Systèmes dynamiques/Dynamical Systems

An entropy formula for a class of circle maps

Lluís Alsedà and Antonio Falcó

Abstract — In this Note we give a simple formula to compute the topological entropy of a certain class of degree one circle maps which depends only on the "kneading pair" of the map under consideration. The class of maps we consider generalizes the one-parameter family of maps whose bifurcations were studied by Hockett and Holmes in [3].

Une formule pour l'entropie topologique pour une classe d'applications du cercle

Résumé — Dans cette Note on donne une formule simple pour calculer l'entropie topologique d'une application du cercle dans lui-même. Cette formule dépend seulement de la « paire de pétrissage » de l'application. La classe d'applications qu'on considère est une généralisation de la famille à un paramètre dont les bifurcations ont été étudiées par Hockett et Holmes [3].

Version française abrégée — Dans cette Note on utilise la théorie des itinéraires symboliques pour les applications du cercle dans lui-même développée par Alsedà et Mañosas [1] pour obtenir une formule pour l'entropie topologique des applications du cercle d'une classe particulière. Cette classe est une généralisation de la famille d'applications étudiée par Hockett et Holmes dans [3].

On note par $\mathscr L$ l'ensemble d'applications continues $F: \mathbb R \to \mathbb R$ vérifiant F(x+1) = F(x) + 1 (i. e. $\mathscr L$ est l'ensemble des relèvements des applications continues du cercle dans lui-même de degré un). On dit qu'une application $F \in \mathscr M$ si :

- (A) $F \in \mathcal{L}$.
- (B) Il existe $c_F \in (0, 1)$ tel que F est strictement croissante dans l'intervalle $[0, c_F]$ et strictement décroissante dans $[c_F, 1]$.
- (C) Il existe un intervalle fermé $A_F \subset (0, 1)$ et $m \in \mathbb{Z}$ tel que $c_F \in \operatorname{Int}(A_F)$ et $F(A_F) \subset A_F + m$. Soit $F \in \mathcal{L}$ un relèvement d'une application f du cercle dans lui-même. On dira que l'entropie topologique de F, notée h(F), est l'entropie topologique de f (voir [2] pour la définition de l'entropie topologique de f).

Le résultat principal de la Note est le suivant.

Theorème 1. — Soit $F \in \mathcal{M}$. Alors il existe K_F et P_F , deux polynômes dépendant seulement de $\{F^n(0)\}_{n=0}^{\infty}$ et $\{F^n(c_F)\}_{n=0}^{\infty}$ respectivement, tels que $h(F) = \log (\min \{\alpha_{K_F}, \alpha_{P_F}\})^{-1}$ où α_{K_F} et α_{P_F} sont, respectivement, les plus petites racines de K_F et P_F dans l'intervalle (0, 1).

Les corollaires suivants donnent des conditions sous lesquelles la formule donnant l'entropie topologique d'applications de \mathcal{M} est encore plus simple.

COROLLAIRE 2. — Si la longueur de l'intervalle de rotation de $F \in \mathcal{M}$ est plus grand que 1/2, alors $h(F) = \log \alpha_{P_F}^{-1}$.

COROLLAIRE 3. — Soit $F \in \mathcal{M}$ tel que $E(F(c_F)) - E(F(0)) \ge 2$. Alors $h(F) = \log \alpha_{P_F}^{-1}$ [où E(.) désigne la fonction partie entière].

Finalement on donne une formule pour calculer l'entropie topologique de la famille d'applications étudiée par Hockett et Holmes dans [3]. Soit $[\mu_0, \mu_1]$ un intervalle fermé de la droite

Note présentée par Gérard Iooss.

0764-4442/92/03140677 \$ 2.00 © Académie des Sciences