
DISCRETE AND CONTINUOUS Website: http://aimSciences.org
DYNAMICAL SYSTEMS
Volume 20, Number 3, March 2008 pp. 511–541

MINIMAL DYNAMICS FOR TREE MAPS
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Abstract. We prove that, given a tree pattern P, the set of periods of a
minimal representative f : T −→ T of P is contained in the set of periods of
any other representative. This statement is an immediate corollary of the
following stronger result: there is a period-preserving injection from the set of
periodic points of f into that of any other representative of P. We prove this
result by extending the main theorem of [6] to negative cycles.

1. Introduction. This paper is devoted to the study of the one-dimensional ver-
sion of a well known problem in combinatorial dynamics: the so-called dynamical
minimality problem, or forcing problem. The main question can be posed as fol-
lows: given a topological space X and a continuous self-map f : X −→ X which is
known to exhibit a periodic orbit P , what can be said about the rest of the periodic
orbits of f only in terms of the combinatorial data supplied by f

∣∣
P
?

When the space X is a closed interval of the real line, the solution to the forcing
problem is a well known result in the theory of combinatorial dynamics. In this
case, one considers the pattern of P , defined as the permutation induced by f

∣∣
P

(see [9] or [14]). To each pattern π one associates a π-monotone model fπ : X −→ X
which has an invariant set A such that the permutation induced by fπ

∣∣
A

is π and
fπ is monotone between consecutive points of A (a “connect–the–dots” map). This
map has minimal dynamics in several senses:

(1) fπ minimizes the topological entropy (a well known quantitative measure of the
dynamical complexity of a map, first introduced in [1]; see also [7]) within the
class of interval maps having a periodic orbit whose pattern is π.

(2) fπ admits a Markov graph. This is a combinatorial object which gives a good
“coding” allowing one to describe the dynamics of the map fπ. The topological
entropy and the periodic orbits of fπ may be calculated from the loops of this
graph.
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