Minimal models for trees and graphs Ll. Alsedà¹

Abstract

The aim of the talk is to present a survey on the existence of minimal models for graph maps and its consequences.

Introduction

A classical problem in combinatorial dynamics is the following: Given a topological space X, a continuous map $f\colon X\longrightarrow X$ and a finite f-invariant set $A\subset X$, what can be said about the dynamics (periodic orbits, topological entropy, ...) of f in terms of $f\big|_A$? This question can be reworded as follows: What can be said about the dynamics of any continuous map $g\colon Y\longrightarrow Y$ for which there exists a homeomorphism $\varphi\colon X\longrightarrow Y$ such that $g\circ\varphi\big|_A=\varphi\circ f\big|_A$?

A classical (and well known) case is when X is a closed interval I of the real line. Indeed, if $f\colon I\longrightarrow I$ is a continuous map then intrinsic information can be obtained by considering the "pattern" of A which is characterized essentially by the permutation π_A induced by $f|_A$ (see [2] for a precise definition). To each pattern π_A we may associate a (non-unique) interval map f_π which admits a finite invariant set B, such that the permutation induced by $f_{\pi}|_B$ is π_A and f_π is monotone between consecutive points of B. Such a map is called a canonical representative of π_A , or a "connect–the–dots" map. It has the following important properties:

- (A) f_{π} minimizes topological entropy within the class of interval maps admitting a periodic orbit whose pattern is π_A .
- (B) f_{π} admits a Markov partition which gives a good "coding" to describe the dynamics of the map f_{π} . The topological entropy of f_{π} may be calculated from this partition.
- (C) f_{π} is essentially unique.
- (D) the pattern π_A forces a pattern ρ if and only if f_{π} has a periodic orbit whose pattern is ρ . We recall the definition that a pattern π_A forces a pattern π_B if and only if each map exhibiting the pattern π_A also exhibits the pattern π_B (see [2] and [15]). In this sense, the dynamics of f_{π} are minimal within the class of maps admitting a periodic orbit whose pattern is π_A .

One may make analogies with the study of the surface homeomorphisms where the canonical representatives are given by the Nielsen-Thurston Theorem [11, 17]. In this context the "pattern" or braid type $\operatorname{bt}(f,A)$ of a periodic orbit A of a surface homeomorphism $f\colon M\longrightarrow M$ is characterized by the isotopy class (up to conjugacy) of $f|_{M\setminus A}$ [8, 9, 14]. The permutation group arising in the interval case is now replaced