ROTATION SETS FOR ORBITS OF DEGREE ONE CIRCLE MAPS

LLUÍS ALSEDÀ* and FRANCESC MAÑOSAS ${ }^{\dagger}$
Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Barcelona, Spain
*alseda@mat.uab.es
${ }^{\dagger}$ manyosas@mat.uab.es
MOIRA CHAS
Department of Mathematics and Institute for Mathematical Sciences, SUNY at Stony Brook, NY 11794-3651, USA
moira@math.sunysb.edu

Received October 23, 2000; Revised May 23, 2001

Let F be the lifting of a circle map of degree one. In [Bamón et al., 1984] a notion of F-rotation interval of a point $x \in \mathbb{S}^{1}$ was given. In this paper we define and study a new notion of a rotation set of a point which preserves more of the dynamical information contained in the sequences $\left\{F^{n}(y)\right\}_{n=0}^{\infty}$ than the one preserved from [Bamón et al., 1984]. In particular, we characterize dynamically the endpoints of these sets and we obtain an analogous version of the Main Theorem of [Bamón et al., 1984] in our settings.

1. Introduction and Statement of the Main Results

Let $\mathcal{C}_{1}\left(\mathbb{S}^{1}\right)$ be the class of all continuous maps of the circle into itself of degree one. Let $f \in \mathcal{C}_{1}\left(\mathbb{S}^{1}\right)$ and let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a lifting of f. Denote by π the canonical projection from \mathbb{R} to \mathbb{S}^{1}. It is well known that, when f is a homeomorphism, then $\lim _{n \rightarrow \infty}\left(F^{n}(y)-y\right) / n$ exists, it does not depend on y and is called the rotation number of f. In the general case of endomorphisms, this limit may not exist. Newhouse et al. introduced in [Newhouse et al., 1983] the notion of rotation set of an endomorphism, L_{F}, by defining:

$$
L_{F}=\operatorname{Cl}\left(\left\{\rho_{F}^{+}(x): x \in \mathbb{S}^{1}\right\}\right)
$$

where $\mathrm{Cl}(\cdot)$ means topological closure and

$$
\rho_{F}^{+}(x)=\limsup _{n \rightarrow \infty} \frac{F^{n}(y)-y}{n}
$$

for any $y \in \pi^{-1}(x)$ (note that since f has degree one, $F(y+1)=F(y)+1$ for each $y \in \mathbb{R}$ and, hence, $\rho_{F}^{+}(x)$ does not depend on y). They also proved that L_{F} is an interval. Clearly, L_{F} is defined up to translations by integers. In [Ito, 1981] Ito proved that each $\alpha \in L_{F}$ is realized as the rotation number of some point in \mathbb{S}^{1} in the sense that, for some $x \in \mathbb{S}^{1}$, $\alpha=\lim _{n \rightarrow \infty}\left(F^{n}(y)-y\right) / n$, where $y \in \pi^{-1}(x)$. In such a case we will say that α is the rotation number of x and we will denote it by $\rho_{F}(x)$. We note that each point in the orbit of x, that is in the

[^0]
[^0]: * Current address: Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain.

