© World Scientific Publishing Company

ON THE MINIMAL MODELS FOR GRAPH MAPS

LL. ALSEDÀ*

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Barcelona, Spain alseda@mat.uab.es

D. JUHER

Departament d'Informàtica i Matemàtica Aplicada, Universitat de Girona, Lluís Santaló s/n, 17071 Girona, Spain juher@ima.udq.es

P. MUMBRÚ

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain mumbru@mat.ub.es

Received January 15, 2001; Revised October 3, 2001

The aim of this paper is to present a survey on the existence of minimal models for graph maps and its consequences.

Keywords: Minimal models; graph maps; patterns; topological entropy.

1. Introduction

A classical problem in combinatorial dynamics is the following: Given a topological space X, a continuous map $f: X \to X$ and a finite f-invariant set $A \subset X$, what can be said about the dynamics (periodic orbits, topological entropy, ...) of f in terms of $f|_A$? This question can be reworded as follows: What can be said about the dynamics of any continuous map $g: Y \to Y$ for which there exists a homeomorphism $\varphi: X \to Y$ such that $g \circ \varphi|_A = \varphi \circ f|_A$?

A classical (and well known) case is when X is a closed interval I of the real line. Indeed, if $f: I \to I$ is a continuous map then intrinsic information can be obtained by considering the "pattern" of A which is characterized essentially by the permutation π_A induced by $f|_A$ (see [Alsedà et al., 2000a] for a precise definition). To each pattern π_A we may

associate a (nonunique) interval map f_{π} which admits a finite invariant set B, such that the permutation induced by $f_{\pi}|_B$ is π_A and f_{π} is monotone between consecutive points of B. Such a map is called a *canonical representative of* π_A , or a "connect-the-dots" map. It has the following important properties:

- (A) f_{π} minimizes topological entropy within the class of interval maps admitting a periodic orbit whose pattern is π_A .
- (B) f_{π} admits a Markov partition which gives a good "coding" to describe the dynamics of the map f_{π} . The topological entropy of f_{π} may be calculated from this partition.
- (C) f_{π} is essentially unique.
- (D) the pattern π_A forces a pattern ρ if and only if f_{π} has a periodic orbit whose pattern is ρ . We

^{*}On leave at: Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain.