1)

and (S2)-type,

ẋ = y,
ẏ = εx+ λy + b20x

2 + b11xy + b02y
2.

(S2)

In [36], the authors prove that the linear-quadratic systems having a global analytic first
integral are those satisfying:

(a1) b02 = λ = 0.
(b1) b02 = 0 and λ = −p/q ∈ Q−,

in the case of (S1)-type systems and

(a2) b20 = b02 = λ = 0 and εb11 6= 0.
(b2) b20 = b11 = λ = 0 and εb02 6= 0.
(c2) b11 = λ = 0 and b20 6= 0,

for (S2)-type systems. Furthermore, they also provide the explicit form of the corresponding
first integrals. It is important to notice that all of them are of Darboux type and, therefore,
Liouvillian.

Our aim in this example is to show that these results can be recovered using arguments
coming from the Galois theory of linear differential equations. We start first with the (S1)-
case, whose associated foliation is given by the Riccati equation:

dy

dx
= (ε+ b20x) +

(
λ+ b11x

x

)
y +

b02

x
y2. (21)

By Lemma 2.1 this equation can be transformed into the reduced form w′ = r(x)−w2, with

r(x) =
1

4
− κ

x
+

4µ2 − 1

4x2
, κ =

1√
b2

11 − 4b20b02

(
b02ε+

b11

2
(1− λ)

)
, µ =

λ

2
, (22)

provided b2
11−4b20b02 6= 0, and into the form ξ′′ = r(x)ξ. This equation is a Whittaker equation

(see Appendix B) to which one can apply the Martinet-Ramis Theorem (see theorem B.2).
This Theorem asserts that such Whittaker equation is integrable if and only if at least one
of the following conditions is verified:

±κ± µ ∈ 1

2
+ N,

or, equivalently (and more suitable for the expressions derived of κ and µ)

2 (κ± µ) ∈ 2Z + 1.

In our case one has that

2 (κ± µ) =
2b20ε+ b11(1− λ)√

b2
11 − 4b20b02

± λ,
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so for (S1)-type systems conditions (a1) and (b1) read, respectively, 2(κ ± µ) = 1 ∈ 2Z + 1
and 2(κ + µ) = (1 + (p/q)) + (−p/q) = 1 ∈ 2Z + 1. Therefore Galois Theory recovers the
integrability result asserted in [36, Thm.1].

Let us consider now a (S2)-type system, namely,

ẋ = y,
ẏ = εx+ λy + b20x

2 + b11xy + b02y
2,

with foliation given by the differential equation

dy

dx
= (λ+ b11x) +

(
εx+ b20x

2
) 1

y
+ b02y. (23)

This equation falls in one of the following situations:

(i) λ = b11 = 0 yields to a Bernoulli equation

dy

dx
=
(
εx+ b20x

2
) 1

y
+ b02y,

which corresponds to cases (b2) and (c2).
(ii) If ε = b20 = 0 we obtain the linear equation (and, of course, integrable in a Liouville

sense)
dy

dx
= (λ+ b11x) + b02y.

This possibility is not taken into account by Llibre and Valls [36] since this equation
is not, strictly speaking, in Riccati form.

(iii) b20 = b02 = λ = 0 and εb11 6= 0 (case (a2)) gives rise to dy/dx = b11x+εxy−1, which is
a separable equation (and a Bernoulli as well) and whose solutions are all Liouvillian.

(iv) If b02 = 0 we obtain a Liénard equation,

y
dy

dx
= (λ+ b11x) y +

(
εx+ b20x

2
)
,

that will be considered more deeply in a forthcoming section.

3.2. Families of orthogonal polynomials. Recall that the Hypergeometric equation, in-
cluding confluences, is a particular case of the differential equation

y′′ +
L

Q
y′ +

λ

Q
y = 0, λ ∈ C, L = a0 + a1x, Q = b0 + b1x+ b2x

2. (24)

It is well known (see, for example, [13]) that classical orthogonal and Bessel polynomials are
solutions of equation (24) for suitable values of aj, bj and λ. Namely,

• Hermite Hn,
• Chebyshev of first kind Tn,
• Chebyshev of second kind Un,
• Legendre Pn,
• Laguerre Ln,

• associated Laguerre L
(m)
n ,

• Gegenbauer C
(m)
n ,

• Jacobi P(m,ν)
n

• Bessel Bn,
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where

Family Q L λ
Hn 1 −2x 2n
Tn 1− x2 −x n2

Un 1− x2 −3x n(n+ 2)
Pn 1− x2 −2x n(n+ 1)
Ln x 1− x n

L
(m)
n x m+ 1− x n

C
(m)
n 1− x2 −(2m+ 1)x n(n+ 2m)

P(m,ν)
n 1− x2 ν −m− (m+ ν + 2)x n(n+ 1 +m+ ν)
Bn x2 2(x+ 1) −n(n+ 1)

Integrability conditions and solutions of equation (24) can be obtained applying Kovacic
algorithm (Case 1 of the algorithm). Besides, they can also be achieved via Kimura and
Martinet-Ramis Theorems and the parabolic cylinder equation (see [22, 29, 41]).

As a consequence, from this table, we obtain the following result.

Proposition 3.1. We consider Q, L and λ as in the previous table. Then, for any µ 6= 0,
the planar quadratic polynomial vector field

dv

dt
=

λ

µ
Q+ (Q′ − L)v + µv2,

dx

dt
= Q,

(25)

has invariant algebraic curves of the form µv +
Q(x)P ′n(x)

Pn(x)
= 0 where Pn(x) is any orthogonal

polynomial associated to λ,Q, L and n ∈ N.

Proof. The associated (Riccati) foliation of system (25) is written into the form

dv

dx
=
λ

µ
+
Q′ − L
Q

v +
µ

Q
v2. (26)

Performing the change ṽ = µv equation (26) becomes

dṽ

dx
= λ+

Q′ − L
Q

ṽ +
1

Q
ṽ2,

and can be led into the form (24) through the transformation ṽ = −Qy′/y (see transformation
B of Proposition 2.1). For fixed λ,Q and L, let Pn be any orthogonal polynomial solution of
equation (24). Then vn = −(QP ′n)/(µPn) is a rational solution of equation (26). Therefore
the curve v − vn = 0 is an invariant curve of the vector field (25) for any n ∈ N. 2

According to Proposition 2.1 equation (26) can be reduced to the form ξ′′ = ρξ with

ρ =
1

2

(
L

Q

)′
− λ

Q
+

(
L

2Q

)2

,
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and ξ = Pne
∫

L
2Q is a solution for any n ∈ N. Additionally, we notice that we fall in Case 1 of

Kovacic algorithm.

3.3. Liénard equation. Let us consider first order differential equations whose associated
foliation can be expressed into the Liénard form

yy′ = f(x)y + g(x), (27)

with y = y(x) and rational functions f(x) and g(x). We are concerned with the problem of
obtaining criteria on f(x) and g(x) such that equation (27) can be led into a Riccati equation.

This is a difficult problem and, as far as the authors know, only partial answers have
been given to it. In what follows we give some examples of such results coming from the
handbook [46] and papers [11, 12].

A first example is given by the 5-parametric family (1.3.3.11 in [46])

yy′ = (a(2m+ k)x2k + b(2m− k)xm−k−1)y − (a2mx4k + cx2k + b2m)x2m−2k−1, (28)

a, b, c,m, k being complex parameters. In order that (28) come from a polynomial vector
field we have that m and k must be rational numbers (see [46]). The change w = xk,
y = xm(z + axk + bx−k) leads (28) into the Riccati form

(−mz2 + 2abm− c)w′(z) = bk + kzw + akw2, (29)

whose associated second order linear equation is a Riemann equation. More precisely, by
Lemma 2.1, it can be written as a Legendre equation

(1− t2)u′′(t)− 2tu′(t) +

(
ν(ν + 1)− µ2

1− t2

)
u(t) = 0, (30)

with

µ = −m+ k

2m
,

and ν being a solution of

ν2 + ν +
m2 − k2

4m2
− abk2

mc− 2abm2
= 0.

The difference of exponents in (30) is µ, µ and 2ν − 1 and, therefore, we are under the
hypotheses of Kimura’s Theorem (see Appendix B.1.1).

Proposition 3.2. Legendre equation (30) is integrable if and only if, either

(1) µ± ν ∈ Z or ν ∈ Z, or
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(2) ±µ, ±µ, ±(2ν + 1) belong to one of the following seven families

Case µ ∈ ν ∈ µ+ ν ∈
(a) Z + 1

2
C

(b) Z± 1
3

1
2
Z± 1

3
Z + 1

6

(c) Z± 2
5

1
2
Z± 1

5
Z + 1

0

(d) Z± 1
3

1
2
Z± 2

5
Z + 1

10

(e) Z± 1
5

1
2
Z± 2

5
Z + 1

10

(f) Z± 2
5

1
2
Z± 1

3
Z + 1

6

Proof. In Kimura’s Theorem, the difference of exponents µ, µ and 2ν + 1 correspond to the
possibilities listed above. Indeed, they are cases (i), (ii.1), (ii.3), (ii.11), (ii.12), (ii.13) and
(ii.15) of Kimura’s table (see Appendix B.1.1). For the case (i) we have

• µ+ µ+ 2ν + 1 ∈ 2Z + 1⇒ µ+ ν ∈ Z,
• −µ+ µ+ 2ν + 1 ∈ 2Z + 1⇒ ν ∈ Z,
• µ− µ+ 2ν + 1 ∈ 2Z + 1⇒ ν ∈ Z,
• µ+ µ− 2ν − 1 ∈ 2Z + 1⇒ µ− ν ∈ Z.

The rest of the cases can be proven in a similar way.

(ii.1) We see that ±µ ∈ 1
2

+ Z and ±(2ν + 1) ∈ C and therefore µ ∈ Z + 1
2

and ν ∈ C.

(ii.3) We consider that ±µ = l+ 2
3
, ±µ = m+ 1

3
, ±(2ν+ 1) = q+ 1

3
, being l,m, q ∈ Z. Take

for instance µ ∈ Z± 1
3

and ν ∈ 1
2
Z± 1

3
. Furthermore, l +m+ q must be even and in

consequence we obtain µ+ ν ∈ Z + 1
6
.

(ii.11) We have that ±µ = l + 2
5
, ±µ = m + 2

5
, ±(2ν + 1) = q + 2

5
with l,m, q ∈ Z. For

example we consider µ ∈ Z ± 2
5

and ν ∈ 1
2
Z ± 1

5
. Moreover l + m + q must be even

and therefore we have that µ+ ν ∈ Z + 1
10

.

(ii.12) Now we consider ±µ = l + 2
3
, ±µ = m+ 1

3
, ±(2ν + 1) = q + 1

5
, being l,m, q ∈ Z. We

take for instance µ ∈ Z± 1
3

and ν ∈ 1
2
Z± 2

5
. Additionally l+m+ q must be even and

so µ+ ν ∈ Z + 1
10

.

(ii.13) Let be ±µ = l + 2
3
, ±µ = m + 1

3
, ±(2ν + 1) = q + 1

5
with l,m, q ∈ Z. Consider for

example µ ∈ Z± 1
5

and ν ∈ 1
2
Z± 2

5
. Furthermore, l+m+q must be even and therefore

µ+ ν ∈ Z + 1
10

.

(ii.15) Consider ±µ = l + 3
5
, ±µ = m + 2

5
, ±(2ν + 1) = q + 1

3
, being l,m, q ∈ Z, take for

instance µ ∈ Z ± 2
5

and ν ∈ 1
2
Z ± 1

3
. Moreover, l + m + q must be even and in

consequence µ+ ν ∈ Z + 1
6
.

Finally, observe that the difference exponents µ, µ and 2ν + 1 do not satisfy the conditions
(ii.2), (ii.4), (ii.5), (ii.6), (ii.7), (ii.8), (ii.9), (ii.10) and (ii.14) 2

Now we deal with an example from [11, 12]. We consider the equation

dx

dw
= A(x) +B(x)w, (31)



PLANAR POLYNOMIAL FIELDS AND PICARD-VESSIOT THEORY 19

where x is the dependent variable and w is the independent one. Now, for B 6≡ 0, by means
of the change of variable

w = y − A

B
,

and changing (w, x) −→ (x, y) (that is, we consider now x as the independent variable and y
as the dependent one) equation (31) is transformed into the Liénard equation

y
dy

dx
=

1

B
+

d

dx

(
A

B

)
y, (32)

for any functions A and B 6≡ 0. In particular, for

A = A(x) = a+ bx+ cx2, B = B(x) = α + βx+ γx2,

equation (31) falls into the Riccatti form

dx

dw
= (a+ αw) + (b+ βw)x+ (c+ γw)x2.

By Proposition 2.1, applying the transformation T it follows the reduced Riccatti equation
(13) and through the transformation R the normalized second order differential equation
ξ′′ = ρ(x)ξ with

ρ(x) =
β2 − 4αγ

4
x2 − 2aγ + 2αc− bβ

2
x− 4ac− b2

4
+

bγ − βc
2(γx+ c)

+
3γ2

4(γx+ c)2
. (33)

Introducing the change τ = γx+ c we get

ξ′′ = ρ(τ)ξ, (34)

where

ρ(τ) =
β2 − 4αγ

4γ2
τ 2 − 2aγ2 − 2αcγ − βbγ + β2c

2γ2
τ +

b2γ2 − 2bβcγ + β2c2

4γ2
+

bγ − βc
2τ

+
3γ2

4τ 2
,

and performing z = 4

√
β2−4αγ

4γ2
τ we arrive to

ψ′′ = φ(z)ψ, φ(z) = z2 + δ1z +
δ2

1

4
− δ2 +

δ3

2z
+
δ2

0 − 1

4z2
, (35)

with δi being algebraic functions in a, b, c, α, β and γ. This equation (35) is exactly the
biconfluent Heun equation whose integrability is analysed in Appendix B.2.

Assuming β = γ = 0 we obtain a Liénard equation which is transformable into a reduced
second order differential equation with r ∈ C[x] and deg(r) = 1. This means that the equation
is not integrable (see [30] and section 3.4). As a particular case, we have a Liénard equation
that can be reduced to the Riccati equation given in [?, equation 1.3.2.1],

2yy′ = (ax+ b)y + 1. (36)

Moreover, under some restrictions over the parameters of the biconfluent Heun equation
one can obtain the Whittaker equation. For instance, the Liénard equation

y
dy

dx
= (λ+ b11x) y +

(
εx+ b20x

2
)
,
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falls into a Whittaker equation for some special values of the parameters.

Remark 3.3. We would like to stress the following facts.

(a) It is well–known that via the change z(x) =
∫
f(x)dx (with inverse x = x(z)), the

Liénard equation (27) can be led into the equation

yy′(z) = y + h(z), (37)

with

h(z) :=
g(x(z))

f(x(z))
.

In a similar way, the change z(x) =
∫
g(x)dx reduces (27) to

yy′(z) = h(z)y + 1, (38)

with

h(z) :=
f(x(z))

g(x(z))
.

However, in general, these transformations do not preserve the differential field of the
coefficients. This is why we do not use them to reduce equation (27).

(b) Sometimes equation (27) is called Abel equation of second kind since through the
change y = 1/w it is reduced to an Abel equation

w′ = −f(x)w2 − g(x)w3.

In Cheb–Terrab [11, 12] the authors consider some families of Abel equations which are
reducible to Riccati equations.

3.4. Other families. Here we consider some special cases of Riccati equations.

a) Polynomial Riccati equations
The Riccati equation

w′ = r(x)− w2, r(x) ∈ C[x]

has been studied by several authors (see, for instance [2, 57, 53]). The Galois group of its
associated second order linear differential equation is connected and can be either SL(2,C)
or the Borel group [3, 2]. In the first case the tangent field associated to its Riccati equation
has no invariant curves. In the second one, there is no rational first integral for its vector
field. As an example, the reduced form for the triconfluent Heun equation is of this type and
is given by

ξ′′ = ρ(x)ξ, ρ(x) =
9x4

4
+

3

2
δ2x

2 − δ1x+
δ2

2

4
− δ0. (39)

b) Equations with finite Galois group
Consider the polynomial Riccati vector field

ẋ = −x2(x− 1)2

ẏ = a(x− 1)2 + bx2 + cx(x− 1) + x2(x− 1)2v2.
(40)

Its foliation was studied in [55] and is related to the following differential equation

ξ′′ = −
(

1− λ2

4x2
+

1− µ2

4(x− 1)2
+

1− ν2 + λ2 + µ2

4x(x− 1)

)
ξ, (41)
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where λ, µ and ν are the differences of the exponents at 0, 1 and ∞ of the hypergeometric
equation, see also Appendix B. When the equation (41) is integrable their solutions are
Legendre functions. For (λ, µ, ν) = (1

2
, 1

2
, 1
n
), the solutions of equation (41) are given by

ξ1 =
4
√
x2 − x

(
2x− 1 + 2

√
x2 − x

) 1
2

√
1−2n2

n2

,

ξ2 =
4
√
x2 − x

(
2x− 1 + 2

√
x2 − x

)− 1
2

√
1−2n2

n2

,

and its differential Galois group is the Dihedral Group Dn (case 2 of Kovacic algorithm). One
can also obtain the tetrahedral, octahedral and icosahedral groups for (λ, µ, ν) = (1

3
, 1

2
, 1

3
),

(λ, µ, ν) = (1
3
, 1

2
, 1

4
) and (λ, µ, ν) = (1

3
, 1

2
, 1

5
), respectively (case 3 of Kovacic algorithm).

Related to (41) we have the equation (see [55])

y′′ +
7x− 4

6x(x− 1)
y′ − 36ν2 − 1

144x(x− 1)
y = 0, (42)

where the differential Galois group can be tetrahedral, octahedral and icosahedral depending
on the values of ν (indeed, for 1/3, 1/4 and 1/5 respectively). Even though explicit solutions
of equations (41) and (42) are difficult to get in general, it can be proved the existence of
rational first integrals for the associated vector field for values of the parameters ν ∈ {1

3
, 1

4
, 1

5
}.

For instance, solutions of equation (42) for ν = 1
3

(tetrahedral group) are

y1 = 4
√
− 3
√
x+ 1 8

√
2
√

3√
x2+ 3√x+1−

√
3 3√x−

√
3

−
√

3 3√x−
√

3−2
√

3√
x2+ 3√x+1

,

y2 = 4
√
− 3
√
x+ 1 8

√
2
√

3√
x2+ 3√x+1−

√
3 3√x−

√
3

−
√

3 3√x−
√

3−2
√

3√
x2+ 3√x+1

.

In the case ν = 1
4

(octahedral group) we obtain the solutions y1 =
f1f2

f3

and y2 =
f1

f2f3

where

f1 = 6

√
3

√√
1−x+1√
1−x−1

− 1,

f2 = 8

√√√√√√−−2

√(√
1−x+1√
1−x−1

)2/3
+ 3

√√
1−x+1√
1−x−1

+1+
√

3 3

√√
1−x+1√
1−x−1

+
√

3

√
3 3

√√
1−x+1√
1−x−1

+
√

3+2

√(√
1−x+1√
1−x−1

)2/3
+ 3

√√
1−x+1√
1−x−1

+1

,

f3 =

((√
1−x+1√
1−x−1

)2/3

+ 3

√√
1−x+1√
1−x−1

+ 1

) 1
12

.
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Finally, setting ν = 1
5

(icosahedral group), we get the solutions y1 = e
∫
ω1 and y2 = e

∫
ω2 ,

where ω1 = ω1(x) and ω2 = ω2(x) are roots of the polynomial
12∑
k=0

ak(x)ωk and

a0(x) = 102400− 11264x− 11x2

a1(x) = −3686400x+ 3679200x2 + 7200x3

a2(x) = 479001600x2 − 476863200x3 − 2138400x4

a3(x) = 30412800000x2 − 60445440000x3 + 29652480000x4 + 380160000x5

a4(x) = −821145600000x3 + 1597384800000x4 − 731332800000x5 − 44906400000x6

a5(x) = −3695155200000x4 + 11085465600000x5 + 3695155200000x7 −
11085465600000x6

a6(x) = −492687360000000x4 + +1693612800000000x5 − 2124714240000000x6 +

1139339520000000x7 − 215550720000000x8

a7(x) = 8868372480000000x5 − 35473489920000000x6 + 53210234880000000x7 −
35473489920000000x8 + 8868372480000000x9,

a8(x) = −249422976000000000x6 + 997691904000000000x7 − 1496537856000000000x8 +

997691904000000000x9 − 249422976000000000x10

a9(x) = −4434186240000000000x6 + 22170931200000000000x7 −
44341862400000000000x8 + 44341862400000000000x9 −
22170931200000000000x10 + 4434186240000000000x11

a10(x) = 39907676160000000000x7 − 199538380800000000000x8 +

399076761600000000000x9 − 399076761600000000000x10 +

199538380800000000000x11 − 39907676160000000000x12

a11(x) = 0

a12(x) = 2176782336000000000000x8 − 13060694016000000000000x9 +

32651735040000000000000x10 − 43535646720000000000000x11 +

32651735040000000000000x12 − 13060694016000000000000x13 +

2176782336000000000000x14.

c) Lamé families.

Let us consider in the Lamé equation

d2y

dx2
+
f ′(x)

2f(x)

dy

dx
− n(n+ 1)x+B

f(x)
y = 0, (43)
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the case where f(x) = 4x3− g2x− g3 and parameters n, B, g2, g3 such that the discriminant
of f , namely 27g2

3 − g3
2, is non-zero (see Appendix B). Performing the transformation

v = − y
′

cy
, (44)

with c = c(x) being any non-zero arbitrary rational function, it follows the family of Riccati
equations associated to the Lamé equation,

v′ = −n(n+ 1)x+B

cf
−
(
f ′(x)

2f(x)
+
c′

c

)
v + cv2. (45)

For the Lamé case, (i.1) of B.3 with B = Bi, and from Remark B.5 it turns out the existence
of a polynomial solution of equation (45) despite of the general solution of this equation is not
algebraic. Furthermore, it is clear that for a fixed n we have associated Riccati equations (45)
with arbitrary degree, because the non-zero rational function c = c(x) at the transformation
above is arbitrary. The Lamé functions correspond here to algebraic solutions of (45) and
moving n along the integers, we obtain algebraic invariants curves

v +
E ′(x)

c(x)E(x)
= 0,

of unbounded degree.
Hence, we have prove the following result.

Theorem 3.4. For any fixed degree in the Riccati family (45) associated to the Lamé equation
(43) there exist invariant algebraic curves of any tangent field X of the corresponding foliation
with unbounded degree. Furthermore, the first integral of X is not rational.

Appendix

Appendix A. Kovacic Algorithm

This algorithm is devoted to solve the reduced linear differential equation (RLDE) ξ′′ = ρξ
and is based on the algebraic subgroups of SL(2,C). For more details see [30]. Although
improvements for this algorithm are given in [22, 52], we follow the original version given by
Kovacic in [30].

Theorem A.1. Let G be an algebraic subgroup of SL(2,C). Then one of the following four
cases can occur.

(1) G is triangularizable.
(2) G is conjugate to a subgroup of infinite dihedral group (also called meta-abelian group)

and case 1 does not hold.
(3) Up to conjugation G is one of the following finite groups: Tetrahedral group, Octahe-

dral group or Icosahedral group, and cases 1 and 2 do not hold.
(4) G = SL(2,C).

Each case in Kovacic algorithm is related to each one of the algebraic subgroups of SL(2,C)
and its associated Riccatti equation

θ′ = r − θ2 =
(√

r − θ
) (√

r + θ
)
, θ =

ξ′

ξ
, r = ρ.
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According to Theorem A.1 we obtain four cases. Only for cases 1, 2 and 3 one can solve the
differential equation RLDE and in case 4 one has not Liouvillian solutions for it. Kovacic
algorithm can possibly provide one solution (ξ1), so the second one (ξ2) can be got through

ξ2 = ξ1

∫
dx

ξ2
1

. (46)

Notations. For the RLDE given by

ξ′′ = ρξ = rξ, r =
s

t
, s, t ∈ C[x],

we use:

(1) Denote by Γ′ be the set of (finite) poles of r, Γ′ = {c ∈ C : t(c) = 0}.
(2) Denote by Γ = Γ′ ∪ {∞}.
(3) By the order of r at c ∈ Γ′, ◦(rc), we mean the multiplicity of c as a pole of r.
(4) By the order of r at ∞, ◦ (r∞) , we mean the order of ∞ as a zero of r. That is
◦ (r∞) = deg(t)− deg(s).

A.1. The four cases. Case 1. In this case [
√
r]c and [

√
r]∞ means the Laurent series of

√
r

at c and the Laurent series of
√
r at ∞ respectively. Furthermore, we define ε(p) as follows:

if p ∈ Γ, then ε (p) ∈ {+,−}. Finally, the complex numbers α+
c , α

−
c , α

+
∞, α

−
∞ will be defined

in the first step. If the differential equation has not poles it only can fall in this case.

Step 1. Search for each c ∈ Γ′ and for ∞ the corresponding situation as follows:

(c0) If ◦ (rc) = 0, then [√
r
]
c

= 0, α±c = 0.

(c1) If ◦ (rc) = 1, then [√
r
]
c

= 0, α±c = 1.

(c2) If ◦ (rc) = 2, and

r = · · ·+ b(x− c)−2 + · · · , then[√
r
]
c

= 0, α±c =
1±
√

1 + 4b

2
.

(c3) If ◦ (rc) = 2v ≥ 4, and

r = (a (x− c)−v + ...+ d (x− c)−2)2 + b(x− c)−(v+1) + · · · , then[√
r
]
c

= a (x− c)−v + ...+ d (x− c)−2 , α±c =
1

2

(
± b
a

+ v

)
.

(∞1) If ◦ (r∞) > 2, then [√
r
]
∞ = 0, α+

∞ = 0, α−∞ = 1.

(∞2) If ◦ (r∞) = 2, and r = · · ·+ bx2 + · · · , then[√
r
]
∞ = 0, α±∞ =

1±
√

1 + 4b

2
.
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(∞3) If ◦ (r∞) = −2v ≤ 0, and

r = (axv + ...+ d)2 + bxv−1 + · · · , then[√
r
]
∞ = axv + ...+ d, and α±∞ =

1

2

(
± b
a
− v
)
.

Step 2. Find D 6= ∅ defined by

D =

{
m ∈ Z+ : m = αε(∞)

∞ −
∑
c∈Γ′

αε(c)c ,∀ (ε (p))p∈Γ

}
.

If D = ∅, then we should start with the case 2. Now, if #D > 0, then for each m ∈ D we
search ω ∈ C(x) such that

ω = ε (∞)
[√
r
]
∞ +

∑
c∈Γ′

(
ε (c)

[√
r
]
c

+ αε(c)c (x− c)−1
)
.

Step 3. For each m ∈ D, search for a monic polynomial Pm of degree m with

P ′′m + 2ωP ′m + (ω′ + ω2 − r)Pm = 0.

If one successes then ξ1 = Pme
∫
ω is a solution of the differential equation RLDE. Else,

Case 1 cannot hold.

Case 2. Search for each c ∈ Γ′ and for ∞ the corresponding situation as follows.

Step 1. Search for each c ∈ Γ′ and ∞ the sets Ec 6= ∅ and E∞ 6= ∅. For each c ∈ Γ′ and
for ∞ we define Ec ⊂ Z and E∞ ⊂ Z as follows:

(c1) If ◦ (rc) = 1, then Ec = {4}.
(c2) If ◦ (rc) = 2, and r = · · ·+ b(x− c)−2 + · · · , then

Ec =
{

2 + k
√

1 + 4b : k = 0,±2
}
.

(c3) If ◦ (rc) = v > 2, then Ec = {v}.
(∞1) If ◦ (r∞) > 2, then E∞ = {0, 2, 4}.
(∞2) If ◦ (r∞) = 2, and r = · · ·+ bx2 + · · · , then

E∞ =
{

2 + k
√

1 + 4b : k = 0,±2
}
.

(∞3) If ◦ (r∞) = v < 2, then E∞ = {v}.

Step 2. Find D 6= ∅ defined by

D =

{
m ∈ Z+ : m =

1

2

(
e∞ −

∑
c∈Γ′

ec

)
, ∀ep ∈ Ep, p ∈ Γ

}
.

If D = ∅, then we should start the case 3. Now, if #D > 0, then for each m ∈ D we search
a rational function θ defined by

θ =
1

2

∑
c∈Γ′

ec
x− c

.
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Step 3. For each m ∈ D, search a monic polynomial Pm of degree m, such that

P ′′′m + 3θP ′′m + (3θ′ + 3θ2 − 4r)P ′m +
(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
Pm = 0.

If Pm does not exist, then Case 2 cannot hold. If such a polynomial is found, set φ = θ+P ′/P
and let ω be a solution of

ω2 + φω +
1

2

(
φ′ + φ2 − 2r

)
= 0.

Then ξ1 = e
∫
ω is a solution of the differential equation RLDE.

Case 3. Search for each c ∈ Γ′ and for ∞ the corresponding situation as follows:

Step 1. Search for each c ∈ Γ′ and ∞ the sets Ec 6= ∅ and E∞ 6= ∅. For each c ∈ Γ′ and
for ∞ we define Ec ⊂ Z and E∞ ⊂ Z as follows:

(c1) If ◦ (rc) = 1, then Ec = {12}.
(c2) If ◦ (rc) = 2, and r = · · ·+ b(x− c)−2 + · · · , then

Ec =
{

6 + k
√

1 + 4b : k = 0,±1,±2,±3,±4,±5,±6
}
.

(∞) If ◦ (r∞) = v ≥ 2, and r = · · ·+ bx2 + · · · , then

E∞ =

{
6 +

12k

n

√
1 + 4b : k = 0,±1,±2,±3,±4,±5,±6

}
, n ∈ {4, 6, 12}.

Step 2. Find D 6= ∅ defined by

D =

{
m ∈ Z+ : m =

n

12

(
e∞ −

∑
c∈Γ′

ec

)
,∀ep ∈ Ep, p ∈ Γ

}
.

In this case we start with n = 4 to obtain the solution, afterwards n = 6 and finally n = 12.
If D = ∅, then the differential equation has not Liouvillian solution because it falls in the
case 4. Now, if #D > 0, then for each m ∈ D with its respective n, search a rational function

θ =
n

12

∑
c∈Γ′

ec
x− c

,

and a polynomial S defined as

S =
∏
c∈Γ′

(x− c).

Step 3. Search for each m ∈ D, with its respective n, a monic polynomial Pm = P of
degree m, such that its coefficients can be determined recursively by

P−1 = 0, Pn = −P,

Pi−1 = −SP ′i − ((n− i)S ′ − Sθ)Pi − (n− i) (i+ 1)S2rPi+1,

where i ∈ {0, 1 . . . , n − 1, n}. If P does not exist, then the differential equation has not
Liouvillian solution because it falls in Case 4. Now, if P exists search ω such that

n∑
i=0

SiP

(n− i)!
ωi = 0,
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then a solution of the differential equation the RLDE is given by

ξ = e
∫
ω,

where ω is solution of the previous polynomial of degree n.

Appendix B. Some Special Functions

B.1. Hypergeometric families.

B.1.1. Kimura’s Theorem. The hypergeometric (or Riemann) equation is the more general
second order linear differential equation over the Riemann sphere with three regular singular
singularities. If we place the singularities at x = 0, 1,∞ it is given by

d2y

dx2
+

(
1− α− α′

x
+

1− γ − γ′

x− 1

)
dy

dx
(47)

+

(
αα′

x2
+

γγ′

(x− 1)2
+
ββ′ − αα′γγ′

x(x− 1)

)
y = 0,

where (α, α′), (γ, γ′), (β, β′) are the exponents at the singular points and must satisfy the
Fuchs relation α + α′ + γ + γ′ + β + β′ = 1.

Now, we will briefly describe Kimura’s Theorem that provides necessary and sufficient
conditions for the integrability of the hypergeometric equation. Let be λ = α−α′, µ = β−β′
and ν = γ − γ′.

Theorem B.1 (Kimura, [29]). The hypergeometric equation (47) is integrable if and only if
either

(i) At least one of the four numbers λ + µ + ν, −λ + µ + ν, λ − µ + ν, λ + µ − ν is an
odd integer, or

(ii) The numbers λ or −λ, µ or −µ and ν or −ν belong (in an arbitrary order) to some
of the following fifteen families

1 1/2 + l 1/2 +m arbitrary complex number
2 1/2 + l 1/3 +m 1/3 + q
3 2/3 + l 1/3 +m 1/3 + q l +m+ q even
4 1/2 + l 1/3 +m 1/4 + q
5 2/3 + l 1/4 +m 1/4 + q l +m+ q even
6 1/2 + l 1/3 +m 1/5 + q
7 2/5 + l 1/3 +m 1/3 + q l +m+ q even
8 2/3 + l 1/5 +m 1/5 + q l +m+ q even
9 1/2 + l 2/5 +m 1/5 + q l +m+ q even
10 3/5 + l 1/3 +m 1/5 + q l +m+ q even
11 2/5 + l 2/5 +m 2/5 + q l +m+ q even
12 2/3 + l 1/3 +m 1/5 + q l +m+ q even
13 4/5 + l 1/5 +m 1/5 + q l +m+ q even
14 1/2 + l 2/5 +m 1/3 + q l +m+ q even
15 3/5 + l 2/5 +m 1/3 + q l +m+ q even
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Here l,m and q are integers.

B.1.2. Confluent hypergeometric. The confluent Hypergeometric equation is a degenerate form
of the Hypergeometric differential equation where two of the three regular singularities merge
into an irregular singularity. The following are two classical forms.

• Kummer’s form

y′′ +
c− x
x

y′ − a

x
y = 0, a, c ∈ C (48)

• Whittaker’s form

y′′ =

(
1

4
− κ

x
+

4µ2 − 1

4x2

)
y, (49)

where the parameters of the two equations are linked by κ = c
2
−a and µ = c

2
− 1

2
. Furthermore,

using the expression (10), we can see that the Whittaker’s equation is the reduced form of the
Kummer’s equation (48). The Galoisian structure of these equations has been deeply studied
in [41, 22].

Theorem B.2 (Martinet & Ramis, [41]). The Whittaker’s differential equation (49) is in-
tegrable if and only if either, κ + µ ∈ 1

2
+ N, or κ − µ ∈ 1

2
+ N, or −κ + µ ∈ 1

2
+ N, or

−κ− µ ∈ 1
2

+ N.

The Bessel’s equation is a particular case of the confluent Hypergeometric equation and is
given by

y′′ +
1

x
y′ +

x2 − n2

x2
y = 0. (50)

Under a suitable transformation, the reduced form of the Bessel’s equation is a particular
case of the Whittaker’s equation (49).

Corollary B.3. The Bessel’s differential equation (50) is integrable if and only if n ∈ 1
2

+Z.

B.2. Heun’s families. The Heun’s equation is the generic differential equation with four
regular singular points at 0, 1, c and ∞. In its reduced form, the Heun’s equation is y′′ =
r(x)y, where

r(x) =
A

x
+

B

x− 1
+

C

x− c
+
D

x2
+

E

(x− 1)2
+

F

(x− c)2
, (51)

A = −αβ
2
− αγ

2c
+
δηh

c
, B =

αβ

2
− βγ

2(c− 1)
− δη(h− 1)

c− 1
,

C =
αγ

2c
+

βγ

2(c− 1)
− δη(c− h)

c(c− 1)
, D =

α

2

(α
2
− 1
)
, E =

β

2

(
β

2
− 1

)
,

F =
γ

2

(γ
2
− 1
)
, with α + β + γ − δ − η = 1.

To our purposes we write the determinant Πd+1(a, b, u, v, ξ, w) as in [22]:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w u 0 0 0 . . . 0
dξw + 1 v 2(u+ b) 0 0 . . . 0

0 (d− 1)ξ w + 2(v + a) 3(u+ 2b) 0 . . . 0
0 0 (d− 2)ξ w + 3(v + 2a) 4(u+ 3b) . . . 0
... . . .
0 . . . . . . 2ξ w + (d− 1)(v + (d− 2)a) d(u+ (d− 1)b)
0 . . . . . . 0 ξ w + d(v + (d− 1)a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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B.2.1. Biconfluent Heun. The equation

ξ′′ =

(
x2 + δ1x+

δ2
1

4
− δ2 +

δ3

2x
+
δ2

0 − 1

4x2

)
ξ, (52)

is the well known biconfluent Heun equation which has been deeply analyzed by Duval and
Loday-Richaud in [22, p. 236].

Theorem B.4. [22]. The biconfluent Heun equation (52) has Liouvillian solutions if and
only if it falls in Case 1 of Kovacic algorithm and one of the following conditions is fulfilled.

(1) δ2
0 = 1, δ3 = 0 and δ2 ∈ 2Z + 1.

(2) δ2
0 = 1, δ3 6= 0 and δ2 ∈ 2Z∗ + 1 with |δ2| ≥ 3, and if ε = sign δ2, then

Π(|δ2|−1)/2

(
0, 1, 2, εδ1,−2ε, εδ1 −

δ3

2

)
= 0.

(3) δ0 6= ±1, ±δ0 ± δ2 ∈ 2Z∗ and if ε0, ε∞ ∈ {±1} are such that ε∞δ2 − ε0δ0 = 2d∗ ∈ 2N∗
then

Πd∗

(
0, 1, 1 + ε0δ0, ε∞δ1,−2ε∞,

1

2
(ε∞δ1(1 + ε0δ0)− δ3)

)
= 0.

B.3. Lamé equation. The algebraic form of the Lamé Equation is [47, 56]

d2y

dx2
+
f ′(x)

2f(x)

dy

dx
− n(n+ 1)x+B

f(x)
y = 0, (53)

where f(x) = 4x3 − g2x − g3, with n, B, g2 and g3 parameters such that the discriminant
of f , ∆ = 27g2

3 − g3
2, is non-zero and, therefore, it has no multiple roots. This equation is a

Fuchsian differential equation with four singular points over the Riemann sphere: the roots
e1, e2, e3 of f and the point of the infinity.

The mutually-exclusive known cases of solutions in closed form of the Lamé equation (53)
are the following.

(i) The Lamé-Hermite case (see [47, 56]). We have n ∈ N and arbitrary parameters B, g2

and g3.
(ii) The Brioschi-Halphen-Crawford case (see [23, 47]). We have n ∈ N such that m := n+

1
2
∈ N and parametersB, g2 and g3 satisfying an algebraic conditionQm(g2/4, g3/4, B) =

0, whereQm ∈ Z[g2/4, g3/4, B] is a polynomial of degreem inB, known as the Brioschi
determinant.

(iii) The Baldassarri case (see [4]). One asks n to satisfy that n+ 1
2
∈ 1

3
Z ∪ 1

4
Z ∪ 1

5
Z− Z

besides some additional (involved) algebraic restrictions on the other parameters.

It is possible to prove that the only integrable cases of the Lamé equation are cases (i)–(iii)
above, see [42]. In (ii) and (iii) the general solution of (53) is algebraic and the Galois group
is finite. Case (i) splits in the following two subcases [47, 56].

(i.1) The Lamé case. For a fixed integer n, this equation admits a solution (called Lamé
function) of the form

E(x) =
3∏
i=1

(x− ei)kiPm(x), (54)
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being Pm a monic polynomial of degree m = n/2 − (k1 + k2 + k3) and ki ∈
{

0, 1
2

}
,

i = 1, 2, 3. Since m ∈ N, eight different possibilities regarding n appear: If n is even,
we have k1 = k2 = k3 = 0 or just one zero ki; if n is odd, we could have all non-zero
ki’s or combinations with exactly one non-zero ki. All these possibilities give rise to
classes of Lamé functions. Concerning parameter B, it must be one of the m + 1
different roots B1, . . . , Bm+1 of certain irreducible polynomial of degree m + 1, with
all its roots real and simple [23]. Furthermore, the numbers Bi are reals.

(i.2) The Hermite case. Here we are not in case (i.1) and n is an arbitrary natural number.
We are also fall in case 1 of Kovacic algorithm, but with a diagonal Galois group.

Remark B.5. We notice that the polynomial Pm in (i.1) satisfies a second order linear
differential equation similar to the one that appears in the first case of Kovacic algorithm. In
fact it is possible to obtain the above passing into normal form and applying Kovacic algorithm.
Therefore the second linear independent solution is not algebraic and the associated Riccati
equation has no rational first integral.
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mathématicien éconnu, Historia Math. 25(3) (1998) 245–264.

[22] A. Duval, M. Loday-Richaud, Kovacic’s algorithm and its application to some families of special func-
tions, Appl. Algebra Engrg. Comm. Comput. 3(3) (1992) 211–246.
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