DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS Volume **20**, Number **3**, March **2008**

pp. 511 - 541

MINIMAL DYNAMICS FOR TREE MAPS

LLUÍS ALSEDÀ

Departament de Matemàtiques, Edifici Cc Universitat Autònoma de Barcelona 08913 Cerdanyola del Vallès, Barcelona, Spain

DAVID JUHER

Departament d'Informàtica i Matemàtica Aplicada Universitat de Girona, Lluís Santaló s/n, 17071 Girona, Spain

Pere Mumbrú *

ABSTRACT. We prove that, given a tree pattern \mathcal{P} , the set of periods of a minimal representative $f: T \longrightarrow T$ of \mathcal{P} is contained in the set of periods of any other representative. This statement is an immediate corollary of the following stronger result: there is a period-preserving injection from the set of periodic points of f into that of any other representative of \mathcal{P} . We prove this result by extending the main theorem of [6] to negative cycles.

1. Introduction. This paper is devoted to the study of the one-dimensional version of a well known problem in combinatorial dynamics: the so-called *dynamical minimality* problem, or *forcing* problem. The main question can be posed as follows: given a topological space X and a continuous self-map $f: X \longrightarrow X$ which is known to exhibit a periodic orbit P, what can be said about the rest of the periodic orbits of f only in terms of the combinatorial data supplied by $f|_P$?

When the space X is a closed interval of the real line, the solution to the forcing problem is a well known result in the theory of combinatorial dynamics. In this case, one considers the *pattern* of P, defined as the permutation induced by $f|_P$ (see [9] or [14]). To each pattern π one associates a π -monotone model $f_{\pi}: X \longrightarrow X$ which has an invariant set A such that the permutation induced by $f_{\pi}|_A$ is π and f_{π} is monotone between consecutive points of A (a "connect–the–dots" map). This map has minimal dynamics in several senses:

- (1) f_{π} minimizes the topological entropy (a well known quantitative measure of the dynamical complexity of a map, first introduced in [1]; see also [7]) within the class of interval maps having a periodic orbit whose pattern is π .
- (2) f_{π} admits a Markov graph. This is a combinatorial object which gives a good "coding" allowing one to describe the dynamics of the map f_{π} . The topological entropy and the periodic orbits of f_{π} may be calculated from the loops of this graph.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 37E25.

Key words and phrases. tree maps, minimal dynamics.

The authors have been partially supported by MEC grant number MTM2005-021329.

^{*}Deceased on July 28, 2005.