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1. Introduction

In this paper, we shall study the phenomenon of rigidity of the dynamics of graph
maps. The notion of rigidity is often associated with the existence of a canonical
representative within a well-defined class of objects. This is the case, for example,
in hyperbolic geometry (Mostow [23]), and for surface homeomorphisms (Nielsen
and Thurston [26, 13]). In each of these cases, there exists a unique (up to
conjugacy) canonical representative which satisfies many extremal dynamical
properties, such as minimisation of the growth rate (Besson, Courtois and Gallot
[8] for hyperbolic manifolds and Fathi and Shub [13] for pseudo-Anosov
homeomorphisms), and minimisation of the number of closed geodesics for
hyperbolic manifolds and of periodic orbits for pseudo-Anosov homeomorphisms
(Asimov and Franks [5] and T. Hall [14]) in their respective classes.

With the aim of comparing periodic orbits of different maps, Misiurewicz [21]
proposed a general approach to the notion of pattern using the ideas of some
previous works ([6, 2, 7] for instance). According to this point of view, the notion
of pattern was introduced for each of the following important classes of maps:

— continuous maps of the interval, of the circle, and of ‘fixed’ graphs (where the

notion of pattern is termed action) [6, 3, 4],
— continuous maps of (finite) trees [1],
— surface homeomorphisms [10, 20, 18] (where the notion of pattern is usually
termed braid type).
The basic phenomenon that these notions of pattern are designed to encapsulate is
that of coexistence or forcing of periodic orbits. The original motivation for this
stemmed from Sharkovskii’s theorem in 1964 for interval maps [25], which roughly
speaking, states that the existence of a single periodic orbit P of a given period n
is enough to imply the existence of other periodic orbits and often of infinitely
many orbits. This result may be refined by considering the permutation o € S,
induced by the map on the points of P, the points being ordered by the natural
ordering of the interval. Each permutation o may be interpreted as a subset of
C(I,I), namely those continuous maps of the interval I which admit a periodic
orbit whose associated permutation is o. This subset is essentially (up to
homeomorphism) a relative homotopy equivalence class in C(I, I), relative to the
periodic orbit in question. It possesses a unique (up to homeomorphism) canonical
representative (the piecewise linear or ‘connect-the-dots’ map) which minimises
the topological entropy as well as the set of periodic orbits [3]. As we pointed
out above, a canonical representative with analogous minimisation properties

Received 9 January 2004; revised 23 September 2004.
2000 Mathematics Subject Classification 3TE30, 37E25, 37E15.



PATTERNS AND MINIMAL DYNAMICS FOR GRAPH MAPS 415

also exists in the case of surface homeomorphisms, namely, pseudo-Anosov
homeomorphisms.

The goal of this paper is to elucidate the rigidity problem for periodic orbits of
(continuous) graph maps. In order to compare such orbits, it will be convenient to
suppose that the fundamental groups of the graphs in question have the same
rank, and that the endomorphisms induced by the maps on the fundamental
groups are conjugate. It is thus natural to consider graph maps that belong to the
same homotopy equivalence class. In doing so, we come up against a preliminary
problem, being that the underlying spaces are not necessarily homeomorphic (this
was already the case in [1]). We solve this by defining a new notion of pattern
which enables us to compare periodic orbits of self-maps of homotopy-equivalent
spaces, not just of graphs. Moreover, our definition in some sense unifies the
above-mentioned notions of pattern for self-maps of the interval, the circle and
‘fixed’ graphs, for surface homeomorphisms, and finally for continuous self-maps of
trees (see Remark 2.10).

A priori, given the definition of a pattern as a relative homotopy equivalence
class, it is not an easy matter to check that two orbits have the same pattern.
However, the combinatorial characterisation of the notion of pattern as a
permutation in the case of interval maps, or for surface homeomorphisms, as a
conjugacy class in the mapping class group, facilitates greatly the comparison of
patterns. In the case of graph maps, we show that our notion of pattern may also
be characterised combinatorially, in terms of the induced action on the
fundamental groupoid of the graph ‘marked’ by the periodic orbit, which is
again a conjugacy problem.

Let us remark that in all of the above-mentioned classes of maps, the study of
the minimality of the periodic orbit structure, as well as the topological entropy,
may be reduced to that of a particular class of graph maps. For the interval and
the circle, it is not necessary to change the class of maps under consideration; for
surface homeomorphisms, the maps in question are the so-called train track maps,
originally due to Williams [27] and then reintroduced by Thurston. A particular
homeomorphism may be represented by different train track maps supported on
non-homeomorphic graphs, but with the same homotopy type. In this framework,
our definition of pattern (where the graph is not fixed) is natural.

In order to obtain a rigidity result for periodic orbits, in the final section we
shall restrict our attention to the subclass of graph maps that induce irreducible
free group endomorphisms of the fundamental group. The reason for this is that
there exist natural candidates for the canonical representatives in the correspond-
ing class of graph maps, namely the train track or efficient representatives. For
irreducible free group automorphisms, the existence of efficient representatives
follows from results of Bestvina and Handel [9] and Los [17], and for irreducible
free group endomorphisms, from those of Dicks and Ventura [12]. An efficient
representative is known to minimise the growth rate (or topological entropy) in its
homotopy equivalence class, but little is known about the persistence and
minimality properties of the set of periodic orbits of an efficient representative.

Our goal in this paper is two-fold. Given a free group endomorphism, we first
study the persistence of patterns among its representatives. Secondly, in the
irreducible case, we prove the minimality (within the homotopy equivalence class)
of the set of periodic orbits of its efficient representatives. This will follow from the
persistence result.
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In order to state our main results, let us make some definitions. Given an
endomorphism ® of a free group of finite rank, a representative for ® is defined to
be a graph map such that the induced map on the fundamental group is ®, up to
an inner automorphism and up to conjugacy. In the literature, one encounters the
more restrictive notion of topological representative which is a representative
sending vertices to vertices and edges to edge paths.

Nielsen fixed point theory and the notion of index will play an important role in
our work. If C' is a Nielsen fixed point class of f then ind(C, f) will denote its
index (see [15, § 1.3]), and if ind(C, f) # 0 then C will be called an essential class
of f. A periodic orbit P will be called essential if ind(C, f'') # 0, where C is a
fixed point class of fI”! containing a point of P, and |P| denotes the period of P.

We now define our notion of pattern. Let f:G — G and ¢:G’ — G’ be graph
maps, and let P and @ be periodic orbits of f and g respectively. We say that the
triple (G, P, f) is equivalent to (G',Q,g) if there exists a homotopy equivalence
r:G — G’ such that ro f ~p gor, where ~p is a homotopy relative to P, and r|p
is a bijection of P onto . The corresponding equivalence class of (G, P, f),
denoted by [G, P, f], will be called its pattern. We stress the fact that the notion
of pattern equivalence does not coincide with the notion of Nielsen equivalence.
First of all, note that the notion of pattern equivalence compares orbits in spaces
that are not necessarily the same. Even when we restrict the notion of pattern
equivalence to models over the same graph, the two definitions are not equivalent
(for more details, see Proposition 3.4 and the comment after it).

If in the above definition we replace the assumption that r|p is a bijection by
the conditions r(P) = @ and |P| > |Q|, then we say that [G’,Q, g] is a reduction
of [G,P f]. As for patterns, the notion of reduction may be characterised
combinatorially in terms of the induced action on the fundamental groupoid of the
graphs marked by the periodic orbits (see § 3). Furthermore, it may also be
characterised in terms of Nielsen equivalence. Indeed, [G, P, f] is reducible if and
only if P may be partitioned into m subsets of equal cardinality, each subset being
contained in a fixed point class of f”l, and there exists a Nielsen path joining two
points of the same group whose concatenation with its images under f™ forms a
homotopically-trivial loop (see Proposition 3.3).

The following theorem summarises the basic persistence properties for patterns.

THEOREM A. Let f:G— G and ¢:G — G' be representatives of an
endomorphism of a free group of finite rank. Then the following hold.

(a) There exists an index-preserving bijection k that, for each n € N, sends
essential fixed point classes of f" to essential fixed point classes of g".

(b) Let P be an essential periodic orbit of f, let C' be the fixed point class for
fIPI of a point of P, and let Q be the g-orbit of a point of k(C). Then either
G', Qg = [G, P, f], or [G', Q. g] is a reduction of G, P, f].

As we have already pointed out, from this theorem we obtain a minimality
result for the set of periodic orbits of efficient representatives of irreducible free
group endomorphisms. In order to state this result precisely, we introduce some
more definitions.

Let F,, denote the free group of rank n, and let ® be an endomorphism of F,,.
We say that @ is reducible if there exist proper free factors F, ,F, ,...,F, of F,
whose conjugacy classes are permuted under ® and such that F, «F, *...xF,



PATTERNS AND MINIMAL DYNAMICS FOR GRAPH MAPS 417

is a free factor of F,. Another formulation of the notion of reducibility is that
there exists a topological representative for ® that admits a proper invariant
subgraph whose fundamental group is non-trivial. If an endomorphism is not
reducible then we say that it is irreducible.

A topological representative f:G — G for ® will be said to be efficient if it has
no invariant forests, G has no valence-one vertices, and if for all k€ N, the
restriction of f* to the interior of each edge of G is locally injective. Also, a graph
map f:G — G will be called expanding if G is equipped with a metric such that f
linearly expands each edge e by a factor A(e) > 1.

The minimality of the dynamics of efficient representatives is asserted by the
following theorem.

THEOREM B. Let f:G — G be an efficient, expanding representative of an
irreducible endomorphism ® of a free group of rank n. Then there exists a cofinite
subset B of the set of periodic orbits of f with the property that, for each
representative g:G' — G’ of ®, there exists a pattern-preserving injective map
from B to the set of periodic orbits of g. Moreover, the number of periodic points
of f whose orbit does not belong to B is at most 10(n — 1).

We emphasise that this theorem treats all of the periodic orbits (with a
uniformly-bounded number of exceptions) at once, and not just the fixed points of
the map. As we shall see in the proof, a periodic orbit P ¢ B is either an
inessential periodic orbit of vertices, or else its pattern is reducible and g exhibits
either the pattern [G, P, f] or one of its reductions. Further, each point whose
orbit belongs to B is alone in its Nielsen class for all iterates of f.

A direct consequence of this theorem is that two efficient, expanding representa-
tives of an irreducible endomorphism of a free group of rank n have (with at most
20(n — 1) exceptions) the same number of periodic orbits of any pattern.

Our theorem holds in a more general setting, the essential hypothesis being the
existence of efficient representatives for the given free group endomorphism. In the
irreducible case, this existence is guaranteed.

This paper is organised as follows. In § 2 we fix our notation, and we define the
notions that will be used throughout the paper. In particular, we state and prove
the results for relative homotopies of pointed graphs, groupoids and their
morphisms, and we define our notion of pattern. We also give an algebraic
characterisation of this notion in terms of conjugacy of morphisms of the
associated groupoids. In § 3 we introduce and study the notion of reducibility of
patterns of periodic orbits. In § 4 we deal with the persistence of patterns under
homotopy equivalence, and prove Theorem A. Finally, in § 5 we study the index
of points and fixed point classes of expanding efficient representatives, and we
prove Theorem B.
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2. General definitions

In this paper, all graphs will be finite. As usual, a graph will be considered to be
a compact topological space, as well as a combinatorial object given by a finite set
of vertices and edges. Recall that the fundamental group of a graph G is free; its
rank will be denoted by |G|.

Given a point z of a graph G, let d(x) denote its valence. Any point of valence
different from 2 will be called a vertex, and the set of vertices of G will be denoted
by V(G).

If G and G’ are graphs, let C(G,G’) denote the class of continuous maps from
G to G'.

2.1. Homotopies of pointed graphs

A pointed graph will be a pair (G, P), where G is a graph and P is a finite (possibly
empty) subset of G. Given a pointed graph (G, P), let | P| denote the cardinality of P.
Given pointed graphs (G, P) and (G',Q), we say that f:G — G' is a pointed
graph map, written f:(G,P) — (G',Q), if f € C(G,G') and f(P) C Q.

Let (G, P) and (G, Q) be pointed graphs and let f, g: (G, P) — (G', Q) be pointed
graph maps. We say that f is homotopic to g relative to P, written f ~p g, if there
exists a homotopy of pointed graph maps {h;};co.1: (G, P) — (G’,Q), that is, a
continuous family of pointed graph maps h;: (G, P) — (G',Q) with parameter t
ranging over [0, 1], and satisfying hy = f and h; = g. In particular, f|p = hy|p =
glp for all t €[0,1]. We will also write f ~p g if we do not need to specify the
homotopy. If P =Q =0 then we obtain the usual homotopy relation between
graph maps, and in this case we will simply drop all of the ‘P’ subscripts in
the notation.

The pointed graphs (G, P) and (G', Q) will be said to have the same homotopy
type, written (G, P)~ (G’,Q), if there exists a homotopy equivalence between
them. This means that there exist maps r: (G, P) — (G',Q) and s:(G',Q) —
(G, P) such that ros~gIdg and sor ~pIdg. The relation of homotopy type
defines an equivalence relation on the set of pointed graphs. Notice that if
(G,P) ~ (G',Q) then |G| =|G’| and |P| =|Q|. We shall see shortly (Corollary
2.2) that the converse is also true.

Let (Gy, A,) denote the pointed graph with V(G)) = A, = {vy,v1,...,v,_1}
and whose set of k+mn —1 edges is {aq, a9, ..., ap,t1, L9, ..., t,_1} such that:

(i) v, called the distinguished vertex, is the unique vertex incident with «; for
i=1,2,...,k
(ii) vy and wv; are the unique vertices incident with ¢; for i =1,2,...,n — 1.
We call the edges «; and ¢; the petals and hairs of (G, A,) respectively. The
pointed graph (G, Aj) is illustrated in Figure 1.

As we shall see in Proposition 2.1, each homotopy equivalence class contains a
(G, A,) which will serve as a standard model for that class. The fact that the
distinguished vertex of G;, belongs to A, will enable us to choose paths between
points of A, in a natural way, and as such, will simplify some of the proofs.

ProrosSITION 2.1. Let (G, P) be a pointed graph. If k = |G| and n = |P| then
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v1

FIGURE 1. The pointed graph (G, As).

Proof. We start by adding n hairs ¢;,...,t, to G, each one based at a
different point of P. We thus obtain a new graph H; which contains G as a proper
subgraph. Clearly H; has a set Q@ of n new valence-one vertices. It is easily seen
that (G, P) ~ (Hy, Q).

There exists a minimal tree T C G C H; such that PUV(G) C T. Let H, be
the graph obtained from H; by collapsing T' to a point. We thus obtain a graph
which has a single vertex of valence 2k +n and n valence-one vertices. Let R
denote the set of valence-one vertices of H,. Since H, is obtained from H; by
collapsing a tree, then (H;,Q) ~ (H,, R).

Lastly, let H3 be the graph obtained from H, by collapsing one of its hairs, and
let S =V(H;). Then (H,, R) ~ (Hs,S) = (G}, A,).- O

COROLLARY 2.2. Let (G,P) and (G',Q) be pointed graphs. Then (G, P) ~
(G’,Q) if and only if |G| = |G'| and |P| = |Q].

2.2. Paths and groupoids

We are now going to associate an algebraic structure, namely that of groupoid,
to each pointed graph. The reader may consult [11] for further details. We will
adopt a topological viewpoint, the details of which we now make explicit
for completeness.

Given a graph G, a path in G will be a continuous map o:[0,1] — G. The
points o(0) and o(1) will be called the endpoints of o. If we need to specify the
beginning and the end of o, we will speak of a path from o(0) to (1) in G.

The path o(1 — t) from (1) to (0), denoted by o', will be called the inverse of o.
A path which begins and ends at the same point will be called a loop. Given two paths
o and 7 in G such that o(1) = 7(0), we denote their concatenation by oT.

Given a pointed graph (G, P), let (G, P) denote the set of all paths in G
whose endpoints belong to P. If 0,7 € p(G, P) then we say that o and 7 are
equivalent if ¢ is homotopic to 7, keeping endpoints fixed during the homotopy.
This defines an equivalence relation on ©(G, P). Let (G, P) denote the resulting
quotient of p(G,P), and let [0] denote the equivalence class of o. The
concatenation operation on p(G, P) induces a well-defined natural product on
(G, P), defined by [o] - [7] = [o7], and equips it with a groupoid structure. We set
[0] ' = [07!]. We remark that (G, P) has n = |P| trivial elements which are the
classes of the trivial loops based at the points of P.



420 LLUIS ALSEDA ET AL.

Let P be a finite subset of m(G, P) each of whose elements may be represented
by a path which is not a loop. A finite product oy - 05 - ... 0, will be called P-
admissible if either o; € P or o;' € P, and o0, # 07}, for all i. We will say that P
is independent if any P-admissible product is the class of a path which is not a
loop. Clearly any subset of an independent set is also independent. The set P will
be called transitive if for any pair of distinct points z,y € P, there is a path
o€ p(G,P) from x to y such that [o] is P-admissible. If P is independent and
transitive then it will be called a free system of path generators.

PROPOSITION 2.3. Let P be a subset of w(G,P) of cardinality r. The
following assertions hold:

(a) if P is an independent set then r<|P|—1;

(b) P is a free system of path generators if and only if P is an independent set

and r=|P| —1;
(¢) P is a free system of path generators if and only if P is a transitive set and
r=|P|—1.

Furthermore, ©(G, P) admits a free system of path generators.

Proof. Set P={xy,...,z,}, and define the graph Gp as follows: its set of
vertices is of cardinality n, say {vi,...,v,}, and it has an edge incident at v; and
vy if there exists a path o€ p(G, P) from z; to x; such that [o] € P. The
properties of P may be expressed in terms of properties of Gp. In particular:

(i) r =« and n = v, where a and v are, respectively, the cardinal of the sets
of edges and vertices of Gp;

(ii) P is an independent set if and only if Gp is a disjoint union of trees;

(ili) P is a transitive set if and only if Gp is a connected graph;

(iv) P is a free system of path generators if and only if Gp is a tree.

From the well-known characterisation of trees, we see that the following
properties are equivalent:

(1) Gp is a tree;

(2) Gp is a disjoint union of trees and o =v — 1;

(3) Gp is a connected graph and a =v —1;

Furthermore, if Gp is a disjoint union of trees then a<v — 1. Thus (a), (b) and

(c) follow.
In order to obtain a free system of path generators, it suffices to take any set P
of cardinality n for which Gp is a tree; this is always possible. O

Let (G, P) be a pointed graph, with k = |G| and take z, € P. We will identify
w(G,{zy}) with the free group of rank k. Let {6;,...,0,} be a free basis of

(G, {xp}), and let us choose a free system of path generators {[o4],..., [0, 1]} of
m(G, P). Then any element of 7(G,P) may be expressed uniquely (without
cancellation) as a product of the [o;] and the ;. The set {61,...,0,[04],...,[0,1]}

will be called a free system of generators of w(G, P). Any groupoid morphism is
determined by its effect on a free system of generators. Moreover, a morphism
¢: (G, P) — w(G', P') is an isomorphism if and only if it induces a bijective map
from a free system of generators of 7(G,P) to a free system of generators of
m(G', P").
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LEMMA 2.4. Let(G, P)and (G, Q) be pointed graphs, andlet P = {x,...,x,_},
Q={vo,---sYp_1} and d = {dy,...,d,_1}, where for each i € {0,...,n—1}, d; is
a path from y; to x;. Then the morphism ¢, (G, P) — w(G,Q), defined by
dg(a) =[d] - e [d]-]f1 for each i,j € {0,1,...,n— 1} and each class a of paths
from x; to x;, is an isomorphism.

Proof. By taking a system of generators {6,...,0,} of 7(G,{z,}) and a free
system of path generators {[o4],...,[0,_1]}, where o; is a path between z, and z;,
we obtain a free system of generators of (G, P). By Proposition 2.3, the set

{6a(01), .., a(0r), dallon]); - - - s Gallon-1])}

is also a free system of generators of 7(G, Q). O
A pointed graph map f: (G, P) — (G',Q) induces a groupoid morphism

from(G, P) — w(G,Q),
defined by
(o)) =[foo] foralloe p(G,P).

Since each groupoid morphism sends trivial elements to trivial elements, any
morphism ¢: 7(G, P) — n(G’, Q) induces a unique map from P to Q denoted by ¢,,.
Clearly, if ¢ = f* then ¢, = f|p.

Note that for general maps between two spaces, the definition of an induced
morphism of either the fundamental group or groupoid requires a choice of
arbitrary paths between the base points and their images. In our situation, base
points are mapped to base points. Our definition of the induced morphism is that
obtained by choosing these paths to be trivial.

The next lemma follows easily.

LEMMA 2.5. Let f:(G,P)— (G',Q) and g:(G',Q) — (G",R) be pointed
graph maps. Then the following assertions hold.

(a) (go f) =g of".

(b) (1dg)" = Idyp-

(¢) Assume that f is a homotopy equivalence between pointed graphs, and
suppose that there exists a map ¢: (G',Q) — (G, P) satisfying f o ¢ ~¢ Idg and
@wo fo~pldg. Then f* and ¢* are isomorphisms, and (f*)! = ¢*.

If r: (G, P) — (G',Q) is a homotopy equivalence between pointed graphs then,
in particular, it is a homotopy equivalence of the graphs G' and G’, and so the
morphism r*: (G, {z}) — n(G’,{r(x)}) is an isomorphism for each x € G.

LEMMA 2.6. Let f,g:(G,P)— (G',Q) be pointed graph maps such that g
maps P onto Q bijectively, and for which there exists a homotopy {h;}t_o: f ~ g.
Let P =A{zy,...,x,_1}, and let d = {dy,...,d,_1}, where for each i =0,...,n—1,
d; is the path defined by d;(t) = h,(x;) for all 0<t<1. Then the following
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diagram commutes:

(G, P) n(G',9(P))
a
f*
n(G', [(P))

where ¢4 is the morphism given by Lemma 2.4. Moreover, if |g(P)| = |f(P)| then
¢4 Is an isomorphism.

Proof. Let i,j€{0,1,...,n— 1}, and let 3 be a path from z; to 2;. We must
show that [fof]=[d] [go |- [d]-]f1 =[d; (go B) d;'], which is equivalent to
showing that the paths fo 8 and d; (go () d;l are homotopic with their endpoints
f(z;) and f(z;) fixed.

Let H:[0,1] x [0,1] — G be the map defined by:

d;(3t) if 0<t<is,
3t —
H(t,s) = hs<ﬂ(3_22>> if 1s<t<i(3—s),
d;i ' (3t —2) if 1(3—s)<t<1.

Then we obtain
{H(t,0)} e =hoo 8= fof,
{H(tv 1)}t€[0,1] = dz(hl o ﬁ)d{l = dz(g o ﬂ)djilv

and
H(0,5) = d;(0) = ho(z;) = f(x;),
H(1,s) = d;' (1) = ho(x;) = f(x),
for each s € [0,1]. The result follows from Lemma 2.4. O

REMARK 2.7. From Lemmas 2.5 and 2.6, we see that if r: (G, P) — (G',r(P))
is a homotopy equivalence (not necessarily of pointed graphs) and if |P| = |r(P)|
then r* is an isomorphism.

PROPOSITION 2.8. Let f,g:(G,P)— (G',Q) be pointed graph maps. Then
f~pgif and only if f* = g".

Proof. The proof is a routine check, that we provide for completeness. If
f ~p g then by Lemma 2.6 we get f* = ¢,0 g", where ¢, = Id.

Conversely, suppose that f“=g", and set |G|=k, |G'|=1, |P|=n and
|Q| = m. From Proposition 2.1 there exist pointed graph maps:

Ty (va) - (GkvAn)a 51t (Glm An) - (G7 P)7
Tt (Gla Q) - (Gla Am)a 8ot (Gla Am) - (G,a Q)v

such  that  (rjo0sy) ~y Idg, (s;0m) ~pldg, (r90sy) >~y Idg, and
(s207m9) ~g Idg.
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Set
P:{p(]a"'vpn—l}v Q:{q07"'7Qm—1}a An:{v(]v"'7vn—l}7

and
Am = {wo, . .,U}m_l}.

By re-indexing if necessary, we may suppose that f(py) = g(py) = 4o, r1(py) = vo,
and 79(qy) = wy. Consider the two maps

rp0 fosyand ryogo sy (Gy, Ay) — (G, Ay

Notice that (ryo fos;)(vg) = wy = (ry0g08;)(vy). It follows from the hypothesis
and Lemma 2.5 that (ry0 fos;)" = (ry0g0s)"

We claim that (ryo fos))~y (r,0g0sy). Indeed, let ay,...,q; and
Ly, lp_1 be the petals and the hairs of (G, A,). Then

(rgo fos)(ag) =gy (rogos)(a;)  for i=1,...,k,
(ryo fos)(ti) 2wy (rrogos))(y) fori=1,....,n—1.

Fori=1,...,kand t € [0,1], let hi(x): (oy,v9) — (G}, A,,) be a homotopy between
(rg0 fosy)],, and (ryogos;)|, relative to vy. Similarly, for i =1,...,n —1 and
t €[0,1],let Ii(z): (¢;, {vo, vi}) — (Gy, A,,) be a homotopy between (ry o f o 5,)], and
(ry 0 gosy)|, relative to vy and v;. For t € [0,1], define H;: (G, A,,) — (G, A,,) in
the following way:

Hy(x) = {hi(x) if zeaq,

li(z) if ey

Since for all ¢, j and ¢, the unique common points of the «; and ¢; are v, and
hi(vy) = 6 (vy) = wy, the map H, is well defined and is a homotopy between
ryo fos; and ryogos; relative to A,. Thus ryo fos; ~y 70g0s;, which
proves the claim.

Therefore syor90 fos or, ~psyoryogos;or;. Thus f=~pg, and this
completes the proof. O

The following proposition asserts the existence of topological representatives for
groupoid morphisms.

PROPOSITION 2.9. Let ¢: (G, P) — w(G’,Q) be a groupoid morphism. Then
there exists a pointed graph map r: (G, P) — (G’,Q) such that r* = . Moreover,
© is an isomorphism if and only if r is a homotopy equivalence between
pointed graphs.

Proof. 1In the special case where both pointed graphs are standard models (of
the form (Gy, A,)), the first statement is clear, and the second statement follows
from Proposition 2.8. The general case may be reduced to this special case, as in
the proof of Proposition 2.8, by using homotopy equivalences which send each
pointed graph to the corresponding standard model. O
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2.3. Patterns

Let G and G’ be graphs, f € C(G,G) and f' € C(G',G'). The pairs (G, f) and
(G', f') will be said to be equivalent, written (G, f) ~ (G', f'), if there exists a
homotopy equivalence r:G — G’ with the property that ro f ~ gor. Then
(G, f) ~(G', f) if and only if f and f' are representatives of the same
endomorphism of a free group of finite rank.

Let X denote the set of triples (G, P, f), where (G, P) is a pointed graph and
f:(G,P) — (G, P) is a pointed graph map. Two elements (G, P, f),(G',Q,g) € &
will be said to have the same pattern, written (G, P, f) ~ (G, Q, g), if there exists
a homotopy equivalence r: (G, P) — (G', Q) between pointed graphs such that the
diagram

(G, P) ——(G",Q)

fl lg
(G,P) ——(C",Q)

commutes up to homotopy relative to P. In other words, gor ~p ro f. This
defines an equivalence relation on . The resulting equivalence class, or pattern, of
(G, P, f) will be denoted by [G, P, f]. If (G,P,f) and (G',Q,g) have the same
pattern then it follows from Corollary 2.2 that |G| = |G’| and |P| = |Q|. As we
shall see, the condition in the definition of pattern that r be a homotopy
equivalence between pointed graphs may be relaxed. Indeed, by Corollary 2.12 it
will suffice to take any homotopy equivalence between G and G’ which induces a
bijection between the marked points.

REMARK 2.10. This notion of pattern in some sense unifies the previous
notions in the literature. In order to recover the different specific notions of
pattern, it suffices to specify the hypotheses on the map r in such a way that the
desired properties are preserved. In our framework, the homotopy type of the
space will be preserved and the hypothesis is just that r be a homotopy
equivalence. If one wants to preserve the space itself, » must be a homeo-
morphism, as in the case of the interval [22], of fixed graphs [4] or of surfaces [10,
18, 20]. For patterns of trees (see [1]), one wants to preserve the ‘relative
positions’ of the points of the orbit and this is the condition that must be satisfied
by r.

The following result is an algebraic characterisation of the notion of pattern,
and gives us a powerful tool for deciding when two elements of ¥ have the same
pattern. More precisely, two patterns coincide if and only if the induced groupoid
morphisms are conjugate. A pattern may thus be thought of as a conjugacy class
of groupoid endomorphisms. We emphasize that this result gives a necessary and
sufficient condition in terms of conjugacy, and not just conjugacy up to an inner
automorphism. Example 2.15 highlights the difference between these two concepts.

THEOREM 2.11. Let (G,P, f),(G',Q,g9) € ¥. Then (G,P,f) and (G',Q,g)
have the same pattern if and only if there exists an isomorphism ¢:7w(G,P) —
7(G’,Q) such that g" o ¢ = po f*.
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Proof.  Suppose that (G, P, f) ~ (G',Q,g), and let r: (G, P) — (G',Q) be the
corresponding homotopy equivalence of pointed graphs satisfying gor ~p ro f.
It follows from Lemma 2.5 that " is an isomorphism, and that
gior*=(gor) =(rof) =r"of".

Conversely, suppose that there exists an isomorphism ¢:7(G, P) — n(G’', Q)
such that g"o¢ =d¢o f*. It follows from Proposition 2.9 that there exists a
homotopy equivalence r: (G, P) — (G',Q) of pointed graphs such that ¢ = r".
Then ¢g" or* =7" o f*, and by Proposition 2.8 we obtain the desired homotopy
equivalence gor ~pro f. 0

COROLLARY 2.12. Let (G, P, f),(G',Q,g) € X. Then (G, P, f) and (G',Q,g)
have the same pattern if and only if there exists a homotopy equivalence
r:G — G' such that r maps P bijectively onto @, and the diagram

(G, P) ——(G",Q)

fl lg
(G, P) ——(G".Q)

commutes up to homotopy relative to P, that is, ro f ~p gor.

Proof. 1f [G, P, f] = [G',Q, g] then such a map r exists by definition.

Conversely, if r: G — G’ is a homotopy equivalence between G and G’ such that r
maps P bijectively onto @ then it follows from Remark 2.7 that the induced
morphism 7*: 7(G, P) — 7(G’, Q) is an isomorphism. Thus ¢* o 7* = r* o f* and the
result follows by Theorem 2.11. O

REMARK 2.13. Theorem 2.11 highlights the equivalence between the problem
of deciding whether two elements of 3 define the same pattern and that of
deciding whether two groupoid endomorphisms are conjugate. This is a difficult
question. For instance, if |G| =k and |P| =1, this comes down to deciding
whether two endomorphisms of the free group of rank k are conjugate. This
problem was solved for a particular class (irreducible) of Out(F;) [17, 24|, and in
general for Aut(F,) and Out(F;) [19]. The general cases of free group and free
groupoid endomorphisms are still open, and are interesting in their own right.
They may however be answered in certain special cases, as we will see shortly in
Examples 2.15 and 2.16.

We are now going to analyse some basic properties of the relation ‘to have the
same pattern’ in the case of periodic orbits. Let (G, P, f),(G', P', f') € ¥ be such
that (G, f) ~ (G', f'), and P and P’ are periodic orbits of f and f’ respectively. If
the fundamental groups of G and G’ are trivial then it follows from Theorem 2.11
that the pattern is characterised by |P|. This is not the case if the fundamental
groups are non-trivial, even for the circle (see Example 2.14). Another apparently
simple situation is that of patterns of fixed points. From Theorem 2.11, all fixed
points of circle maps of the same degree have the same pattern. Example 2.15
shows that this is not true for (slightly) more complicated graphs.

If P is a periodic orbit of period |P| > 1 and m € N is a divisor of |P| then P
contains different subsets which are periodic orbits of f™. In this context, it is
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natural to consider the following related question: let z and y be distinct points of
P. Then Orbgn(z) and Orbsm(y) are periodic orbits of f™. Is it true that
[G,Orbsn(x), f"] = [G,Orbsn(y), f™]? If f is a homotopy equivalence then the
answer is positive. However, the answer to this question in general is negative.
Indeed, we show in Example 2.16 that two points of a periodic orbit of period 2

considered as fixed points of f? may have different patterns.

EXAMPLE 2.14 (Two periodic orbits with the same period may have
different pattern). Let S' be the circle, and let o and 3 be injective paths in S'
such that a(l) = £(0), (1) = «(0), and «((0,1))NB((0,1)) =0. Consider two
maps f,g € C(S',S') defined by

foa=a, goa =8
foB=apa, goB=a.
For both of these maps, the set P = {a(0), a(1)} is a periodic orbit of period 2 but

[SL, P, f] #[S', P,g]. To see this, we will apply Theorem 2.11. Consider a free
system of generators {a,b}, where a = [a] and b= [af]. The induced maps on

7(S', P) satisfy
fa)y=a, g (a) =a'b,
f7(b) =a b, g'(b) =a 'ba.

Suppose that there exists an isomorphism ¢:7(S', P) — m(S!, P) such that
g od=¢o fr. That is,
g (9(a)) = ¢(f'(a)) = ¢(a™") = ¢(a)
g (6(b) = 6(f* (b)) = ¢(a”"ba) = d(a) ' H(b)¢(a).
Since ¢ is an isomorphism, it sends trivial elements to trivial elements and loops
to loops. We thus consider four cases (for simplicity, the classes of the trivial loops
based at each point of P are identified with the corresponding point of P):
(i) ¢(a(0)) = a(0) and ¢(b) =b (thus ¢(a) = b"a with n € Z),
(ii) #(a(0)) = a(0) and ¢(b) = b~ " (thus ¢(a) = (b~ 1)"a = b "a with n € Z),
(iii) ¢(a(0)) = a(1) and ¢(b) = a 'ba = [Ba] (thus ¢(a) = (a 'ba)"a™! = a 0"
with n € Z),
(iv) ¢(a(0)) = (1) and ¢(b) = a 'b'a = [Ba]" (thus ¢(a) = (a ‘b 'a)"a ' =
a'b™" with n € Z).
In the first case we see that

a—lb—n _ ¢(a)—1 _ g*(¢(a)) _ (a—lba)na—lb _ a—lbnaa—lb _ a—lbn+1'

The only solution of this equation is n =
similarly in the remaining three cases.

—%, a contradiction. The proof follows

EXAMPLE 2.15 (Two fixed points may have different pattern). Let
G = (Gs,A,), and set P ={v,}. Let f:(G,P) — (G,P) be a map with f(vy) =
vy such that the induced morphism f*:7(G, P) — 7(G, P) satisfies

F0,)=0,-05-07",
f*(HZ) = 91;
£ (03) =05" 0,04
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for the free system of generators {6,6,,65} of n(G,P) defined by 0; = [o;] for
i=1,2,3. Since f*(0;) starts with 65!, the map f has another fixed point ¢ € as.
If we denote by [ the injective path contained in the edge as with the same
orientation, starting at v, and ending at ¢, then it follows that [fo 8] = [a3'4)].
We will show that [G, P, f] # [G, Q, f], where Q = {q¢}.

To compute the induced morphism f; (G, Q) — 7(G,Q), we consider a free
system of generators {1J;,9,, 03} of (G, Q) defined by ¥, = [ 'a; 3] for i = 1,2,3.
Then the map f, satisfies

fy () =939, -9,
fy (D) =3 -0, 5,
f;(ﬂii):ﬁ?

Notice that 6 = 0, - 0 - 03 is a fixed element of 7(G, P) under f*. We claim that
f, has no non-trivial fixed element (meaning fixed, not just fixed up to inner
automorphisms). Thus the patterns [G, P, f] and [G,Q, f] are different. Before
showing that this is the case, let us make some comments about this example. The
morphisms f* and f * are induced by a pseudo-Anosov homeomorphism h of the
2-disc D? relative to one of its periodic orbits of period 3. The only non-trivial free
homotopy class left invariant under the action of h is that of the boundary OD?.
The fixed element § of f* corresponds to the class of OD? taking the basepoint to
be also on 9D On the other hand, f* and [, differ essentially by an inner
automorphism. Then f does not fix the element of 7(G, Q) corresponding to OD?,
and thus it has no non-trivial fixed points.

We now outline the steps needed to prove the claim. Suppose on the contrary that
w is a non-trivial reduced word in the 9, satlsfylng f (w) = w. First, w contains at
least one occurrence of 95 or 95 1; if not, 9, and 95 ! would not appear either in f; (w),
so fy(w) = ¥}, where | # 0, which contradlcts the fact that f5(w) =w. So we may
write w in the (reduced) form w = woﬁ ’LU119 LW 119 wy, Where the k; are non-
zero, the w; are reduced words in ¥, ¥, and thelr inverses, and wy,...,w;_; are
non-trivial. Then writing the f . (w;) in reduced form, we see that fo(w) =
1 (wo)ﬁl”f (wl)ﬁkQ Ay (w 1)19 'f (w) is also reduced. It follows that w, must
be a non- terlal word contamlng at least one occurrence of 192 and 95!, From the
form of f, we see that f (wy(d1,7;)) = P39 - wy(I3,7,) - 1 1951 (not necessarily
reduced). Comparing the beginning of w with that of fo (w), and using the fact
that f; is an automorphism, we see that f (w) contains at least one occurrence of
Y3 or Y5 '. Finally, w, contains one of the symbols ¥, or 95!, but neither ¥J; nor
Y37, so the first occurrence of ¥, or 95 in w comes before the ﬁrst occurrence of
U5 or 19; in w. But f (wy) contains one of the symbols Y5 or Y51 but neither 1,
nor 95!, so the first occurrence of 95 or ¥ n f,(w) =w comes before the first
occurrence of ¥, or ¥5 ! in w, a contradlctlon.

EXAMPLE 2.16 (Two points of the same orbit may have different
pattern). Let f:(Gy, A;) — (Gy,A;) be a pointed graph map such that the
induced morphism f* from 7(Gy, {vy}) to itself satisfies

f*(gl) =0,-6,-0,,
f*(02) = 927
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for the free system of generators {6;,6,} of w(Gs,{vy}) defined by 6; = [oy] for
i=1,2.

The map f has three periodic orbits of period 2 contained in aq. Among these
three orbits, let P be that which has a point closest to v, (with respect to the
orientation of «y). We subdivide the edge oy at the points of P into three injective
paths (3;, [y and (3 (their orientation induced by that of «;) satisfying
B3;((0,1))N P =10 for i = 1,2,3. These paths are defined so that vy = 8,(0) = 33(1)
and z; := §;(1) = B,41(0) € P for ¢ = 1,2. It follows from the definition of P that
Jo By =010 fofBy= 030, and fo B3 = 50300205

We now consider (G, {z1}, f*) and (G, {x,}, f*) and we will show that the
patterns of these two triples are different.

A free system of generators of m(Gy,{z,}) is given by a; = [8 ‘a1 ]
and b, = [B; 'awf], and a free system of generators of 7(Gy, {z,}) is given by
ay = [B31 35 '] and by = [B3a35 '], For i = 1,2, let ¢; denote the morphism

(f*):m(Gy, {z,}) — 7(Go, {:})-

A simple computation shows that

{¢1(a1) :a?, {¢2(a2) :agv
¢1(b)) = a;" bray, ba(by) = asbyay .

In view of Theorem 2.11, to prove that [Gy, {z1}, f*] # [Gs, {22}, f*], one has to
show that there does not exist an isomorphism ¢: 7(Gs, {21}) — 7(Gq, {z3}) such
that ¢y 0 ¢ = ¢ o ;. Suppose on the contrary that such a ¢ exists. To reach a
contradiction we can use the following simple fact. Assume that w(ay,by) is a
reduced word in a, and by. Then w(a3,a3bya5°) = ajw(ad, by)ay® .

Set ¢(a)) = wy(az, by) and @(by) = wy(ay, by), with w,(as,by) and wy(ay, by)
reduced words. By using ¢(¢;(a1)) = ¢9(é(a;)) and by studying carefully the
lengths of the words appearing in these expressions, one obtains the relation
w,(as, by) = ab, where k € Z\ {0}. Moreover, since ¢ is an isomorphism, we must
have k € {1,—1} in order that a, be generated by w,(as,by) = ab and wy(ay, by).

We now study the images of b;. The equality ¢o(d(b;)) = ¢(¢1(by)) implies
wy(a), ajbyay®) = a3 *wy(ay, by)ah. From this, one finds that wy(ay,by) begins
with abby' ..., with I,m € Z, m #0. Consequently, k= —(5+8l)¢{1,-1}, a
contradiction.

3. Reducible and irreducible periodic patterns

Let X° denote the set of all (G, P, f) € ¥ such that P is a periodic orbit of f.
Any pattern having a representative in 3° will be called a periodic pattern of f.
All representatives of such a pattern belong to °; thus the notion of periodic
pattern does not depend on the choice of representative.

Given (G,P, f),(G',Q,g) € ¥°, we define the following partial order:
[G',Q,g] X [G, P, f] if there exists a homotopy equivalence r: G — G’ such that
r(P) = @ and the diagram

(@, P) ——(G",Q)

fl lg

(G, P) ——(G",Q)
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commutes up to homotopy relative to P. This definition does not depend on the
choice of representative of the patterns. Observe also that it differs from the
definition of pattern since we do not require r|p to be injective here. We shall use
the symbols <, = and > in the usual way. If [G',Q,g] < [G, P, f] then we shall
say that [G’,Q, g] is a reduction of [G, P, f]. A pattern which admits a reduction
will be called reducible, and irreducible otherwise.

The next two results highlight the basic properties of the relation <.

LEMMA 3.1. The following assertions hold.

(a) The pattern [G',Q,g] is a reduction of |G, P, f] if and only if [G’,Q,g] =
(G, P,f] and Q| < |P|.

(b) Assume that [G',Q,g] < [G, P, f], and let n=|P| and m = |Q|. Then
n = gm for some q € N.

Proof. The first statement follows directly from Corollary 2.12. For the second
statement, let 7 G — G’ be a homotopy equivalence such that r(P)=@Q and
gor~prof, and let € P. Then r(z) €@, and ¢"(r(x)) =r(f"(x)) = r(z).
Hence m divides n. O

PROPOSITION 3.2. Suppose that (G, P, f),(G',Q,g) € ¥° and |Q| < |P|. Then
[G',Q,g] =[G, P, f] if and only if there exists ¢:7(G, P) — w(G',Q), a groupoid
morphism, satisfying:
(a) g odp=¢o f";
(b) for each x € P, ¢:m(G,{z}) — n(G',{¢,(2)}) is an isomorphism (of free
groups), where ¢,: P — @ is the map induced by ¢.
Moreover, [G',Q, g] = |G, P, f] if and only if ¢ is an isomorphism of groupoids.

Proof. Suppose that r: G — G’ is a homotopy equivalence such that r(P) = Q
and gor ~pro f. Then ¢ = r* clearly satisfies (b). Part (a) follows from Lemma
2.5(a).

Conversely, suppose that there exists ¢ such that (a) and (b) hold. From
Proposition 2.9, there exists a pointed graph map r: (G, P) — (G’,Q) such that
¢ =r". Then g*or*=r"o f* and by Proposition 2.8 we obtain the desired
homotopy equivalence gor ~p ro f. By (b), the restriction of r* to the free group
is an isomorphism, and thus r is a homotopy equivalence of graphs. O

The following proposition characterises the notion of reducibility.

PROPOSITION 3.3. Let [G, P, f] be a pattern with |P| =n. Then [G,P, f] is
reducible if and only if there exists m < n with n = gm, for some q € Z* \ {1},
such that for any x € P there exists a path v from x to f™(x) satisfying

B er) .o (f " 0 y)] = ey,

where e, denotes the homotopy class of the trivial loop based at .

Proof.  Suppose that [G, P, f] is reducible. Let [G',Q,g] be a reduction of
[G,P f] with |Q|=m, and let G — G’ be the corresponding homotopy
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equivalence (recall that r(P) = @ and gor ~p ro f). Notice that for each x € P,
r(f"(x)) = g" (r(z)) = r(z).

First, we claim that there exists a unique [y] € (G, {z, f™(x)}) such that
7"([7]) = €y(z)- To prove the existence of such a [y], let ¢ be a path from z to
f™(x), and assume that 7*([c]) = [0] # e, for some € (G’ ,{r(x)}). Since
r 7T(G {z}) = 7(G',{r(x)}) is an isomorphism, there exists a € p(G,{z}) such
that 7 ([a]) = [6] . So *([a] - [c]) = [8] - [3] = €r(z)- Then the desired v is any
path from x to f ’”( ) in the class of [ac]. The uniqueness of [y] follows from the
fact that r* is an isomorphism. This proves the claim.

Observe that § = y(f™ o 7)...(fY" 0 4) is a loop based at z. In addition, since
™o f* =g or, we have r*([f"™ oq]) = (¢") ™" (" [7]) = e r(@)- Hence 7([6]) = e,(y),
and therefore [¢] = e,.

Now we prove the sufficiency of the conditions. For ¢ =0,1,...,n—1, let
r; denote the point f'(z), and let ¢; be a path from =z, to z;. For
i=0,1,...,(¢g—1)m —1, let d; be the path f’o~.

By Proposition 2.3, {[dy], [di], ..., [dg-1ym-1];[c1]; -+ [em1]} 15 a (free) system
of path generators of w(G,P). If {6;,...,6} is a free system of generators of
(G, {xy}) then we obtain the following free system of generators of n(G, P):

{615 LR 617 [dO]v [dl]a SRR [d(qfl)mfl]a [cl]a SRR [Cmfl]}'
Notice that

)

F (- 1>m 1))
fH(é)

f (el

1))

[dis1] fori=0,...,(¢—1)m — 2,
[d (g—2 m] s [d’m]_l ' [dO]_lv

] v(by,...,8) - [e] fori=1...,1,

[ wi(61s- 0 80) - o] fori=1,....m -2,

e - w1 (815, 6) - o),

f(lem

(1)

for some words w; and v; in éy,...,6;.

Given (Gp, 4,,), we shall denote its distinguished vertex by vy, its vertices by
Vg, -+« U1, its hairs by ¢1,...,¢,_1, and its petals by «q,...,q;. We consider the
map ¢: (G, A,,) — 7(G, A,,) defined as follows:

e(la]) =[] vilaal, - [e]) - ] fori=1,...,1,

o([u]) =[] - willau], - [a)]) - [tia]  fori=1,...,m—2,
O([tm]) =[] wia ([ea], - - [a]).-

Let ¢: (Gy, A,,) — (G, A,,) be a topological realisation of ¢, that is g* = .
Lastly, define ¢: n(G, P) — ©(G;, A,,) by

o(6;) =[] fori=1,...,1,
¢([c,]):[] fori=1,...,m—1,
([d]) = egiga fori=1,....,(¢—1)m—1,

where egi(, ) denotes the homotopy class of the trivial loop based at g'(zg).
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By construction, g*o¢ = ¢ o f*, and the restriction of ¢ to the free group
(G, {xp}) is an isomorphism. It follows from Proposition 3.2 that [G}, 4,,, 9] is a
reduction of [G, P, f], and this completes the proof. O

3.1. Patterns and Nielsen paths

The notion of Nielsen equivalence of fixed points will play a central role in the
following section. Let G be a graph, and let x and y be fixed points of a map
f €C(G,G). We say that 2 and y are Nielsen equivalent (written x ~ y) if there
exists a path v from z to y such that f o~ is homotopic to v keeping endpoints
fixed. Such a path is called a Nielsen path. This defines an equivalence relation on
the set of fixed points of f, and the corresponding equivalence classes are called
fixed point classes. The following result shows that two Nielsen-equivalent fixed
points of f" have essentially the same pattern.

ProprosITION 3.4. Let f € C(G,G). Let P and Q be the orbits of two periodic
points x and y of f. If y is a fixed point of f¥I and & ~pr Yy, then
G,Q, [1 =[G, P, f].

Proof. Let v be a Nielsen path from z to vy, and set fi o~y =1;.

We begin by constructing a morphism ¢: (G, P) — n(G, Q). For any path c; ;
between f'(z) and f/(z), define ¢([c;;]) = [y "¢ ;v,). This is well defined because
[v] = [, if 7 and s are congruent modulo n. It follows that

o([eigl - [ejn]) = [’Yiilci,jcj,kp)/k} = [’Yiilci‘j'yj'}/jilcj,k’)/k] = d([cig)) - o([ej)),

and hence ¢ is indeed a morphism.

On the other hand, since ¢ maps a free system of generators of 7(G, {z}) onto a
free system of generators of 7(G,{y}), the restriction of ¢ to this free group is
an isomorphism.

Finally, we have

(o)) = f*([%'ilci,ﬂﬂ) = ['Vijrllf(ci,j)'YjJrl] = o(f"([ei,])),

and the result follows from Proposition 3.2. O

The above proposition says, in particular, that if |P| =|Q| and = and y are
Nielsen equivalent for fIl then (G, Q, f) and (G, P, f) have the same pattern. The
converse does not hold: to see this, it suffices to consider two mnon-Nielsen
equivalent fixed points of a circle map.

PrOPOSITION 3.5. Let [G, P, f] be a reducible pattern with |P| = n. Suppose
that one of its reductions has period m, with n = gm for some integer q > 1. Then
for each x € P, {x, f™(x),..., [ (), fa=U" (1)} is contained in a fixed point
class of f".

Proof. 1t suffices to show that x ~. f™(x) for any 2 € P. Consider the path -y
from x to f™(z) given by Proposition 3.3. Then we have

B 0n) .o (f 0 0 y)] = e,
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where e, denotes the homotopy class of the trivial loop based on x. It follows that

[(f" o). (f™ o)) = epn(a).

Thus we obtain

[ o] =" o] = [(f" o). (f ™o)™ = 1.
Hence « is a Nielsen path for f" from z to f"(x). O

In what follows, we describe a simple procedure to obtain a reducible pattern
from a given pattern.

For ¢ >3, a g-star is a tree having a unique vertex of valence greater than 2 and
q valence-one vertices. A 2-star will be any tree homeomorphic to a closed interval
of the real line. Let f:G — G be a map, and let = € G be a periodic point of
period n. Given g € Z* \ {1}, consider the graph G' = G U (U;‘:_Ol S;), where each
S; is a g-star such that GN.S; = {f'(z)} and f'(x) has maximal valence in S;, for
0<i < n.

Fori=0,1,...,n—1and j=1,...,q, let x; ; be the valence-one vertices of S;.
Let @ be the union of all points w;;, and let ¢:(G',Q) — (G, P) satisfy the
following properties:

[NEl

(1) gle = f;
(ii) g maps S; homeomorphically onto S(;;1)moedn;
(iii) g(w;;) = x;41,; for i =0,...,n =2, and g(x,_1;) = T j+1modq-

We call (G’,Q,g) an extension of (G, P, f). Clearly [G, P, f] is a reduction of
[G,Q,g]. Conversely, the following proposition shows that a (reducible) pattern
may be considered to be an extension of any representative of one of its reductions.

ProrPOSITION 3.6. Let

(G,P, [),(G",Q,9) €¥°
be such that

[G".Q.9] < |G, P. f].

Then there exists an extension (G",R,h) of (G',Q,g) which satisfies
[G",R,h] =[G, P, f].

Proof. Let n = |P| and m = |Q| with n = gm for some ¢ € Z" \ {1}. Let = € P,
and for i =0,...,n—1, set x; = f'(z). Let r:(G,P) — (G',Q) be a homotopy
equivalence between G and G’ satisfying gor ~pro f. From the proof of
Proposition 3.3, there exist m <n and a path v from =z, to z,, such that

r*([r}/]) = er(z‘)a and
AU 07) . (F 0] = ey,

where e, and e,(,) denote the homotopy classes of the trivial loops based at = and
r(z) respectively.

Now for i =0,...,(¢g—1)m — 1, we denote the path f'o~ by d;, and a free
system of generators of (G, {zy}) by {61,...,6}. Fori=1,...,m — 1, we choose
a path ¢; from z to z;. As in the proof of Proposition 3.3, we choose

{61, s 7517 [dO]a [dl]v LR [d(q—l)m—l]7 [Cl]v [ERE) [Cm—l]}
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to be a free system of generators of 7(G, P). The induced morphism f* is given by
equations (1).

Fori=1,...,1,set B; =r"(6;), and for i = 1,...,m — 1, set t; = r(¢;). Since r is
a homotopy equivalence between GG and G’ which collapses each d; to a point,
{Bi,..., 3]} is a basis of m(G',{r(xy)}) and the paths ¢; are non-degenerate. Thus
{Bi,---, 8 [t], -, [tm_1]} is a free system of generators of 7(G’, Q). Furthermore,
we have g* or® =r"o f*. It follows that ¢* is given by

g (B) =t " v(Bi,.... B) - [t] fori=1,...,1
gt =t - wi(Br, .., B) - [tisd] fori=1,...,m—2,
g*([t7n71}) [t1}71 . wmfl(ﬁla cee 7ﬁl) : [do],
where w; and v; are the words used in the expression of f*.

For i =0,...,m — 1, denote the points of Q' by y; = r(f'(x)). Let G” be the
graph obtained by attaching a g-star at each y; as before. For i =0,...,m — 1 and
j=1,...,q, denote the valence-one vertices of S; by z/, and the oriented edge
from y; to 2/ by s/. Let R denote the union of all points 2/, and let (G”, R, h) be
the corresponding extension of (G'; @, g). Set:

n=(s0)"s5,

n; = h'(n) fori=0,...,(¢—1)m—1,
b, = (sé)fltis} fori=1,....m—1,
ai:[s(l)]fl-ﬁi-[s(l)] fori=1,...,L

A direct computation shows that the corresponding expressions for f* and h*
coincide, and we obtain the desired result. O

4. Persistence of patterns

The aim of this section is to prove Theorem A which shows that the patterns of
essential periodic orbits are preserved. Before doing this, we shall introduce
some notation.

Let G be a graph, and let f € C(G,G). In what follows, if z is a fixed point of f
then [z, f] will denote the fixed point class of x for f, and ind[z; f] will denote the
index of [z, f] with respect to f. That is, ind[z; f] := ind([z, f], f) (see [15]).

Let P be a periodic orbit of f € C(G,G), and let n be a multiple of |P|. We
define the index of P with respect to f", denoted by ind[P; f"], to be the integer
ind[z; f"] for each xz € P. The following lemma guarantees that this index is
well defined.

LeEmMMA 4.1. Let P be a periodic orbit of f € C(G,G). Let n be a multiple of
|P|, and let x,y € P. Then ind[z; f"] = ind[y; f"].

Proof. Clearly there exists j < |P| such that y= f/(x). In view of [15,
Theorem 1.5.2], we have

indfz; "] = ind([z, f"], /") = ind([z, f"], " 0 f)
= ind(f([z, /"), /7o f"7) = imnd(F ([, f"]), /),
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and f/([z, f"]) is a fixed point class of f". The lemma follows since

P, ) =y - -

We recall that the periodic orbit P is called essential if ind[P; f!*l] # 0.
The following results will play a crucial role in the proof of Theorem A.

LEMMA 4.2. Let f,g€ C(G,G), and suppose that there exists a homotopy
{ht}%zo : f~g. Then h, induces an index-preserving bijection k that, for each
n € N, sends essential fixed point classes of " to essential fixed point classes of
g". Moreover, if C' is a fixed point class of f", x € C' and y € k(C) then there
exists a path v(t) from x to y such that hi(y(t)) ~ ~(t), keeping endpoints fixed.

The proof of this lemma is immediate from Theorems 1.2.4 and 1.4.5 of [15]. The
following result asserts the preservation of the ordering =< under homotopy.

ProproSITION 4.3. Let (I, R, ), (G, P, f) € £° be such that [G, P, f] = [I', R, ¢]
(so |P| is a divisor of n = |R|) and ind[P; f"] # 0. Let g € C(G,G) be homotopic
to f. Then [G,Orb,(y),g] 2 [, R,¢] for all y € k([z, f"]) and x € P, where r is
the bijection given by Lemma 4.2 for f and g.

Observe that in this proposition the assumption is on the orbit P, but for the
period of R. In particular, we do not suppose that P is an essential orbit.

Proof of Proposition 4.3. Since |G, P, f] < [I', R, ¢], there exists a homotopy
equivalence 7:I" — G such that rop~p for (in particular, this implies that
rog|lg = for|g). Let {h;}{_y be a homotopy between f and g. Clearly, {h}'};_, is
a homotopy from f" to ¢".

Pick a point z of R. Since ind[r(z); f"] = ind[P; f"] # 0, by Lemma 4.2 we see
that x([r(z), f"]) is a fixed point class of ¢g" for which

ind(x([r(2), f"1), g") = ind[P; f"] # 0.

Take y € s([r(2), f"]), and set Q = Orb,(y). Then |Q| is a divisor of n, and

ind[Q; g"] # 0.
We have to prove that [G,Q, g] < [I', R, ¢]. In view of Proposition 3.2, we need
to find a groupoid morphism

¢:n(l', R) — 7(G, Q)
such that ¢: 7(T", {z}) — 7(G, {y}) is a free group isomorphism and ¢g* o ¢ = ¢ o p".
Let us construct such a morphism ¢. By Lemma 4.2, there exists a path ¢ in G

from r(z) to y such that the path h}(c(t)) is homotopic to o with endpoints fixed.
Let us write

R={z=¢'(2):i=0,1,...,n—1},
P={x;=f'(r(2) =r(z):i=01,...,n—1},
Q={y,=¢'(y):i=0,1,....,.n—1}

(notice that |Q| and [P| may be less than n). For i =0,1,...,n — 1 and ¢ € [0,1],
we define o;(t) = hy(o(t)). So o; is a path from z; to y;, and o, (t) = hy(0;(t)) for
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i=0,1,...,n—2 and t € [0,1]. The fact that h{(c(t)) is homotopic to o implies
that hy(o,_1(t)) is homotopic to o(t) = oy(t) with endpoints fixed.

Let [¢;Jenm(,R) be a class of paths from 2z to z; for some
1,7€{0,1,...,n—1}. We define the map ¢:7(T', R) — 7(G,Q) by

$(lcij]) = [o7 ' (rocij)ay).
It is a well-defined groupoid morphism (even when |Q| < n). Moreover, ¢|.(r (.}) is
given by
([c)) = [0 (roc)a] = [o] " ([e])[o],
where ¢ is any loop based at z in I'. Since r is a homotopy equivalence, r* and
hence |, (.}) are free group isomorphisms.

To complete the proof of the proposition, we have to check that g* o ¢ = ¢ o *.
That is, for each z;, z; and each path ¢;; from z; to z;, we have to show that the
path g(a[l(rocz-]-)oj) is homotopic to ,;11 (modn)(rowocij)ajﬂ(mod,l) with end-
points fixed (see Lemma 2.5(a)). Since 7o ¢ o ¢;; > foro¢; with endpoints fixed,
it is enough to show that

a=g(o; (rog o) = gloi Hg(ro cij)9(o;)
is homotopic to
ﬂ = ;—&-11 (modn)f(r o Cij)aj+1 (modn)

with endpoints fixed.
Let us construct a homotopy between a and ( in two parts (see Figure 2).

ha(r o ci)

I
9(oi(s))

heyi(1—s)(0i(8)) hevi1—s)(0;(8))

hi(ai(s)) hi(o5(s))
S

Yi+1

aiy1(s)

Tit1 ho(r 0 ci5) Tjt1

FIGURE 2. The situation from the proof of Proposition 4.3.

Part 1: hy(roc;) is a homotopy between f(roc;) and g(roc;). Given

t €[0,1], note that the endpoints of h(roc;) are hy(r(z)) = h(x;) and
h(r(2)) = hu().

Part 2: for i € {0,1,...,n — 1}, we consider the homotopy h,.;1_s (0;(s)), with
t,s €[0,1], which for t=0 gives h,(o;(s)) =0,41(s), and for ¢t=1, gives
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hi(oi(s)) = g(o;(s)). If t €[0,1], the endpoints of hyyq_g(0(s)) are hy(0;(0)) =
hi(z;) and hy(o;(1)) = hy(y;) = 9(y;) = ys41- In particular, this homotopy fixes the
right endpoint.

Using these two homotopies, we see that « is homotopic to hy(o;(s)) " f(ro
cij)hs(o;(s)) with endpoints fixed. If i,j # n — 1, the latter is equal to 3, and we
obtain the desired homotopy. Finally, if either i or j is equal to m — 1 then
hy(o;(s)) " f(rocij)hy(o(s)) is homotopic to B because, by the definition of o,
hy(o,_1(s)) is homotopic to oy(s) with endpoints fixed. O

LEMMA 4.4. Let r:G — G’ be a homotopy equivalence, let ¢ € C(G',G), and
let P be a periodic orbit of @ or. Then r(P) is a periodic orbit of r oy, and
[G,por, P]=[G',rop,r(P)). Moreover, ind[P; (¢ o )] = ind[r(P), (r o p)/F].

Proof. Set n=|P| and = (por)" ' op. Observe that ro% = (ro )" and
por=(por)". Thus P is a set of fixed points of @ or, and consequently r(P) is
a set of fixed points of ro @, r|p is injective and ro ¢(r(P)) = r(P). Therefore
G, por,P| =[G’ roy,r(P)|, since the diagram

(@, P) ——(G".r(P))
worl rog
(G, P) ——(G",1(P))
commutes (exactly). Further, from [15, Theorem 1.5.2] we obtain
ind[P; (p o r)"] = ind[z; @ o r] = ind[r(z);r o ] = ind[r(P), (ro ¢)"],

where x is a point of P. O

Proof of Theorem A. Let f:G — G and g: G’ — G' be two representatives of
the same endomorphism. Then there exists a homotopy equivalence r:G — G’
and s G' — G satisfying ros~Idg, sor=~Idg and 7o f~gor. Let
f=sogorelC(G,G), and let g=rosoge (G',G'). Then f~sorof~ fand
g~g.

Now let P be an essential periodic orbit of period n of f, so ind[P; f"] # 0. Set
= f"1tosog Then v satisfies f* =) or and

rog=ro(sogor) osog=5".
We now consider the following diagram which commutes up to homotopy:

r

G——aG G ——'
ool s
G—— ' ——q'

The strategy of the proof is as follows:
(a) we compare the given essential periodic orbit P of f with the corresponding
orbit P of f given by a weak version of Proposition 4.3;
(b) then we compare P with the corresponding orbit @ of g given by the
commutativity property of Lemma 4.4;
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(c) finally, we apply Proposition 4.3 once more to @ and the corresponding
orbit @ of g.

We now give the details of these three steps. For step (a), we apply Proposition
4.3 with (I, R, ) = (G, P, f). Then [I',R,¢] =[G, P, f] and ind[P; f"] # 0. The
proposition implies that there is an index-preserving bijection x, between the
essential fixed point classes of f™ and those of f". Let = € P, y € k,([x, f"]) and
P = Orbj(y). Then [G, P, f] < [G, P, f].

For step (b), first notice that the maps ¢ and r satisfy the assumptions of
Lemma 4.4. Therefore [r(y),g"] is an essential fixed point class of g". Applying
this lemma, we see that [G',Q,g] =[G, P, f], where Q= Orby(r(y)), and
ind[Q; "] # 0. It follows from above that [G',Q,§] < [G, P, f].

Finally, for step (c), applying Proposition 4.3 to g and g, we see that there
exists a bijection k, between the essential fixed point classes of g" and those of g".
Now set @ = Orb,(w), where w € k.([r(y),g"]). Proposition 4.3 implies that

[G',Q,g] =[G, P, f]. This completes the proof of the theorem. O

The following examples show that Theorem A is in some sense the best possible.
In Example 4.5 we construct a reducible pattern having a representative with an
essential periodic orbit, and an equivalent model which exhibits one of its
reductions. In Example 4.6 we show that there exist inessential periodic orbits
that are not realised in an equivalent model. Although the first example is given in
the simple framework of interval maps, the important part of the phenomenon is
already exhibited. Other examples may easily be constructed in the setting of
honest graphs (with loops), but they will necessarily be more complicated without
displaying any essentially new feature.

EXAMPLE 4.5. Let I be a closed interval of the real line. Let f € C(I,I) be a
map having a periodic orbit P of period n >2. Take x € P, and denote its fixed
point class with respect to f” by F. Then F' contains all fixed points of f", and its
index is equal to —1. Further, [I, P, f] is reducible. Let g € C(I,I) be such that
g(z) <z for all x € I. This map has no periodic orbits other than fixed points, and
is homotopic to f. Hence the class F' is associated to the class of fixed points of g.
Then the pattern [I, P, f] does not belong to the set of patterns of the map g.

EXAMPLE 4.6. Let f be a degree-one circle map with periodic orbits, and let g
be an irrational rotation of the circle. Since f and g are homotopic this implies
that all fixed point classes of f" have index 0.

5. Efficient models

A graph map f:G — G will be said to possess an invariant forest if there exists
an invariant subgraph whose connected components are trees.

Recall that a topological representative f:G — G for @ is said to be efficient if
it has no invariant forests, G has no valence-one vertices, and if for all k£ € N, the
restriction of f* to the interior of each edge of G is locally injective.

A precise definition of index is given in [15], although the reader should bear in
mind that the index considered in this paper is minus that defined by Jiang. The
index of a fixed point = of a map f will be denoted by ind(z, f).
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If f is an efficient, expanding map then each fixed point of f" with n € N is an
isolated fixed point. Hence each fixed point class of f" is finite, and the index of
the class is just the sum of the indices for each fixed point in the class. The notion
of index in our context of graph maps has the following geometric interpretation.
Let x be fixed under f", and let U, be an open neighbourhood of x in G whose
closure is homeomorphic to a tree (a d(z)-star). Let E be the set of edges e of U,
that contain an interval I with endpoint z and such that f"(I)=-e. Then
ind(x, f") satisfies

~1<ind(z, f") = Card(E) — 1< d(z) — 1. (2)

The following lemma allows us to estimate the index of fixed point classes in
efficient, expanding models.

LemMMA 5.1. Let f €C(G,G) be an efficient, expanding map, and let F' be a
fixed point class of f". If F' has just one point which is not a vertex then
ind(F, f") = £1. If the cardinal of F is greater than 1 then ind(x, f*) =1 for all
x € F\V(Q), ind(x, f*) >0 for all x € FNV(G), and

ind(F, f") > Card(F) — Card(F N V(G)).

Proof. 1f F = {a}, since f is efficient and expanding, the first statement of the
lemma follows from (2). So suppose that the cardinal of F is greater than 1, and
let x,y € F, with y # z. Let p be a Nielsen path of f" from x to y. Without loss of
generality, we may assume that this Nielsen path is indivisible, in other words,
there is no Nielsen path v for f" contained in p. From [9, Lemma 3.4] there are
paths o, § and 7 such that p = a3, f"oa =ar and f"o =7 '3. Note that in
[9] it is implicitly assumed that f is induced by a free group automorphism.
However, to obtain the above properties of Nielsen paths this assumption is not
used. Since f" linearly expands each edge, it follows that ind(z,f")>0 if
r € FNV(G), and ind(x, f") = 1 otherwise. Thus ) _,cprv(q) ind(x, f") = 0.

Since f is efficient and expanding, Card(F') is finite, and hence

ind(F, f") = ind(z, f") = > ind(x,f")+ D ind(z,f").

z€F zeF\V(G) zeFNV(G)

From above,

> ind(, f") = Card(F) — Card(F N V(G)),
2eF\V(G)

and the result follows. O

Given an efficient, expanding map f € C(G,G), let Dy be the set of all points
x € G satisfying the following property: there exist y € G, with y # x, and a non-
negative integer n such that x and y are Nielsen-equivalent fixed points of f". The
number of Nielsen paths for all the iterates of f is directly related to Card(Dy),
and as we show in the following proposition, it is finite and bounded above in
terms of Card(V(G)) and the Euler characteristic x(G) of G.
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PROPOSITION 5.2. Let f € C(G,G) be an efficient, expanding map. Then the
set Dy is finite. Moreover,

Card(Dy) <2[Card(V(G)) — 2x(G)].

Proof. From [16, Theorem 1] we see that

S (@md(F ")~ 1)< —2x(G), (3)

ind(F,f™)>1

for all n € N. From Lemma 5.1, a periodic point ¢ V(G) either belongs to Dy, or
it is alone in its Nielsen class, in which case its index is less than or equal to 1, and
thus it does not appear in the above inequality. Thus for a Nielsen class to appear
in the above inequality, either it contains at least two points of Dy, or it must
contain an element of V(G). By the above inequality the number of such classes is
bounded. Further, their cardinality is also bounded via Lemma 5.1. Thus,
Card(Dy) is finite. Since (3) does not depend on the choice of n, an easy
computation shows that

Card(D;) < 2(Card(V(G)) — 2x(G)). O

Given f € C(G,@G), the following theorem asserts the finiteness of the set of all
periodic orbits of f such that either (G, P, f) is inessential or [G, P, f] is reducible.

THEOREM 5.3. Let f€C(G,G) be an efficient, expanding map. Then for
almost all periodic points x of f, (G,Orbs(x), f) is essential and [G, Orbs(x), f] is
irreducible, the number of exceptional points being at most 3 Card(V(G)) — 4x(G).

Proof. If [G,Orby(x), f] is reducible then x € Dy by Proposition 3.5. Further,
if Orb(x) is inessential then z € V(G) from Lemma 5.1. The result follows from
Proposition 5.2. ]

The exceptional points in the above theorem correspond either to inessential
periodic orbits of vertices or to reducible periodic orbits. The following example
shows that both situations can occur for efficient, expanding maps that are
topological representatives of irreducible endomorphisms.

EXAMPLE 5.4. Let G be the graph shown in Figure 3, and let f: G — G be
defined by

flar) = ay

flag) = agas,

flaz) = asay,

flay) = ayasa4azay,
flas) = ajaza,,
flag) = a;

Since f is a positive endomorphism, for all n > 0, there are no cancellations in the
algebraic expression of f", and thus f" restricted to any edge is locally injective.
Since there are no invariant forests, f is efficient.
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a6

FIGURE 3. The graph G of Example 5.4.

Consider the following generators of 7(G, {vg}):

Q1 = A1G02060301 05,

-1 -1 -1
Qg = Q1020406 Gy A1,

3 = 1090603,

and choose a; to be a path from vy to its image. With this choice, the induced
endomorphism f* : 7(G,vy) — 7(G,vy) is given by

f([ea]) = [a][ag][os],

f(lae]) = [os],

f(las]) = [ou].
Clearly f* is an irreducible automorphism of Fs;. Thus f is an efficient
representative of an irreducible automorphism of Fj.

On the other hand, there exists a periodic orbit P of f of period 2 whose points,
denoted respectively by p and ¢, lie in a3 and a5. Let w be the oriented injective
subpath of a3 from p to vy, and let m be the oriented injective subpath of @5 from
vy to g. Direct computations show that f(wr) =7a;@,w, and thus [G, P, f] is
reducible from Proposition 3.3. The orbit {p, ¢} is essential because ind(F, f?) = 2,
where the fixed point class of p is denoted by F.

Another efficient representative of f* may be obtained by considering the map
g: G — G’, where G' is the rose with three petals o, 8 and ~, given by

g(a) = afy,
9(B) =,
9(7) = a,

which is also efficient.

Notice that this representative has an inessential periodic orbit of vertices (in
fact, a fixed point), while the preceding representative f:G — G has no fixed
points. So we have an example of vanishing inessential fixed points in efficient
models.

Since the orbit {p,q} of f is essential, by Theorem A there exists a fixed point
class C of ¢* that is associated with the class F. Since ¢ has no periodic orbits of
period 2, C' must be the class of the fixed point. We thus obtain an example of a
reducible pattern in an efficient model that is reduced by a homotopy equivalence.

We are now ready to state and prove the minimality (within the homotopy
class) of the set of periodic orbits of its efficient representatives.
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THEOREM b5.5. Let f € C(G,G) be an efficient, expanding map. Then there
exists a cofinite subset B of the set of periodic orbits of f with the property that,
for each (G',g) equivalent to (G, f), there exists a pattern-preserving injective
map from B to the set of periodic orbits of g. Moreover, the number of periodic
points of f whose orbit does not belong to B is at most 3 Card(V(G)) — 4x(G).

Proof. We define B = {Orbs(z):x is periodic and = ¢D;UV(G)}. From
Proposition 5.2 it follows that the number of periodic points of f whose orbit does
not belong to B is at most 3 Card(V(G)) — 4x(G). For each P € B, it follows from
the proof of Theorem 5.3 that P is essential and [G, P, f] is irreducible.

We now define a map ¢ from B as follows. For each P € B, choose z € P and
z € k([z, f71]), where s is the map given by Theorem A. Then we define
t(P) = Orby(z), and the result follows from Theorem A. O

As a corollary of this theorem, we obtain Theorem B.

Proof of Theorem B. Since all vertices of an efficient representative have
valence greater than 2, using the notation and the proof of Proposition 5.2, we obtain
A

A
Card(V(G) =Y v, < Y (k= 2y, = —2x(G) = 2(n — 1).
k=3 k=3

Thus 3 Card(V(G)) — 4x(G) <10(n — 1). The result follows from Theorem 5.5. [
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