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1. Introduction

In this paper, we shall study the phenomenon of rigidity of the dynamics of graph
maps. The notion of rigidity is often associated with the existence of a canonical
representative within a well-de3ned class of objects. This is the case, for example,
in hyperbolic geometry (Mostow [23]), and for surface homeomorphisms (Nielsen
and Thurston [26, 13]). In each of these cases, there exists a unique (up to
conjugacy) canonical representative which satis3es many extremal dynamical
properties, such as minimisation of the growth rate (Besson, Courtois and Gallot
[8] for hyperbolic manifolds and Fathi and Shub [13] for pseudo-Anosov
homeomorphisms), and minimisation of the number of closed geodesics for
hyperbolic manifolds and of periodic orbits for pseudo-Anosov homeomorphisms
(Asimov and Franks [5] and T. Hall [14]) in their respective classes.

With the aim of comparing periodic orbits of di=erent maps, Misiurewicz [21]
proposed a general approach to the notion of pattern using the ideas of some
previous works ([6, 2, 7] for instance). According to this point of view, the notion
of pattern was introduced for each of the following important classes of maps:

-- continuous maps of the interval, of the circle, and of ‘3xed’ graphs (where the
notion of pattern is termed action) [6, 3, 4],

-- continuous maps of (3nite) trees [1],
-- surface homeomorphisms [10, 20, 18] (where the notion of pattern is usually

termed braid type).
The basic phenomenon that these notions of pattern are designed to encapsulate is
that of coexistence or forcing of periodic orbits. The original motivation for this
stemmed from SharkovskiBCC’s theorem in 1964 for interval maps [25], which roughly
speaking, states that the existence of a single periodic orbit P of a given period n
is enough to imply the existence of other periodic orbits and often of in3nitely
many orbits. This result may be re3ned by considering the permutation � 2 Sn
induced by the map on the points of P , the points being ordered by the natural
ordering of the interval. Each permutation � may be interpreted as a subset of
CðI; IÞ, namely those continuous maps of the interval I which admit a periodic
orbit whose associated permutation is �. This subset is essentially (up to
homeomorphism) a relative homotopy equivalence class in CðI; IÞ, relative to the
periodic orbit in question. It possesses a unique (up to homeomorphism) canonical
representative (the piecewise linear or ‘connect-the-dots’ map) which minimises
the topological entropy as well as the set of periodic orbits [3]. As we pointed
out above, a canonical representative with analogous minimisation properties
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also exists in the case of surface homeomorphisms, namely, pseudo-Anosov
homeomorphisms.

The goal of this paper is to elucidate the rigidity problem for periodic orbits of
(continuous) graph maps. In order to compare such orbits, it will be convenient to
suppose that the fundamental groups of the graphs in question have the same
rank, and that the endomorphisms induced by the maps on the fundamental
groups are conjugate. It is thus natural to consider graph maps that belong to the
same homotopy equivalence class. In doing so, we come up against a preliminary
problem, being that the underlying spaces are not necessarily homeomorphic (this
was already the case in [1]). We solve this by de3ning a new notion of pattern
which enables us to compare periodic orbits of self-maps of homotopy-equivalent
spaces, not just of graphs. Moreover, our de3nition in some sense uni3es the
above-mentioned notions of pattern for self-maps of the interval, the circle and
‘3xed’ graphs, for surface homeomorphisms, and 3nally for continuous self-maps of
trees (see Remark 2.10).
A priori, given the de3nition of a pattern as a relative homotopy equivalence

class, it is not an easy matter to check that two orbits have the same pattern.
However, the combinatorial characterisation of the notion of pattern as a
permutation in the case of interval maps, or for surface homeomorphisms, as a
conjugacy class in the mapping class group, facilitates greatly the comparison of
patterns. In the case of graph maps, we show that our notion of pattern may also
be characterised combinatorially, in terms of the induced action on the
fundamental groupoid of the graph ‘marked’ by the periodic orbit, which is
again a conjugacy problem.

Let us remark that in all of the above-mentioned classes of maps, the study of
the minimality of the periodic orbit structure, as well as the topological entropy,
may be reduced to that of a particular class of graph maps. For the interval and
the circle, it is not necessary to change the class of maps under consideration; for
surface homeomorphisms, the maps in question are the so-called train track maps,
originally due to Williams [27] and then reintroduced by Thurston. A particular
homeomorphism may be represented by di=erent train track maps supported on
non-homeomorphic graphs, but with the same homotopy type. In this framework,
our de3nition of pattern (where the graph is not 3xed) is natural.

In order to obtain a rigidity result for periodic orbits, in the 3nal section we
shall restrict our attention to the subclass of graph maps that induce irreducible
free group endomorphisms of the fundamental group. The reason for this is that
there exist natural candidates for the canonical representatives in the correspond-
ing class of graph maps, namely the train track or e cient representatives. For
irreducible free group automorphisms, the existence of eOcient representatives
follows from results of Bestvina and Handel [9] and Los [17], and for irreducible
free group endomorphisms, from those of Dicks and Ventura [12]. An eOcient
representative is known to minimise the growth rate (or topological entropy) in its
homotopy equivalence class, but little is known about the persistence and
minimality properties of the set of periodic orbits of an eOcient representative.

Our goal in this paper is two-fold. Given a free group endomorphism, we 3rst
study the persistence of patterns among its representatives. Secondly, in the
irreducible case, we prove the minimality (within the homotopy equivalence class)
of the set of periodic orbits of its eOcient representatives. This will follow from the
persistence result.
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In order to state our main results, let us make some de3nitions. Given an
endomorphism Q of a free group of 3nite rank, a representative for Q is de3ned to
be a graph map such that the induced map on the fundamental group is Q, up to
an inner automorphism and up to conjugacy. In the literature, one encounters the
more restrictive notion of topological representative which is a representative
sending vertices to vertices and edges to edge paths.

Nielsen 3xed point theory and the notion of index will play an important rôole in
our work. If C is a Nielsen 3xed point class of f then indðC; fÞ will denote its
index (see [15, x I.3]), and if indðC; fÞ 6¼ 0 then C will be called an essential class
of f . A periodic orbit P will be called essential if indðC; f jP jÞ 6¼ 0, where C is a
3xed point class of f jP j containing a point of P , and jP j denotes the period of P .

We now de3ne our notion of pattern. Let f :G! G and g:G 0 ! G 0 be graph
maps, and let P and Q be periodic orbits of f and g respectively. We say that the
triple ðG;P; fÞ is equivalent to ðG 0; Q; gÞ if there exists a homotopy equivalence
r:G! G 0 such that r � f ’P g � r, where ’P is a homotopy relative to P , and rjP
is a bijection of P onto Q. The corresponding equivalence class of ðG;P; fÞ,
denoted by ½G;P; f �, will be called its pattern. We stress the fact that the notion
of pattern equivalence does not coincide with the notion of Nielsen equivalence.
First of all, note that the notion of pattern equivalence compares orbits in spaces
that are not necessarily the same. Even when we restrict the notion of pattern
equivalence to models over the same graph, the two de3nitions are not equivalent
(for more details, see Proposition 3.4 and the comment after it).

If in the above de3nition we replace the assumption that rjP is a bijection by
the conditions rðP Þ ¼ Q and jP j > jQj, then we say that ½G 0; Q; g� is a reduction
of ½G;P; f �. As for patterns, the notion of reduction may be characterised
combinatorially in terms of the induced action on the fundamental groupoid of the
graphs marked by the periodic orbits (see x 3). Furthermore, it may also be
characterised in terms of Nielsen equivalence. Indeed, ½G;P; f � is reducible if and
only if P may be partitioned into m subsets of equal cardinality, each subset being
contained in a 3xed point class of f jP j, and there exists a Nielsen path joining two
points of the same group whose concatenation with its images under f m forms a
homotopically-trivial loop (see Proposition 3.3).

The following theorem summarises the basic persistence properties for patterns.

THEOREM A. Let f :G! G and g:G 0 ! G 0 be representatives of an
endomorphism of a free group of �nite rank. Then the following hold.

(a) There exists an index-preserving bijection � that, for each n 2 N, sends
essential �xed point classes of f n to essential �xed point classes of gn.

(b) Let P be an essential periodic orbit of f , let C be the �xed point class for

f jP j of a point of P , and let Q be the g-orbit of a point of �ðCÞ. Then either
½G 0; Q; g� ¼ ½G;P; f �, or ½G 0; Q; g� is a reduction of ½G;P; f �.

As we have already pointed out, from this theorem we obtain a minimality
result for the set of periodic orbits of eOcient representatives of irreducible free
group endomorphisms. In order to state this result precisely, we introduce some
more de3nitions.

Let Fn denote the free group of rank n, and let Q be an endomorphism of Fn.
We say that Q is reducible if there exist proper free factors Fn1

;Fn2
; . . . ;Fnk of Fn

whose conjugacy classes are permuted under Q and such that Fn1
� Fn2

� . . . � Fnk
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is a free factor of Fn. Another formulation of the notion of reducibility is that
there exists a topological representative for Q that admits a proper invariant
subgraph whose fundamental group is non-trivial. If an endomorphism is not
reducible then we say that it is irreducible.

A topological representative f:G! G for Q will be said to be e cient if it has
no invariant forests, G has no valence-one vertices, and if for all k 2 N, the
restriction of f k to the interior of each edge of G is locally injective. Also, a graph
map f:G! G will be called expanding if G is equipped with a metric such that f
linearly expands each edge e by a factor �ðeÞ > 1.

The minimality of the dynamics of eOcient representatives is asserted by the
following theorem.

THEOREM B. Let f :G! G be an e cient, expanding representative of an
irreducible endomorphism Q of a free group of rank n. Then there exists a co�nite
subset B of the set of periodic orbits of f with the property that, for each
representative g:G 0 ! G 0 of Q, there exists a pattern-preserving injective map
from B to the set of periodic orbits of g. Moreover, the number of periodic points
of f whose orbit does not belong to B is at most 10ðn� 1Þ.

We emphasise that this theorem treats all of the periodic orbits (with a
uniformly-bounded number of exceptions) at once, and not just the 3xed points of
the map. As we shall see in the proof, a periodic orbit P =2B is either an
inessential periodic orbit of vertices, or else its pattern is reducible and g exhibits
either the pattern ½G;P; f � or one of its reductions. Further, each point whose
orbit belongs to B is alone in its Nielsen class for all iterates of f .

A direct consequence of this theorem is that two eOcient, expanding representa-
tives of an irreducible endomorphism of a free group of rank n have (with at most
20ðn� 1Þ exceptions) the same number of periodic orbits of any pattern.

Our theorem holds in a more general setting, the essential hypothesis being the
existence of eOcient representatives for the given free group endomorphism. In the
irreducible case, this existence is guaranteed.

This paper is organised as follows. In x 2 we 3x our notation, and we de3ne the
notions that will be used throughout the paper. In particular, we state and prove
the results for relative homotopies of pointed graphs, groupoids and their
morphisms, and we de3ne our notion of pattern. We also give an algebraic
characterisation of this notion in terms of conjugacy of morphisms of the
associated groupoids. In x 3 we introduce and study the notion of reducibility of
patterns of periodic orbits. In x 4 we deal with the persistence of patterns under
homotopy equivalence, and prove Theorem A. Finally, in x 5 we study the index
of points and 3xed point classes of expanding eOcient representatives, and we
prove Theorem B.
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2. General de�nitions

In this paper, all graphs will be 3nite. As usual, a graph will be considered to be
a compact topological space, as well as a combinatorial object given by a 3nite set
of vertices and edges. Recall that the fundamental group of a graph G is free; its
rank will be denoted by jGj.

Given a point x of a graph G, let dðxÞ denote its valence. Any point of valence
di=erent from 2 will be called a vertex, and the set of vertices of G will be denoted
by VðGÞ.

If G and G 0 are graphs, let CðG;G 0Þ denote the class of continuous maps from
G to G 0.

2.1. Homotopies of pointed graphs

A pointed graph will be a pair ðG;P Þ, where G is a graph and P is a 3nite (possibly
empty) subset ofG. Given a pointed graph ðG;P Þ, let jP j denote the cardinality of P .
Given pointed graphs ðG;P Þ and ðG 0; QÞ, we say that f :G! G 0 is a pointed
graph map, written f : ðG;P Þ ! ðG 0; QÞ, if f 2 CðG;G 0Þ and fðP Þ � Q.

Let ðG;P Þ and ðG 0; QÞ be pointed graphs and let f; g: ðG;P Þ ! ðG 0; QÞ be pointed
graph maps. We say that f is homotopic to g relative to P , written f ’P g, if there
exists a homotopy of pointed graph maps fhtgt2½0;1�: ðG;P Þ ! ðG 0; QÞ, that is, a
continuous family of pointed graph maps ht: ðG;P Þ ! ðG 0; QÞ with parameter t
ranging over ½0; 1�, and satisfying h0 ¼ f and h1 ¼ g. In particular, f jP ¼ htjP ¼
gjP for all t 2 ½0; 1�. We will also write f ’P g if we do not need to specify the
homotopy. If P ¼ Q ¼ ; then we obtain the usual homotopy relation between
graph maps, and in this case we will simply drop all of the ‘P ’ subscripts in
the notation.

The pointed graphs ðG;P Þ and ðG 0; QÞ will be said to have the same homotopy
type, written ðG;P Þ ’ ðG 0; QÞ, if there exists a homotopy equivalence between
them. This means that there exist maps r: ðG;P Þ ! ðG 0; QÞ and s: ðG 0; QÞ !
ðG;P Þ such that r � s ’Q IdG 0 and s � r ’P IdG. The relation of homotopy type
de3nes an equivalence relation on the set of pointed graphs. Notice that if
ðG;P Þ ’ ðG 0; QÞ then jGj ¼ jG 0j and jP j ¼ jQj. We shall see shortly (Corollary
2.2) that the converse is also true.

Let ðGk;AnÞ denote the pointed graph with VðGkÞ ¼ An ¼ fv0; v1; . . . ; vn�1g
and whose set of kþ n� 1 edges is f�1; �2; . . . ; �k; �1; �2; . . . ; �n�1g such that:

(i) v0, called the distinguished vertex, is the unique vertex incident with �i for
i ¼ 1; 2; . . . ; k;

(ii) v0 and vi are the unique vertices incident with �i for i ¼ 1; 2; . . . ; n� 1.
We call the edges �i and �i the petals and hairs of ðGk;AnÞ respectively. The
pointed graph ðG2; A5Þ is illustrated in Figure 1.

As we shall see in Proposition 2.1, each homotopy equivalence class contains a
ðGk;AnÞ which will serve as a standard model for that class. The fact that the
distinguished vertex of Gk belongs to An will enable us to choose paths between
points of An in a natural way, and as such, will simplify some of the proofs.

PROPOSITION 2.1. Let ðG;P Þ be a pointed graph. If k ¼ jGj and n ¼ jP j then
ðG;P Þ ’ ðGk;AnÞ.
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Proof. We start by adding n hairs �1; . . . ; �n to G, each one based at a
di=erent point of P: We thus obtain a new graph H1 which contains G as a proper
subgraph. Clearly H1 has a set Q of n new valence-one vertices. It is easily seen
that ðG;P Þ ’ ðH1; QÞ.

There exists a minimal tree T � G � H1 such that P [VðGÞ � T . Let H2 be
the graph obtained from H1 by collapsing T to a point. We thus obtain a graph
which has a single vertex of valence 2kþ n and n valence-one vertices. Let R
denote the set of valence-one vertices of H2. Since H2 is obtained from H1 by
collapsing a tree, then ðH1; QÞ ’ ðH2; RÞ:

Lastly, let H3 be the graph obtained from H2 by collapsing one of its hairs, and
let S ¼ VðH3Þ: Then ðH2; RÞ ’ ðH3; SÞ ¼ ðGk;AnÞ: �

COROLLARY 2.2. Let ðG;P Þ and ðG 0; QÞ be pointed graphs. Then ðG;P Þ ’
ðG 0; QÞ if and only if jGj ¼ jG 0j and jP j ¼ jQj.

2.2. Paths and groupoids

We are now going to associate an algebraic structure, namely that of groupoid,
to each pointed graph. The reader may consult [11] for further details. We will
adopt a topological viewpoint, the details of which we now make explicit
for completeness.

Given a graph G, a path in G will be a continuous map �: ½0; 1� ! G. The
points �ð0Þ and �ð1Þ will be called the endpoints of �. If we need to specify the
beginning and the end of �, we will speak of a path from �ð0Þ to �ð1Þ in G.

The path �ð1� tÞ from �ð1Þ to �ð0Þ, denoted by ��1, will be called the inverse of �.
A path which begins and ends at the same point will be called a loop. Given two paths
� and " in G such that �ð1Þ ¼ "ð0Þ, we denote their concatenation by �" .

Given a pointed graph ðG;P Þ, let }ðG;P Þ denote the set of all paths in G
whose endpoints belong to P . If �; " 2 }ðG;P Þ then we say that � and " are
equivalent if � is homotopic to " , keeping endpoints 3xed during the homotopy.
This de3nes an equivalence relation on }ðG;P Þ. Let $ðG;P Þ denote the resulting
quotient of }ðG;P Þ, and let ½�� denote the equivalence class of �. The
concatenation operation on }ðG;P Þ induces a well-de3ned natural product on
$ðG;P Þ, de3ned by ½�� � ½" � ¼ ½�" �, and equips it with a groupoid structure. We set
½���1 ¼ ½��1�. We remark that $ðG;P Þ has n ¼ jP j trivial elements which are the
classes of the trivial loops based at the points of P .

Figure 1. The pointed graph ðG2; A5Þ.

PLMS 1522---3/8/2005---SRUMBAL---136178

PATTERNS AND MINIMAL DYNAMICS FOR GRAPH MAPS 419



Let P be a 3nite subset of $ðG;P Þ each of whose elements may be represented
by a path which is not a loop. A 3nite product �1 � �2 � . . . � �m will be called P-
admissible if either �i 2 P or ��1

i 2 P, and �i 6¼ ��1
iþ1 for all i. We will say that P

is independent if any P-admissible product is the class of a path which is not a
loop. Clearly any subset of an independent set is also independent. The set P will
be called transitive if for any pair of distinct points x; y 2 P , there is a path
� 2 }ðG;P Þ from x to y such that ½�� is P-admissible. If P is independent and
transitive then it will be called a free system of path generators.

PROPOSITION 2.3. Let P be a subset of $ðG;P Þ of cardinality r. The
following assertions hold:

(a) if P is an independent set then r6 jP j � 1;
(b) P is a free system of path generators if and only if P is an independent set

and r ¼ jP j � 1;
(c) P is a free system of path generators if and only if P is a transitive set and

r ¼ jP j � 1.
Furthermore, $ðG;P Þ admits a free system of path generators.

Proof. Set P ¼ fx1; . . . ; xng, and de3ne the graph GP as follows: its set of
vertices is of cardinality n, say fv1; . . . ; vng, and it has an edge incident at vj and
vk if there exists a path � 2 }ðG;P Þ from xj to xk such that ½�� 2 P. The
properties of P may be expressed in terms of properties of GP . In particular:

(i) r ¼ � and n ¼ ', where � and ' are, respectively, the cardinal of the sets
of edges and vertices of GP ;

(ii) P is an independent set if and only if GP is a disjoint union of trees;
(iii) P is a transitive set if and only if GP is a connected graph;
(iv) P is a free system of path generators if and only if GP is a tree.
From the well-known characterisation of trees, we see that the following

properties are equivalent:
(1) GP is a tree;
(2) GP is a disjoint union of trees and � ¼ ' � 1;
(3) GP is a connected graph and � ¼ ' � 1;

Furthermore, if GP is a disjoint union of trees then �6 ' � 1. Thus (a), (b) and
(c) follow.

In order to obtain a free system of path generators, it suOces to take any set P
of cardinality n for which GP is a tree; this is always possible. �

Let ðG;P Þ be a pointed graph, with k ¼ jGj and take x0 2 P . We will identify
$ðG; fx0gÞ with the free group of rank k. Let f(1; . . . ; (kg be a free basis of
$ðG; fx0gÞ, and let us choose a free system of path generators f½�1�; . . . ; ½�n�1�g of
$ðG;P Þ. Then any element of $ðG;P Þ may be expressed uniquely (without
cancellation) as a product of the ½�i� and the (j. The set f(1; . . . ; (k; ½�1�; . . . ; ½�n�1�g
will be called a free system of generators of $ðG;P Þ. Any groupoid morphism is
determined by its e=ect on a free system of generators. Moreover, a morphism
):$ðG;P Þ ! $ðG 0; P 0Þ is an isomorphism if and only if it induces a bijective map
from a free system of generators of $ðG;P Þ to a free system of generators of
$ðG 0; P 0Þ.
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LEMMA 2.4. Let ðG;P Þand ðG;QÞbepointed graphs, and letP ¼ fx0; . . . ; xn�1g;
Q ¼ fy0; . . . ; yn�1g and d ¼ fd0; . . . ; dn�1g, where for each i 2 f0; . . . ; n� 1g, di is
a path from yi to xi. Then the morphism )d:$ðG;P Þ ! $ðG;QÞ, de�ned by
)dð�Þ ¼ ½di� � � � ½dj��1 for each i; j 2 f0; 1; . . . ; n� 1g and each class � of paths
from xi to xj, is an isomorphism.

Proof. By taking a system of generators f(1; . . . ; (kg of $ðG; fx0gÞ and a free
system of path generators f½�1�; . . . ; ½�n�1�g, where �i is a path between x0 and xi,
we obtain a free system of generators of $ðG;P Þ. By Proposition 2.3, the set

f)dð(1Þ; . . . ; )dð(kÞ; )dð½�1�Þ; . . . ; )dð½�n�1�Þg

is also a free system of generators of $ðG;QÞ. �

A pointed graph map f : ðG;P Þ ! ðG 0; QÞ induces a groupoid morphism

f �:$ðG;P Þ �! $ðG 0; QÞ;

de3ned by

f�ð½��Þ ¼ ½f � �� for all � 2 }ðG;P Þ:

Since each groupoid morphism sends trivial elements to trivial elements, any
morphism ):$ðG;P Þ ! $ðG 0; QÞ induces a unique map from P to Q denoted by )

P
.

Clearly, if ) ¼ f � then )
P
¼ f jP .

Note that for general maps between two spaces, the de3nition of an induced
morphism of either the fundamental group or groupoid requires a choice of
arbitrary paths between the base points and their images. In our situation, base
points are mapped to base points. Our de3nition of the induced morphism is that
obtained by choosing these paths to be trivial.

The next lemma follows easily.

LEMMA 2.5. Let f : ðG;P Þ ! ðG 0; QÞ and g: ðG 0; QÞ ! ðG00; RÞ be pointed
graph maps. Then the following assertions hold.

(a) ðg � fÞ� ¼ g� � f�.
(b) ðIdGÞ� ¼ Id$ðG;P Þ.
(c) Assume that f is a homotopy equivalence between pointed graphs, and

suppose that there exists a map ’: ðG 0; QÞ ! ðG;P Þ satisfying f � ’ ’Q IdG 0 and
’ � f ’P IdG. Then f

� and ’� are isomorphisms, and ðf�Þ�1 ¼ ’�.

If r: ðG;P Þ ! ðG 0; QÞ is a homotopy equivalence between pointed graphs then,
in particular, it is a homotopy equivalence of the graphs G and G 0, and so the
morphism r�:$ðG; fxgÞ ! $ðG 0; frðxÞgÞ is an isomorphism for each x 2 G.

LEMMA 2.6. Let f; g: ðG;P Þ ! ðG 0; QÞ be pointed graph maps such that g
maps P onto Q bijectively, and for which there exists a homotopy fhtg1t¼0: f ’ g.
Let P ¼ fx0; . . . ; xn�1g, and let d ¼ fd0; . . . ; dn�1g, where for each i ¼ 0; . . . ; n� 1,
di is the path de�ned by diðtÞ ¼ htðxiÞ for all 06 t6 1. Then the following
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diagram commutes:

$ðG;P Þ
g�

$ðG 0; gðP ÞÞ

f �
)d

$ðG 0; fðP ÞÞ
where )d is the morphism given by Lemma 2.4. Moreover, if jgðP Þj ¼ jfðP Þj then
)d is an isomorphism.

Proof. Let i; j 2 f0; 1; . . . ; n� 1g, and let + be a path from xi to xj. We must
show that ½f � +� ¼ ½di� � ½g � +� � ½dj��1 ¼ ½di ðg � +Þ d�1

j �, which is equivalent to

showing that the paths f � + and di ðg � +Þ d�1
j are homotopic with their endpoints

fðxiÞ and fðxjÞ 3xed.
Let H: ½0; 1� � ½0; 1� ! G be the map de3ned by:

Hðt; sÞ ¼

dið3tÞ if 06 t6 1
3 s;

hs

�
+

�
3t� s
3� 2s

��
if 1

3 s6 t6 1
3 ð3� sÞ;

d�1
j ð3t� 2Þ if 1

3 ð3� sÞ6 t6 1:

8>>><>>>:
Then we obtain

fHðt; 0Þgt2½0;1� ¼ h0 � + ¼ f � +;
fHðt; 1Þgt2½0;1� ¼ diðh1 � +Þd�1

j ¼ diðg � +Þd�1
j ;

and

Hð0; sÞ ¼ dið0Þ ¼ h0ðxiÞ ¼ fðxiÞ;
Hð1; sÞ ¼ d�1

j ð1Þ ¼ h0ðxjÞ ¼ fðxjÞ;

for each s 2 ½0; 1�. The result follows from Lemma 2.4. �

Remark 2.7. From Lemmas 2.5 and 2.6, we see that if r: ðG;P Þ ! ðG 0; rðP ÞÞ
is a homotopy equivalence (not necessarily of pointed graphs) and if jP j ¼ jrðP Þj
then r� is an isomorphism.

PROPOSITION 2.8. Let f; g: ðG;P Þ ! ðG 0; QÞ be pointed graph maps. Then
f ’P g if and only if f

� ¼ g�.

Proof. The proof is a routine check, that we provide for completeness. If
f ’P g then by Lemma 2.6 we get f� ¼ )d � g�, where )d ¼ Id.

Conversely, suppose that f� ¼ g�, and set jGj ¼ k, jG 0j ¼ l, jP j ¼ n and
jQj ¼ m. From Proposition 2.1 there exist pointed graph maps:

r1: ðG;P Þ �! ðGk;AnÞ;
r2: ðG 0; QÞ �! ðGl;AmÞ;

s1: ðGk;AnÞ �! ðG;P Þ;
s2: ðGl;AmÞ �! ðG 0; QÞ;

such that ðr1 � s1Þ ’An
IdGk

, ðs1 � r1Þ ’P IdG, ðr2 � s2Þ ’Am
IdGl

, and
ðs2 � r2Þ ’Q IdG 0 .
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Set

P ¼ fp0; . . . ; pn�1g; Q ¼ fq0; . . . ; qm�1g; An ¼ fv0; . . . ; vn�1g;

and

Am ¼ fw0; . . . ; wm�1g:

By re-indexing if necessary, we may suppose that fðp0Þ ¼ gðp0Þ ¼ q0, r1ðp0Þ ¼ v0,
and r2ðq0Þ ¼ w0. Consider the two maps

r2 � f � s1 and r2 � g � s1: ðGk;AnÞ �! ðGl;AmÞ:

Notice that ðr2 � f � s1Þðv0Þ ¼ w0 ¼ ðr2 � g � s1Þðv0Þ. It follows from the hypothesis
and Lemma 2.5 that ðr2 � f � s1Þ� ¼ ðr2 � g � s1Þ�.

We claim that ðr2 � f � s1Þ ’An
ðr2 � g � s1Þ. Indeed, let �1; . . . ; �k and

�1; . . . ; �n�1 be the petals and the hairs of ðGk;AnÞ. Then

ðr2 � f � s1Þð�iÞ ’fv0g ðr2 � g � s1Þð�iÞ
ðr2 � f � s1Þð�iÞ ’fv0;vig ðr2 � g � s1Þð�iÞ

for i ¼ 1; . . . ; k;

for i ¼ 1; . . . ; n� 1:

For i ¼ 1; . . . ; k and t 2 ½0; 1�, let hitðxÞ: ð�i; v0Þ ! ðGl;AmÞ be a homotopy between
ðr2 � f � s1Þj�i and ðr2 � g � s1Þj�i relative to v0. Similarly, for i ¼ 1; . . . ; n� 1 and

t 2 ½0; 1�, let litðxÞ: ð�i; fv0; vigÞ ! ðGl;AmÞ be a homotopy between ðr2 � f � s1Þj�i and
ðr2 � g � s1Þj�i relative to v0 and vi. For t 2 ½0; 1�, de3ne Ht: ðGk;AnÞ ! ðGl;AmÞ in
the following way:

HtðxÞ ¼
hitðxÞ if x 2 �i;
litðxÞ if x 2 �i:

(

Since for all i, j and t, the unique common points of the �i and �j are v0, and
hitðv0Þ ¼ ljtðv0Þ ¼ w0, the map Ht is well de3ned and is a homotopy between
r2 � f � s1 and r2 � g � s1 relative to An. Thus r2 � f � s1 ’An

r2 � g � s1, which
proves the claim.

Therefore s2 � r2 � f � s1 � r1 ’P s2 � r2 � g � s1 � r1. Thus f ’P g, and this
completes the proof. �

The following proposition asserts the existence of topological representatives for
groupoid morphisms.

PROPOSITION 2.9. Let  :$ðG;P Þ ! $ðG 0; QÞ be a groupoid morphism. Then
there exists a pointed graph map r: ðG;P Þ ! ðG 0; QÞ such that r� ¼  . Moreover,
 is an isomorphism if and only if r is a homotopy equivalence between
pointed graphs.

Proof. In the special case where both pointed graphs are standard models (of
the form ðGk;AnÞ), the 3rst statement is clear, and the second statement follows
from Proposition 2.8. The general case may be reduced to this special case, as in
the proof of Proposition 2.8, by using homotopy equivalences which send each
pointed graph to the corresponding standard model. �
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2.3. Patterns

Let G and G 0 be graphs, f 2 CðG;GÞ and f 0 2 CðG 0; G 0Þ. The pairs ðG; fÞ and
ðG 0; f 0Þ will be said to be equivalent, written ðG; fÞ � ðG 0; f 0Þ, if there exists a
homotopy equivalence r:G! G 0 with the property that r � f ’ g � r. Then
ðG; fÞ � ðG 0; f 0Þ if and only if f and f 0 are representatives of the same
endomorphism of a free group of 3nite rank.

Let S denote the set of triples ðG;P; fÞ, where ðG;P Þ is a pointed graph and
f : ðG;P Þ ! ðG;P Þ is a pointed graph map. Two elements ðG;P; fÞ; ðG 0; Q; gÞ 2 S
will be said to have the same pattern, written ðG;P; fÞ � ðG 0; Q; gÞ, if there exists
a homotopy equivalence r: ðG;P Þ ! ðG 0; QÞ between pointed graphs such that the
diagram

ðG;P Þ r ðG 0; QÞ

f g

ðG;P Þ r ðG 0; QÞ

commutes up to homotopy relative to P . In other words, g � r ’P r � f . This
de3nes an equivalence relation on S. The resulting equivalence class, or pattern, of
ðG;P; fÞ will be denoted by ½G;P; f �. If ðG;P; fÞ and ðG 0; Q; gÞ have the same
pattern then it follows from Corollary 2.2 that jGj ¼ jG 0j and jP j ¼ jQj. As we
shall see, the condition in the de3nition of pattern that r be a homotopy
equivalence between pointed graphs may be relaxed. Indeed, by Corollary 2.12 it
will suOce to take any homotopy equivalence between G and G 0 which induces a
bijection between the marked points.

Remark 2.10. This notion of pattern in some sense uni3es the previous
notions in the literature. In order to recover the di=erent speci3c notions of
pattern, it suOces to specify the hypotheses on the map r in such a way that the
desired properties are preserved. In our framework, the homotopy type of the
space will be preserved and the hypothesis is just that r be a homotopy
equivalence. If one wants to preserve the space itself, r must be a homeo-
morphism, as in the case of the interval [22], of 3xed graphs [4] or of surfaces [10,
18, 20]. For patterns of trees (see [1]), one wants to preserve the ‘relative
positions’ of the points of the orbit and this is the condition that must be satis3ed
by r.

The following result is an algebraic characterisation of the notion of pattern,
and gives us a powerful tool for deciding when two elements of S have the same
pattern. More precisely, two patterns coincide if and only if the induced groupoid
morphisms are conjugate. A pattern may thus be thought of as a conjugacy class
of groupoid endomorphisms. We emphasize that this result gives a necessary and
suOcient condition in terms of conjugacy, and not just conjugacy up to an inner
automorphism. Example 2.15 highlights the di=erence between these two concepts.

THEOREM 2.11. Let ðG;P; fÞ; ðG 0; Q; gÞ 2 S. Then ðG;P; fÞ and ðG 0; Q; gÞ
have the same pattern if and only if there exists an isomorphism ):$ðG;P Þ !
$ðG 0; QÞ such that g� � ) ¼ ) � f�.
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Proof. Suppose that ðG;P; fÞ � ðG 0; Q; gÞ, and let r: ðG;P Þ ! ðG 0; QÞ be the
corresponding homotopy equivalence of pointed graphs satisfying g � r ’P r � f .
It follows from Lemma 2.5 that r� is an isomorphism, and that
g� � r� ¼ ðg � rÞ� ¼ ðr � fÞ� ¼ r� � f�.

Conversely, suppose that there exists an isomorphism ):$ðG;P Þ ! $ðG 0; QÞ
such that g� � ) ¼ ) � f�. It follows from Proposition 2.9 that there exists a
homotopy equivalence r: ðG;P Þ ! ðG 0; QÞ of pointed graphs such that ) ¼ r�.
Then g� � r� ¼ r� � f�, and by Proposition 2.8 we obtain the desired homotopy
equivalence g � r ’P r � f . �

COROLLARY 2.12. Let ðG;P; fÞ; ðG 0; Q; gÞ 2 S. Then ðG;P; fÞ and ðG 0; Q; gÞ
have the same pattern if and only if there exists a homotopy equivalence
r:G! G 0 such that r maps P bijectively onto Q, and the diagram

ðG;P Þ r ðG 0; QÞ

f g

ðG;P Þ r ðG 0; QÞ
commutes up to homotopy relative to P , that is, r � f ’P g � r.

Proof. If ½G;P; f � ¼ ½G 0; Q; g� then such a map r exists by de3nition.
Conversely, if r:G�!G 0 is a homotopy equivalence betweenG andG 0 such that r

maps P bijectively onto Q then it follows from Remark 2.7 that the induced
morphism r�:$ðG;P Þ ! $ðG 0; QÞ is an isomorphism. Thus g� � r� ¼ r� � f �, and the
result follows by Theorem 2.11. �

Remark 2.13. Theorem 2.11 highlights the equivalence between the problem
of deciding whether two elements of S de3ne the same pattern and that of
deciding whether two groupoid endomorphisms are conjugate. This is a diOcult
question. For instance, if jGj ¼ k and jP j ¼ 1, this comes down to deciding
whether two endomorphisms of the free group of rank k are conjugate. This
problem was solved for a particular class (irreducible) of OutðFkÞ [17, 24], and in
general for AutðFkÞ and OutðFkÞ [19]. The general cases of free group and free
groupoid endomorphisms are still open, and are interesting in their own right.
They may however be answered in certain special cases, as we will see shortly in
Examples 2.15 and 2.16.

We are now going to analyse some basic properties of the relation ‘to have the
same pattern’ in the case of periodic orbits. Let ðG;P; fÞ; ðG 0; P 0; f 0Þ 2 S be such
that ðG; fÞ � ðG 0; f 0Þ, and P and P 0 are periodic orbits of f and f 0 respectively. If
the fundamental groups of G and G 0 are trivial then it follows from Theorem 2.11
that the pattern is characterised by jP j. This is not the case if the fundamental
groups are non-trivial, even for the circle (see Example 2.14). Another apparently
simple situation is that of patterns of 3xed points. From Theorem 2.11, all 3xed
points of circle maps of the same degree have the same pattern. Example 2.15
shows that this is not true for (slightly) more complicated graphs.

If P is a periodic orbit of period jP j > 1 and m 2 N is a divisor of jP j then P
contains di=erent subsets which are periodic orbits of f m. In this context, it is
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natural to consider the following related question: let x and y be distinct points of
P . Then Orbf mðxÞ and Orbf mðyÞ are periodic orbits of f m. Is it true that
½G;Orbf mðxÞ; f m� ¼ ½G;Orbf mðyÞ; f m�? If f is a homotopy equivalence then the
answer is positive. However, the answer to this question in general is negative.
Indeed, we show in Example 2.16 that two points of a periodic orbit of period 2
considered as 3xed points of f2 may have di=erent patterns.

Example 2.14 (Two periodic orbits with the same period may have
di.erent pattern). Let S

1 be the circle, and let � and + be injective paths in S
1

such that �ð1Þ ¼ +ð0Þ, +ð1Þ ¼ �ð0Þ, and �ðð0; 1ÞÞ \ +ðð0; 1ÞÞ ¼ ;. Consider two
maps f; g 2 CðS1; S1Þ de3ned by

f � � ¼ ��1;

f � + ¼ �+�;

(
g � � ¼ +;

g � + ¼ �:

(
For both of these maps, the set P ¼ f�ð0Þ; �ð1Þg is a periodic orbit of period 2 but
½S1; P; f � 6¼ ½S1; P; g�. To see this, we will apply Theorem 2.11. Consider a free
system of generators fa; bg, where a ¼ ½�� and b ¼ ½�+�. The induced maps on
$ðS1; P Þ satisfy

f �ðaÞ ¼ a�1;

f �ðbÞ ¼ a�1ba;

(
g�ðaÞ ¼ a�1b;

g�ðbÞ ¼ a�1ba:

(
Suppose that there exists an isomorphism ):$ðS1; P Þ ! $ðS1; P Þ such that
g� � ) ¼ ) � f�. That is,

g�ð)ðaÞÞ ¼ )ðf�ðaÞÞ ¼ )ða�1Þ ¼ )ðaÞ�1;

g�ð)ðbÞÞ ¼ )ðf�ðbÞÞ ¼ )ða�1baÞ ¼ )ðaÞ�1)ðbÞ)ðaÞ:
Since ) is an isomorphism, it sends trivial elements to trivial elements and loops
to loops. We thus consider four cases (for simplicity, the classes of the trivial loops
based at each point of P are identi3ed with the corresponding point of P ):

(i) )ð�ð0ÞÞ ¼ �ð0Þ and )ðbÞ ¼ b (thus )ðaÞ ¼ bna with n 2 Z),
(ii) )ð�ð0ÞÞ ¼ �ð0Þ and )ðbÞ ¼ b�1 (thus )ðaÞ ¼ ðb�1Þna ¼ b�na with n 2 Z),
(iii) )ð�ð0ÞÞ ¼ �ð1Þ and )ðbÞ ¼ a�1ba ¼ ½+�� (thus )ðaÞ ¼ ða�1baÞna�1 ¼ a�1bn

with n 2 Z),
(iv) )ð�ð0ÞÞ ¼ �ð1Þ and )ðbÞ ¼ a�1b�1a ¼ ½+���1 (thus )ðaÞ ¼ ða�1b�1aÞna�1 ¼

a�1b�n with n 2 Z).
In the 3rst case we see that

a�1b�n ¼ )ðaÞ�1 ¼ g�ð)ðaÞÞ ¼ ða�1baÞna�1b ¼ a�1bnaa�1b ¼ a�1bnþ1:

The only solution of this equation is n ¼ � 1
2, a contradiction. The proof follows

similarly in the remaining three cases.

Example 2.15 (Two �xed points may have di.erent pattern). Let
G ¼ ðG3; A1Þ, and set P ¼ fv0g. Let f : ðG;P Þ ! ðG;P Þ be a map with fðv0Þ ¼
v0 such that the induced morphism f �:$ðG;P Þ ! $ðG;P Þ satis3es

f �ð(1Þ ¼ (1 � (3 � (�1
1 ;

f �ð(2Þ ¼ (1;

f �ð(3Þ ¼ (�1
3 � (2 � (3
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for the free system of generators f(1; (2; (3g of $ðG;P Þ de3ned by (i ¼ ½�i� for
i ¼ 1; 2; 3. Since f �ð(3Þ starts with (�1

3 , the map f has another 3xed point q 2 �3.
If we denote by + the injective path contained in the edge �3 with the same
orientation, starting at v0 and ending at q, then it follows that ½f � +� ¼ ½��1

3 +�.
We will show that ½G;P; f � 6¼ ½G;Q; f �, where Q ¼ fqg.

To compute the induced morphism f �
Q
:$ðG;QÞ ! $ðG;QÞ, we consider a free

system of generators f#1; #2; #3g of $ðG;QÞ de3ned by #i ¼ ½+�1�i+� for i ¼ 1; 2; 3.
Then the map f �

Q
satis3es

f �
Q
ð#1Þ ¼ #3 � #1 � #3 � #�1

1 � #�1
3 ;

f �
Q
ð#2Þ ¼ #3 � #1 � #�1

3 ;

f �
Q
ð#3Þ ¼ #2:

Notice that 4 ¼ (1 � (2 � (3 is a 3xed element of $ðG;P Þ under f �. We claim that
f �
Q

has no non-trivial 3xed element (meaning 3xed, not just 3xed up to inner
automorphisms). Thus the patterns ½G;P; f � and ½G;Q; f � are di=erent. Before
showing that this is the case, let us make some comments about this example. The
morphisms f � and f �

Q
are induced by a pseudo-Anosov homeomorphism h of the

2-disc D
2 relative to one of its periodic orbits of period 3. The only non-trivial free

homotopy class left invariant under the action of h is that of the boundary @D2.
The 3xed element 4 of f � corresponds to the class of @D2 taking the basepoint to
be also on @D2. On the other hand, f � and f �

Q
di=er essentially by an inner

automorphism. Then f �
Q

does not 3x the element of $ðG;QÞ corresponding to @D2,
and thus it has no non-trivial 3xed points.

We now outline the steps needed to prove the claim. Suppose on the contrary that
w is a non-trivial reduced word in the #i satisfying f �

Q
ðwÞ ¼ w. First, w contains at

least one occurrence of #3 or #�1
3 ; if not, #2 and #�1

2 would not appear either in f �
Q
ðwÞ,

so f �
Q
ðwÞ ¼ #l1, where l 6¼ 0, which contradicts the fact that f �

Q
ðwÞ ¼ w. So we may

write w in the (reduced) form w ¼ w0#
k1

3 w1#
k2

3 . . .wl�1#
kl
3 wl, where the ki are non-

zero, the wi are reduced words in #1, #2 and their inverses, and w1; . . . ; wl�1 are
non-trivial. Then writing the f �

Q
ðwiÞ in reduced form, we see that f �

Q
ðwÞ ¼

f �
Q
ðw0Þ#k1

2 f
�
Q
ðw1Þ#k2

2 . . . f �
Q
ðwl�1Þ#kl2 f �Q ðwlÞ is also reduced. It follows that w0 must

be a non-trivial word containing at least one occurrence of #2 and #�1
2 . From the

form of f �
Q
, we see that f �

Q
ðw0ð#1; #2ÞÞ ¼ #3#1 � w0ð#3; #1Þ � #�1

1 #�1
3 (not necessarily

reduced). Comparing the beginning of w with that of f �
Q
ðwÞ, and using the fact

that f �
Q

is an automorphism, we see that f �
Q
ðwÞ contains at least one occurrence of

#3 or #�1
3 . Finally, w0 contains one of the symbols #2 or #�1

2 , but neither #3 nor
#�1

3 , so the 3rst occurrence of #2 or #�1
2 in w comes before the 3rst occurrence of

#3 or #�1
3 in w. But f �

Q
ðw0Þ contains one of the symbols #3 or #�1

3 but neither #2

nor #�1
2 , so the 3rst occurrence of #3 or #�1

3 in f �
Q
ðwÞ ¼ w comes before the 3rst

occurrence of #2 or #�1
2 in w, a contradiction.

Example 2.16 (Two points of the same orbit may have di.erent
pattern). Let f: ðG2; A1Þ ! ðG2; A1Þ be a pointed graph map such that the
induced morphism f � from $ðG2; fv0gÞ to itself satis3es

f �ð(1Þ ¼ (1 � (1 � (1;
f �ð(2Þ ¼ (2;
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for the free system of generators f(1; (2g of $ðG2; fv0gÞ de3ned by (i ¼ ½�i� for
i ¼ 1; 2.

The map f has three periodic orbits of period 2 contained in �1. Among these
three orbits, let P be that which has a point closest to v0 (with respect to the
orientation of �1). We subdivide the edge �1 at the points of P into three injective
paths +1, +2 and +3 (their orientation induced by that of �1) satisfying
+iðð0; 1ÞÞ \ P ¼ ; for i ¼ 1; 2; 3. These paths are de3ned so that v0 ¼ +1ð0Þ ¼ +3ð1Þ
and xi :¼ +ið1Þ ¼ +iþ1ð0Þ 2 P for i ¼ 1; 2. It follows from the de3nition of P that
f � +1 ¼ +1+2, f � +2 ¼ +3+1, and f � +3 ¼ +2+3+1+2+3.

We now consider ðG2; fx1g; f2Þ and ðG2; fx2g; f2Þ and we will show that the
patterns of these two triples are di=erent.

A free system of generators of $ðG2; fx1gÞ is given by a1 ¼ ½+�1
1 �1+1�

and b1 ¼ ½+�1
1 �2+1�, and a free system of generators of $ðG2; fx2gÞ is given by

a2 ¼ ½+3�1+
�1
3 � and b2 ¼ ½+3�2+

�1
3 �. For i ¼ 1; 2, let )i denote the morphism

ðf2Þ�:$ðG2; fxigÞ �! $ðG2; fxigÞ:
A simple computation shows that(

)1ða1Þ ¼ a9
1;

)1ðb1Þ ¼ a�1
1 b1a1;

(
)2ða2Þ ¼ a9

2;

)2ðb2Þ ¼ a5
2b2a

�5
2 :

In view of Theorem 2.11, to prove that ½G2; fx1g; f2� 6¼ ½G2; fx2g; f2�, one has to
show that there does not exist an isomorphism ):$ðG2; fx1gÞ ! $ðG2; fx2gÞ such
that )2 � ) ¼ ) � )1. Suppose on the contrary that such a ) exists. To reach a
contradiction we can use the following simple fact. Assume that wða2; b2Þ is a
reduced word in a2 and b2. Then wða9

2; a
5
2b2a

�5
2 Þ ¼ a5

2wða9
2; b2Þa�5

2 :
Set )ða1Þ ¼ waða2; b2Þ and )ðb1Þ ¼ wbða2; b2Þ, with waða2; b2Þ and wbða2; b2Þ

reduced words. By using )ð)1ða1ÞÞ ¼ )2ð)ða1ÞÞ and by studying carefully the
lengths of the words appearing in these expressions, one obtains the relation
waða2; b2Þ ¼ ak2, where k 2 Z n f0g. Moreover, since ) is an isomorphism, we must
have k 2 f1;�1g in order that a2 be generated by waða2; b2Þ ¼ ak2 and wbða2; b2Þ.

We now study the images of b1. The equality )2ð)ðb1ÞÞ ¼ )ð)1ðb1ÞÞ implies
wbða9

2; a
5
2b2a

�5
2 Þ ¼ a�k2 wbða2; b2Þak2: From this, one 3nds that wbða2; b2Þ begins

with al2b
m
2 . . ., with l;m 2 Z, m 6¼ 0. Consequently, k ¼ �ð5þ 8lÞ =2f1;�1g, a

contradiction.

3. Reducible and irreducible periodic patterns

Let S� denote the set of all ðG;P; fÞ 2 S such that P is a periodic orbit of f .
Any pattern having a representative in S� will be called a periodic pattern of f .
All representatives of such a pattern belong to S�; thus the notion of periodic
pattern does not depend on the choice of representative.

Given ðG;P; fÞ; ðG 0; Q; gÞ 2 S�, we de3ne the following partial order:
½G 0; Q; g� � ½G;P; f � if there exists a homotopy equivalence r:G! G 0 such that
rðP Þ ¼ Q and the diagram

ðG;P Þ r ðG 0; QÞ

f g

ðG;P Þ r ðG 0; QÞ
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commutes up to homotopy relative to P . This de3nition does not depend on the
choice of representative of the patterns. Observe also that it di=ers from the
de3nition of pattern since we do not require rjP to be injective here. We shall use
the symbols �,  and ! in the usual way. If ½G 0; Q; g� � ½G;P; f � then we shall
say that ½G 0; Q; g� is a reduction of ½G;P; f �. A pattern which admits a reduction
will be called reducible, and irreducible otherwise.

The next two results highlight the basic properties of the relation �.

LEMMA 3.1. The following assertions hold.
(a) The pattern ½G 0; Q; g� is a reduction of ½G;P; f � if and only if ½G 0; Q; g� �

½G;P; f � and jQj < jP j.
(b) Assume that ½G 0; Q; g� � ½G;P; f �, and let n ¼ jP j and m ¼ jQj. Then

n ¼ qm for some q 2 N.

Proof. The 3rst statement follows directly from Corollary 2.12. For the second
statement, let r:G! G 0 be a homotopy equivalence such that rðP Þ ¼ Q and
g � r ’P r � f , and let x 2 P . Then rðxÞ 2 Q, and gnðrðxÞÞ ¼ rðf nðxÞÞ ¼ rðxÞ.
Hence m divides n. �

PROPOSITION 3.2. Suppose that ðG;P; fÞ; ðG 0; Q; gÞ 2 S� and jQj6 jP j. Then
½G 0; Q; g� � ½G;P; f � if and only if there exists ):$ðG;P Þ ! $ðG 0; QÞ, a groupoid
morphism, satisfying:

(a) g� � ) ¼ ) � f �;
(b) for each x 2 P , ):$ðG; xf gÞ ! $ðG 0; )

P
ðxÞ

� 	
Þ is an isomorphism (of free

groups), where )
P
:P ! Q is the map induced by ).

Moreover, ½G 0; Q; g� ¼ ½G;P; f � if and only if ) is an isomorphism of groupoids.

Proof. Suppose that r:G! G 0 is a homotopy equivalence such that rðP Þ ¼ Q
and g � r ’P r � f . Then ) ¼ r� clearly satis3es (b). Part (a) follows from Lemma
2.5(a).

Conversely, suppose that there exists ) such that (a) and (b) hold. From
Proposition 2.9, there exists a pointed graph map r: ðG;P Þ ! ðG 0; QÞ such that
) ¼ r�. Then g� � r� ¼ r� � f�, and by Proposition 2.8 we obtain the desired
homotopy equivalence g � r ’P r � f . By (b), the restriction of r� to the free group
is an isomorphism, and thus r is a homotopy equivalence of graphs. �

The following proposition characterises the notion of reducibility.

PROPOSITION 3.3. Let ½G;P; f � be a pattern with jP j ¼ n. Then ½G;P; f � is
reducible if and only if there exists m < n with n ¼ qm, for some q 2 Z

þ n f1g,
such that for any x 2 P there exists a path 7 from x to f mðxÞ satisfying

½7ðf m � 7Þ . . . ðf ðq�1Þm � 7Þ� ¼ ex;

where ex denotes the homotopy class of the trivial loop based at x.

Proof. Suppose that ½G;P; f � is reducible. Let ½G 0; Q; g� be a reduction of
½G;P; f � with jQj ¼ m, and let r:G! G 0 be the corresponding homotopy
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equivalence (recall that rðP Þ ¼ Q and g � r ’P r � f). Notice that for each x 2 P ,
rðf mðxÞÞ ¼ gmðrðxÞÞ ¼ rðxÞ.

First, we claim that there exists a unique ½7� 2 $ðG; fx; f mðxÞgÞ such that
r�ð½7�Þ ¼ erðxÞ. To prove the existence of such a ½7�, let c be a path from x to
f mðxÞ, and assume that r�ð½c�Þ ¼ ½+� 6¼ erðxÞ for some + 2 }ðG 0; frðxÞgÞ. Since
r�:$ðG; fxgÞ ! $ðG 0; frðxÞgÞ is an isomorphism, there exists � 2 }ðG; fxgÞ such
that r�ð½��Þ ¼ ½+��1. So r�ð½�� � ½c�Þ ¼ ½+��1 � ½+� ¼ erðxÞ. Then the desired 7 is any
path from x to f mðxÞ in the class of ½�c�. The uniqueness of ½7� follows from the
fact that r� is an isomorphism. This proves the claim.

Observe that 4 ¼ 7ðf m � 7Þ . . . ðf ðq�1Þm � 7Þ is a loop based at x. In addition, since
r� � f � ¼ g� � r�, we have r�ð½fim � 7�Þ ¼ ðg�Þimðr�½7�Þ ¼ erðxÞ. Hence r�ð½4�Þ ¼ erðxÞ,
and therefore ½4� ¼ ex.

Now we prove the suOciency of the conditions. For i ¼ 0; 1; . . . ; n� 1, let
xi denote the point f iðxÞ, and let ci be a path from x0 to xi. For
i ¼ 0; 1; . . . ; ðq � 1Þm� 1, let di be the path f i � 7.

By Proposition 2.3, f½d0�; ½d1�; . . . ; ½dðq�1Þm�1�; ½c1�; . . . ; ½cm�1�g is a (free) system
of path generators of $ðG;P Þ. If f41; . . . ; 4lg is a free system of generators of
$ðG; fx0gÞ then we obtain the following free system of generators of $ðG;P Þ:

f41; . . . ; 4l; ½d0�; ½d1�; . . . ; ½dðq�1Þm�1�; ½c1�; . . . ; ½cm�1�g:

Notice that

f �ð½di�Þ ¼ ½diþ1�
f �ð½dðq�1Þm�1�Þ ¼ ½dðq�2Þm��1 . . . ½dm��1 � ½d0��1;

f �ð4iÞ ¼ ½c1��1 � 'ið41; . . . ; 4lÞ � ½c1�
f �ð½ci�Þ ¼ ½c1��1 � !ið41; . . . ; 4lÞ � ½ciþ1�

f �ð½cm�1�Þ ¼ ½c1��1 � !m�1ð41; . . . ; 4lÞ � ½d0�;

for i ¼ 0; . . . ; ðq � 1Þm� 2;

for i ¼ 1 . . . ; l;

for i ¼ 1; . . . ;m� 2;

9>>>>>>>=>>>>>>>;
ð1Þ

for some words !i and 'j in 41; . . . ; 4l.
Given ðGl;AmÞ, we shall denote its distinguished vertex by v0, its vertices by

v0; . . . ; vm�1, its hairs by �1; . . . ; �m�1, and its petals by �1; . . . ; �l. We consider the
map ’:$ðGl;AmÞ ! $ðGl;AmÞ de3ned as follows:

’ð½�i�Þ ¼ ½�1��1 � 'ið½�1�; . . . ; ½�l�Þ � ½�1�
’ð½�i�Þ ¼ ½�1��1 � !ið½�1�; . . . ; ½�l�Þ � ½�iþ1�

’ð½�m�1�Þ ¼ ½�1��1 � !m�1ð½�1�; . . . ; ½�l�Þ:

for i ¼ i; . . . ; l;

for i ¼ 1; . . . ;m� 2;

Let g: ðGl;AmÞ ! ðGl;AmÞ be a topological realisation of ’, that is g� ¼ ’.
Lastly, de3ne ):$ðG;P Þ ! $ðGl;AmÞ by

)ð4iÞ ¼ ½�i�
)ð½ci�Þ ¼ ½�i�
)ð½di�Þ ¼ egiðx0Þ

for i ¼ i; . . . ; l;

for i ¼ 1; . . . ;m� 1;

for i ¼ 1; . . . ; ðq � 1Þm� 1;

where egiðx0Þ denotes the homotopy class of the trivial loop based at giðx0Þ.
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By construction, g� � ) ¼ ) � f �, and the restriction of ) to the free group
$ðGl; fx0gÞ is an isomorphism. It follows from Proposition 3.2 that ½Gl;Am; g� is a
reduction of ½G;P; f �, and this completes the proof. �

3.1. Patterns and Nielsen paths

The notion of Nielsen equivalence of 3xed points will play a central rôole in the
following section. Let G be a graph, and let x and y be 3xed points of a map
f 2 CðG;GÞ. We say that x and y are Nielsen equivalent (written x �f y) if there
exists a path 7 from x to y such that f � 7 is homotopic to 7 keeping endpoints
3xed. Such a path is called a Nielsen path. This de3nes an equivalence relation on
the set of 3xed points of f , and the corresponding equivalence classes are called
�xed point classes. The following result shows that two Nielsen-equivalent 3xed
points of f n have essentially the same pattern.

PROPOSITION 3.4. Let f 2 CðG;GÞ. Let P and Q be the orbits of two periodic
points x and y of f . If y is a �xed point of f jP j and x �f jP j y, then
½G;Q; f � � ½G;P; f �.

Proof. Let 7 be a Nielsen path from x to y, and set f i � 7 ¼ 7i.
We begin by constructing a morphism ):$ðG;P Þ ! $ðG;QÞ. For any path ci;j

between f iðxÞ and fjðxÞ, de3ne )ð½ci;j�Þ ¼ ½7�1
i ci;j7j�. This is well de3ned because

½7r� ¼ ½7s� if r and s are congruent modulo n. It follows that

)ð½ci;j� � ½cj;k�Þ ¼ ½7�1
i ci;jcj;k7k� ¼ ½7�1

i ci;j7j7
�1
j cj;k7k� ¼ )ð½ci;j�Þ � )ð½cj;k�Þ;

and hence ) is indeed a morphism.
On the other hand, since ) maps a free system of generators of $ðG; fxgÞ onto a

free system of generators of $ðG; fygÞ, the restriction of ) to this free group is
an isomorphism.

Finally, we have

f �ð)ð½ci;j�ÞÞ ¼ f �ð½7�1
i ci;j7j�Þ ¼ ½7�1

iþ1fðci;jÞ7jþ1� ¼ )ðf �ð½ci;j�ÞÞ;

and the result follows from Proposition 3.2. �

The above proposition says, in particular, that if jP j ¼ jQj and x and y are
Nielsen equivalent for f jP j then ðG;Q; fÞ and ðG;P; fÞ have the same pattern. The
converse does not hold: to see this, it suOces to consider two non-Nielsen
equivalent 3xed points of a circle map.

PROPOSITION 3.5. Let ½G;P; f � be a reducible pattern with jP j ¼ n: Suppose
that one of its reductions has period m; with n ¼ qm for some integer q > 1: Then
for each x 2 P , fx; f mðxÞ; . . . ; fðq�2ÞmðxÞ; f ðq�1ÞmðxÞg is contained in a �xed point
class of f n:

Proof. It suOces to show that x �f n f
mðxÞ for any x 2 P: Consider the path 7

from x to f mðxÞ given by Proposition 3.3. Then we have

½7ðf m � 7Þ . . . ðf ðq�1Þm � 7Þ� ¼ ex;
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where ex denotes the homotopy class of the trivial loop based on x: It follows that

½ðf m � 7Þ . . . ðfqm � 7Þ� ¼ ef mðxÞ:

Thus we obtain

½f n � 7� ¼ ½fqm � 7� ¼ ½ðf m � 7Þ . . . ðf ðq�1Þm � 7Þ��1 ¼ 7:

Hence 7 is a Nielsen path for f n from x to f mðxÞ: �

In what follows, we describe a simple procedure to obtain a reducible pattern
from a given pattern.

For q> 3, a q-star is a tree having a unique vertex of valence greater than 2 and
q valence-one vertices. A 2-star will be any tree homeomorphic to a closed interval
of the real line. Let f :G! G be a map, and let x 2 G be a periodic point of
period n. Given q 2 Z

þ n f1g, consider the graph G 0 ¼ G [
Sn�1
i¼0 Si

� �
, where each

Si is a q-star such that G \ Si ¼ ff iðxÞg and f iðxÞ has maximal valence in Si, for
06 i < n.

For i ¼ 0; 1; . . . ; n� 1 and j ¼ 1; . . . ; q, let xi;j be the valence-one vertices of Si.
Let Q be the union of all points xi;j, and let g: ðG 0; QÞ ! ðG;P Þ satisfy the
following properties:

(i) gjG ¼ f ;
(ii) g maps Si homeomorphically onto Sðiþ1Þmodn;
(iii) gðxi;jÞ ¼ xiþ1;j for i ¼ 0; . . . ; n� 2, and gðxn�1;jÞ ¼ x0;jþ1mod q.

We call ðG 0; Q; gÞ an extension of ðG;P; fÞ. Clearly ½G;P; f � is a reduction of
½G;Q; g�. Conversely, the following proposition shows that a (reducible) pattern
may be considered to be an extension of any representative of one of its reductions.

PROPOSITION 3.6. Let

ðG;P; fÞ; ðG 0; Q; gÞ 2 S�

be such that

½G 0; Q; g� � ½G;P; f �:

Then there exists an extension ðG00; R; hÞ of ðG 0; Q; gÞ which satis�es
½G00; R; h� ¼ ½G;P; f �.

Proof. Let n ¼ jP j and m ¼ jQj with n ¼ qm for some q 2 Z
þ n f1g. Let x 2 P ,

and for i ¼ 0; . . . ; n� 1, set xi ¼ f iðxÞ. Let r: ðG;P Þ ! ðG 0; QÞ be a homotopy
equivalence between G and G 0 satisfying g � r �P r � f . From the proof of
Proposition 3.3, there exist m < n and a path 7 from x0 to xm such that
r�ð½7�Þ ¼ erðxÞ, and

½7ðf m � 7Þ . . . ðf ðq�1Þm � 7Þ� ¼ ex;

where ex and erðxÞ denote the homotopy classes of the trivial loops based at x and
rðxÞ respectively.

Now for i ¼ 0; . . . ; ðq � 1Þm� 1, we denote the path f i � 7 by di, and a free
system of generators of $ðG; fx0gÞ by f41; . . . ; 4lg. For i ¼ 1; . . . ;m� 1, we choose
a path ci from x to xi. As in the proof of Proposition 3.3, we choose

f41; . . . ; 4l; ½d0�; ½d1�; . . . ; ½dðq�1Þm�1�; ½c1�; . . . ; ½cm�1�g
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to be a free system of generators of $ðG;P Þ. The induced morphism f � is given by
equations (1).

For i ¼ 1; . . . ; l, set +i ¼ r�ð4iÞ, and for i ¼ 1; . . . ;m� 1, set ti ¼ rðciÞ. Since r is
a homotopy equivalence between G and G 0 which collapses each di to a point,
f+1; . . . ; +lg is a basis of $ðG 0; frðx0ÞgÞ and the paths ti are non-degenerate. Thus
f+1; . . . ; +l; ½t1�; . . . ; ½tm�1�g is a free system of generators of $ðG 0; QÞ. Furthermore,
we have g� � r� ¼ r� � f �. It follows that g� is given by

g�ð+iÞ ¼ ½t1��1 � 'ið+1; . . . ; +lÞ � ½t1�
g�ð½ti�Þ ¼ ½t1��1 � !ið+1; . . . ; +lÞ � ½tiþ1�

g�ð½tm�1�Þ ¼ ½t1��1 � !m�1ð+1; . . . ; +lÞ � ½d0�;

for i ¼ 1; . . . ; l;

for i ¼ 1; . . . ;m� 2;

where !i and 'j are the words used in the expression of f �.
For i ¼ 0; . . . ;m� 1, denote the points of Q 0 by yi ¼ rðf iðxÞÞ. Let G00 be the

graph obtained by attaching a q-star at each yi as before. For i ¼ 0; . . . ;m� 1 and
j ¼ 1; . . . ; q, denote the valence-one vertices of Si by zji , and the oriented edge
from yi to zji by sji . Let R denote the union of all points zji , and let ðG00; R; hÞ be
the corresponding extension of ðG 0; Q; gÞ. Set:

; ¼ ðs10Þ�1s20;

;i ¼ hið;Þ
bi ¼ ðs10Þ�1tis

1
i

�i ¼ ½s10��1 � +i � ½s10�

for i ¼ 0; . . . ; ðq � 1Þm� 1;

for i ¼ 1; . . . ;m� 1;

for i ¼ 1; . . . ; l:

A direct computation shows that the corresponding expressions for f � and h�

coincide, and we obtain the desired result. �

4. Persistence of patterns

The aim of this section is to prove Theorem A which shows that the patterns of
essential periodic orbits are preserved. Before doing this, we shall introduce
some notation.

Let G be a graph, and let f 2 CðG;GÞ. In what follows, if x is a 3xed point of f
then ½x; f � will denote the 3xed point class of x for f , and ind½x; f � will denote the
index of ½x; f � with respect to f. That is, ind½x; f � :¼ indð½x; f �; fÞ (see [15]).

Let P be a periodic orbit of f 2 CðG;GÞ, and let n be a multiple of jP j. We
de3ne the index of P with respect to f n, denoted by ind½P ; f n�, to be the integer
ind½x; f n� for each x 2 P . The following lemma guarantees that this index is
well de3ned.

LEMMA 4.1. Let P be a periodic orbit of f 2 CðG;GÞ. Let n be a multiple of
jP j, and let x; y 2 P . Then ind½x; f n� ¼ ind½y; f n�.

Proof. Clearly there exists j < jP j such that y ¼ fjðxÞ. In view of [15,
Theorem I.5.2], we have

ind½x; f n� ¼ indð½x; f n�; f nÞ ¼ indð½x; f n�; f n�j � fjÞ
¼ indðfjð½x; f n�Þ; fj � f n�jÞ ¼ indðfjð½x; f n�Þ; f nÞ;
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and fjð½x; f n�Þ is a 3xed point class of f n. The lemma follows since
fjð½x; f n�Þ ¼ ½y; f n�. �

We recall that the periodic orbit P is called essential if ind½P ; f jP j� 6¼ 0.
The following results will play a crucial rôole in the proof of Theorem A.

LEMMA 4.2. Let f; g 2 CðG;GÞ, and suppose that there exists a homotopy
fhtg1t¼0 : f ’ g. Then ht induces an index-preserving bijection � that, for each
n 2 N, sends essential �xed point classes of f n to essential �xed point classes of
gn. Moreover, if C is a �xed point class of f n, x 2 C and y 2 �ðCÞ then there
exists a path 7ðtÞ from x to y such that hnt ð7ðtÞÞ ’ 7ðtÞ, keeping endpoints �xed.

The proof of this lemma is immediate from Theorems I.2.4 and I.4.5 of [15]. The
following result asserts the preservation of the ordering � under homotopy.

PROPOSITION 4.3. Let ðU; R; ’Þ; ðG;P; fÞ 2 S� be such that ½G;P; f � � ½U; R; ’�
(so jP j is a divisor of n ¼ jRj) and ind½P ; f n� 6¼ 0. Let g 2 CðG;GÞ be homotopic
to f . Then ½G;OrbgðyÞ; g� � ½U; R; ’� for all y 2 �ð½x; f n�Þ and x 2 P , where � is
the bijection given by Lemma 4.2 for f and g.

Observe that in this proposition the assumption is on the orbit P , but for the
period of R. In particular, we do not suppose that P is an essential orbit.

Proof of Proposition 4.3. Since ½G;P; f � � ½U; R; ’�, there exists a homotopy
equivalence r: U! G such that r � ’ ’R f � r (in particular, this implies that
r � ’jR ¼ f � rjR). Let fhtg1t¼0 be a homotopy between f and g. Clearly, fhnt g1t¼0 is
a homotopy from f n to gn.

Pick a point z of R. Since ind½rðzÞ; f n� ¼ ind½P ; f n� 6¼ 0, by Lemma 4.2 we see
that �ð½rðzÞ; f n�Þ is a 3xed point class of gn for which

indð�ð½rðzÞ; f n�Þ; gnÞ ¼ ind½P ; f n� 6¼ 0:

Take y 2 �ð½rðzÞ; f n�Þ, and set Q ¼ OrbgðyÞ. Then jQj is a divisor of n, and
ind½Q; gn� 6¼ 0.

We have to prove that ½G;Q; g� � ½U; R; ’�. In view of Proposition 3.2, we need
to 3nd a groupoid morphism

):$ðU; RÞ �! $ðG;QÞ

such that ):$ðU; fzgÞ ! $ðG; fygÞ is a free group isomorphism and g� � ) ¼ ) � ’�.
Let us construct such a morphism ). By Lemma 4.2, there exists a path � in G
from rðzÞ to y such that the path hnt ð�ðtÞÞ is homotopic to � with endpoints 3xed.
Let us write

R ¼ fzi ¼ ’iðzÞ: i ¼ 0; 1; . . . ; n� 1g;
P ¼ fxi ¼ f iðrðzÞÞ ¼ rðziÞ: i ¼ 0; 1; . . . ; n� 1g;
Q ¼ fyi ¼ giðyÞ: i ¼ 0; 1; . . . ; n� 1g

(notice that jQj and jP j may be less than n). For i ¼ 0; 1; . . . ; n� 1 and t 2 ½0; 1�,
we de3ne �iðtÞ ¼ hitð�ðtÞÞ. So �i is a path from xi to yi, and �iþ1ðtÞ ¼ htð�iðtÞÞ for
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i ¼ 0; 1; . . . ; n� 2 and t 2 ½0; 1�. The fact that hnt ð�ðtÞÞ is homotopic to � implies
that htð�n�1ðtÞÞ is homotopic to �ðtÞ ¼ �0ðtÞ with endpoints 3xed.

Let ½ci;j� 2 $ðU; RÞ be a class of paths from zi to zj for some
i; j 2 f0; 1; . . . ; n� 1g. We de3ne the map ):$ðU; RÞ ! $ðG;QÞ by

)ð½cij�Þ ¼ ½��1
i ðr � cijÞ�j�:

It is a well-de3ned groupoid morphism (even when jQj < n). Moreover, )j$ðU;fzgÞ is
given by

)ð½c�Þ ¼ ½��1ðr � cÞ�� ¼ ½���1r�ð½c�Þ½��;
where c is any loop based at z in U. Since r is a homotopy equivalence, r� and
hence )j$ðU;fzgÞ are free group isomorphisms.

To complete the proof of the proposition, we have to check that g� � ) ¼ ) � ’�.
That is, for each zi, zj and each path cij from zi to zj, we have to show that the
path gð��1

i ðr � cijÞ�jÞ is homotopic to ��1
iþ1 ðmodnÞðr � ’ � cijÞ�jþ1 ðmodnÞ with end-

points 3xed (see Lemma 2.5(a)). Since r � ’ � cij ’ f � r � cij with endpoints 3xed,
it is enough to show that

� :¼ gð��1
i ðr � cijÞ�jÞ ¼ gð��1

i Þgðr � cijÞgð�jÞ
is homotopic to

+ :¼ ��1
iþ1 ðmodnÞfðr � cijÞ�jþ1 ðmodnÞ

with endpoints 3xed.
Let us construct a homotopy between � and + in two parts (see Figure 2).

Part 1: htðr � cijÞ is a homotopy between fðr � cijÞ and gðr � cijÞ. Given
t 2 ½0; 1�, note that the endpoints of htðr � cijÞ are htðrðziÞÞ ¼ htðxiÞ and
htðrðzjÞÞ ¼ htðxjÞ.
Part 2: for i 2 f0; 1; . . . ; n� 1g, we consider the homotopy hsþtð1�sÞð�iðsÞÞ, with

t; s 2 ½0; 1�, which for t ¼ 0 gives hsð�iðsÞÞ ¼ �iþ1ðsÞ, and for t ¼ 1, gives

Figure 2. The situation from the proof of Proposition 4.3.
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h1ð�iðsÞÞ ¼ gð�iðsÞÞ. If t 2 ½0; 1�, the endpoints of hsþtð1�sÞð�iðsÞÞ are htð�ið0ÞÞ ¼
htðxiÞ and h1ð�ið1ÞÞ ¼ h1ðyiÞ ¼ gðyiÞ ¼ yiþ1. In particular, this homotopy 3xes the
right endpoint.

Using these two homotopies, we see that � is homotopic to hsð�iðsÞÞ�1fðr �
cijÞhsð�jðsÞÞ with endpoints 3xed. If i; j 6¼ n� 1, the latter is equal to +, and we
obtain the desired homotopy. Finally, if either i or j is equal to n� 1 then
hsð�iðsÞÞ�1fðr � cijÞhsð�jðsÞÞ is homotopic to + because, by the de3nition of �,
hsð�n�1ðsÞÞ is homotopic to �0ðsÞ with endpoints 3xed. �

LEMMA 4.4. Let r:G! G 0 be a homotopy equivalence, let ’ 2 CðG 0; GÞ, and
let P be a periodic orbit of ’ � r. Then rðP Þ is a periodic orbit of r � ’, and
½G;’ � r; P � ¼ ½G 0; r � ’; rðP Þ�. Moreover, ind½P ; ð’ � rÞjP j� ¼ ind½rðP Þ; ðr � ’ÞjP j�.

Proof. Set n ¼ jP j and e’’ ¼ ð’ � rÞn�1 � ’. Observe that r � e’’ ¼ ðr � ’Þn ande’’ � r ¼ ð’ � rÞn. Thus P is a set of 3xed points of e’’ � r, and consequently rðP Þ is
a set of 3xed points of r � e’’, rjP is injective and r � ’ðrðP ÞÞ ¼ rðP Þ. Therefore
½G;’ � r; P � ¼ ½G 0; r � ’; rðP Þ�, since the diagram

ðG;P Þ r ðG 0; rðP ÞÞ

’ � r r � ’

ðG;P Þ r ðG 0; rðP ÞÞ
commutes (exactly). Further, from [15, Theorem I.5.2] we obtain

ind½P ; ð’ � rÞn� ¼ ind½x; e’’ � r� ¼ ind½rðxÞ; r � e’’ � ¼ ind½rðP Þ; ðr � ’Þn�;
where x is a point of P . �

Proof of Theorem A. Let f :G! G and g:G 0 ! G 0 be two representatives of
the same endomorphism. Then there exists a homotopy equivalence r:G! G 0

and s:G 0 ! G satisfying r � s ’ IdG 0 , s � r ’ IdG and r � f ’ g � r. Letbff ¼ s � g � r 2 CðG;GÞ, and let bgg ¼ r � s � g 2 ðG 0; G 0Þ. Then bff ’ s � r � f ’ f andbgg ’ g.
Now let P be an essential periodic orbit of period n of f , so ind½P ; f n� 6¼ 0. Set

 ¼ bff n�1 � s � g. Then  satis3es bff n ¼  � r and

r �  ¼ r � ðs � g � rÞn�1 � s � g ¼ bgg n:
We now consider the following diagram which commutes up to homotopy:

G G
r

G 0 G 0

bff f g bgg
G G

r
G 0 G 0

The strategy of the proof is as follows:
(a) we compare the given essential periodic orbit P of f with the corresponding

orbit bPP of bff given by a weak version of Proposition 4.3;
(b) then we compare bPP with the corresponding orbit bQQ of bgg given by the

commutativity property of Lemma 4.4;
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(c) 3nally, we apply Proposition 4.3 once more to bQQ and the corresponding
orbit Q of g.

We now give the details of these three steps. For step (a), we apply Proposition
4.3 with ðU; R; ’Þ ¼ ðG;P; fÞ. Then ½U; R; ’� ¼ ½G;P; f � and ind½P ; f n� 6¼ 0. The
proposition implies that there is an index-preserving bijection �a between the
essential 3xed point classes of f n and those of bff n. Let x 2 P , y 2 �að½x; f n�Þ andbPP ¼ OrbbffðyÞ. Then ½G; bPP; bff � � ½G;P; f �.

For step (b), 3rst notice that the maps  and r satisfy the assumptions of
Lemma 4.4. Therefore ½rðyÞ; bgg n� is an essential 3xed point class of bgg n. Applying
this lemma, we see that ½G 0; bQQ; bgg � ¼ ½G; bPP; bff �, where bQQ ¼ OrbbggðrðyÞÞ, and

ind½ bQQ; bgg n� 6¼ 0. It follows from above that ½G 0; bQQ; bgg � � ½G;P; f �.
Finally, for step (c), applying Proposition 4.3 to g and bgg, we see that there

exists a bijection �c between the essential 3xed point classes of bgg n and those of gn.
Now set Q ¼ OrbgðwÞ, where w 2 �cð½rðyÞ; bgg n�Þ. Proposition 4.3 implies that

½G 0; Q; g� � ½G;P; f �. This completes the proof of the theorem. �

The following examples show that Theorem A is in some sense the best possible.
In Example 4.5 we construct a reducible pattern having a representative with an
essential periodic orbit, and an equivalent model which exhibits one of its
reductions. In Example 4.6 we show that there exist inessential periodic orbits
that are not realised in an equivalent model. Although the 3rst example is given in
the simple framework of interval maps, the important part of the phenomenon is
already exhibited. Other examples may easily be constructed in the setting of
honest graphs (with loops), but they will necessarily be more complicated without
displaying any essentially new feature.

Example 4.5. Let I be a closed interval of the real line. Let f 2 CðI; IÞ be a
map having a periodic orbit P of period n> 2: Take x 2 P , and denote its 3xed
point class with respect to f n by F . Then F contains all 3xed points of f n, and its
index is equal to �1. Further, ½I; P; f � is reducible. Let g 2 CðI; IÞ be such that
gðxÞ6 x for all x 2 I: This map has no periodic orbits other than 3xed points, and
is homotopic to f . Hence the class F is associated to the class of 3xed points of g:
Then the pattern ½I; P; f � does not belong to the set of patterns of the map g.

Example 4.6. Let f be a degree-one circle map with periodic orbits, and let g
be an irrational rotation of the circle. Since f and g are homotopic this implies
that all 3xed point classes of f n have index 0:

5. E cient models

A graph map f :G! G will be said to possess an invariant forest if there exists
an invariant subgraph whose connected components are trees.

Recall that a topological representative f :G! G for Q is said to be e cient if
it has no invariant forests, G has no valence-one vertices, and if for all k 2 N, the
restriction of f k to the interior of each edge of G is locally injective.

A precise de3nition of index is given in [15], although the reader should bear in
mind that the index considered in this paper is minus that de3ned by Jiang. The
index of a 3xed point x of a map f will be denoted by indðx; fÞ.
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If f is an eOcient, expanding map then each 3xed point of f n with n 2 N is an
isolated 3xed point. Hence each 3xed point class of f n is 3nite, and the index of
the class is just the sum of the indices for each 3xed point in the class. The notion
of index in our context of graph maps has the following geometric interpretation.
Let x be 3xed under f n, and let Ux be an open neighbourhood of x in G whose
closure is homeomorphic to a tree (a dðxÞ-star). Let E be the set of edges e of Ux
that contain an interval I with endpoint x and such that f nðIÞ ¼ e. Then
indðx; f nÞ satis3es

�16 indðx; f nÞ ¼ CardðEÞ � 16 dðxÞ � 1: ð2Þ

The following lemma allows us to estimate the index of 3xed point classes in
eOcient, expanding models.

LEMMA 5.1. Let f 2 CðG;GÞ be an e cient, expanding map, and let F be a
�xed point class of f n. If F has just one point which is not a vertex then
indðF; f nÞ ¼ "1. If the cardinal of F is greater than 1 then indðx; f nÞ ¼ 1 for all
x 2 F nVðGÞ, indðx; f nÞ> 0 for all x 2 F \VðGÞ, and

indðF; f nÞ>CardðF Þ � CardðF \ VðGÞÞ:

Proof. If F ¼ fxg, since f is eOcient and expanding, the 3rst statement of the
lemma follows from (2). So suppose that the cardinal of F is greater than 1, and
let x; y 2 F , with y 6¼ x. Let ? be a Nielsen path of f n from x to y. Without loss of
generality, we may assume that this Nielsen path is indivisible, in other words,
there is no Nielsen path 7 for f n contained in ?: From [9, Lemma 3.4] there are
paths �, + and " such that ? ¼ �+, f n � � ¼ �" and f n � + ¼ "�1+: Note that in
[9] it is implicitly assumed that f is induced by a free group automorphism.
However, to obtain the above properties of Nielsen paths this assumption is not
used. Since f n linearly expands each edge, it follows that indðx; f nÞ> 0 if
x 2 F \VðGÞ, and indðx; f nÞ ¼ 1 otherwise. Thus

P
x2F\VðGÞ indðx; f nÞ> 0.

Since f is eOcient and expanding, CardðF Þ is 3nite, and hence

indðF; f nÞ ¼
X
x2F

indðx; f nÞ ¼
X

x2FnVðGÞ
indðx; f nÞ þ

X
x2F\VðGÞ

indðx; f nÞ:

From above, X
x2FnVðGÞ

indðx; f nÞ ¼ CardðF Þ � CardðF \ VðGÞÞ;

and the result follows. �

Given an eOcient, expanding map f 2 CðG;GÞ, let Df be the set of all points
x 2 G satisfying the following property: there exist y 2 G, with y 6¼ x, and a non-
negative integer n such that x and y are Nielsen-equivalent 3xed points of f n. The
number of Nielsen paths for all the iterates of f is directly related to CardðDfÞ,
and as we show in the following proposition, it is 3nite and bounded above in
terms of CardðVðGÞÞ and the Euler characteristic @ðGÞ of G.
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PROPOSITION 5.2. Let f 2 CðG;GÞ be an e cient, expanding map. Then the
set Df is �nite. Moreover,

CardðDfÞ6 2 CardðVðGÞÞ � 2@ðGÞ½ �:

Proof. From [16, Theorem 1] we see thatX
indðF;f nÞ>1

ðindðF; f nÞ � 1Þ6 � 2@ðGÞ; ð3Þ

for all n 2 N: From Lemma 5.1, a periodic point x =2VðGÞ either belongs to Df , or
it is alone in its Nielsen class, in which case its index is less than or equal to 1, and
thus it does not appear in the above inequality. Thus for a Nielsen class to appear
in the above inequality, either it contains at least two points of Df , or it must
contain an element of VðGÞ: By the above inequality the number of such classes is
bounded. Further, their cardinality is also bounded via Lemma 5.1. Thus,
CardðDfÞ is 3nite. Since (3) does not depend on the choice of n, an easy
computation shows that

CardðDfÞ6 2ðCardðVðGÞÞ � 2@ðGÞÞ: �

�Given f 2 CðG;GÞ, the following theorem asserts the 3niteness of the set of all
periodic orbits of f such that either ðG;P; fÞ is inessential or ½G;P; f � is reducible.

THEOREM 5.3. Let f 2 CðG;GÞ be an e cient, expanding map. Then for
almost all periodic points x of f, ðG;OrbfðxÞ; fÞ is essential and ½G;OrbfðxÞ; f � is
irreducible, the number of exceptional points being at most 3CardðVðGÞÞ � 4@ðGÞ.

Proof. If ½G;OrbfðxÞ; f � is reducible then x 2 Df by Proposition 3.5. Further,
if OrbfðxÞ is inessential then x 2 VðGÞ from Lemma 5.1. The result follows from
Proposition 5.2. �

The exceptional points in the above theorem correspond either to inessential
periodic orbits of vertices or to reducible periodic orbits. The following example
shows that both situations can occur for eOcient, expanding maps that are
topological representatives of irreducible endomorphisms.

Example 5.4. Let G be the graph shown in Figure 3, and let f : G!G be
de3ned by

fða1Þ ¼ a2;

fða2Þ ¼ a6a3;

fða3Þ ¼ a5a1;

fða4Þ ¼ a1a2a6a3a1;

fða5Þ ¼ a4a3a1;

fða6Þ ¼ a1:

Since f is a positive endomorphism, for all n > 0, there are no cancellations in the
algebraic expression of f n, and thus f n restricted to any edge is locally injective.
Since there are no invariant forests, f is eOcient.
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Consider the following generators of $ðG; fv0gÞ:
�1 ¼ a1a2a6a3a1a5;

�2 ¼ a1a2a4a
�1
6 a�1

2 a�1
1 ;

�3 ¼ a1a2a6a3;

and choose a1 to be a path from v0 to its image. With this choice, the induced
endomorphism f� : $ðG; v0Þ ! $ðG; v0Þ is given by

f�ð½�1�Þ ¼ ½�1�½�2�½�3�;
f�ð½�2�Þ ¼ ½�3�;
f�ð½�3�Þ ¼ ½�1�:

Clearly f� is an irreducible automorphism of F3. Thus f is an eOcient
representative of an irreducible automorphism of F3.

On the other hand, there exists a periodic orbit P of f of period 2 whose points,
denoted respectively by p and q, lie in a3 and a5. Let ! be the oriented injective
subpath of a3 from p to v0, and let $ be the oriented injective subpath of a5 from
v0 to q: Direct computations show that fð!$Þ ¼ $a1a1!, and thus ½G;P; f � is
reducible from Proposition 3.3. The orbit fp; qg is essential because indðF; f2Þ ¼ 2;
where the 3xed point class of p is denoted by F:

Another eOcient representative of f� may be obtained by considering the map
g : G 0 ! G 0; where G 0 is the rose with three petals �, + and 7, given by

gð�Þ ¼ �+7;

gð+Þ ¼ 7;

gð7Þ ¼ �;

which is also eOcient.
Notice that this representative has an inessential periodic orbit of vertices (in

fact, a 3xed point), while the preceding representative f:G! G has no 3xed
points. So we have an example of vanishing inessential 3xed points in eOcient
models.

Since the orbit fp; qg of f is essential, by Theorem A there exists a 3xed point
class C of g2 that is associated with the class F: Since g has no periodic orbits of
period 2, C must be the class of the 3xed point. We thus obtain an example of a
reducible pattern in an eOcient model that is reduced by a homotopy equivalence.

We are now ready to state and prove the minimality (within the homotopy
class) of the set of periodic orbits of its eOcient representatives.

Figure 3. The graph G of Example 5.4.
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THEOREM 5.5. Let f 2 CðG;GÞ be an e cient, expanding map. Then there
exists a co�nite subset B of the set of periodic orbits of f with the property that,
for each ðG 0; gÞ equivalent to ðG; fÞ, there exists a pattern-preserving injective
map from B to the set of periodic orbits of g. Moreover, the number of periodic
points of f whose orbit does not belong to B is at most 3CardðVðGÞÞ � 4@ðGÞ.

Proof. We de3ne B ¼ fOrbfðxÞ:x is periodic and x =2Df [ VðGÞg. From
Proposition 5.2 it follows that the number of periodic points of f whose orbit does
not belong to B is at most 3CardðVðGÞÞ � 4@ðGÞ. For each P 2 B, it follows from
the proof of Theorem 5.3 that P is essential and ½G;P; f � is irreducible.

We now de3ne a map � from B as follows. For each P 2 B, choose x 2 P and
z 2 �ð½x; f jP j�Þ, where � is the map given by Theorem A. Then we de3ne
�ðP Þ ¼ OrbgðzÞ, and the result follows from Theorem A. �

As a corollary of this theorem, we obtain Theorem B.

Proof of Theorem B. Since all vertices of an eOcient representative have
valence greater than 2, using the notation and the proof of Proposition 5.2, we obtain

CardðVðGÞÞ ¼
XV
k¼3

'k6
XV
k¼3

ðk� 2Þ'k ¼ �2@ðGÞ ¼ 2ðn� 1Þ:

Thus 3CardðVðGÞÞ � 4@ðGÞ6 10ðn� 1Þ. The result follows from Theorem 5.5. �
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