KNEADING THEORY OF LORENZ MAPS*

LLUIS ALSEDÀ(1,2) AND JAUME LLIBRE(1)

(1) Departament de Matemàtiques, Facultat de Ciències

(2) Departament d'Economía i Història Econòmica, Facultat de Ciències Econòmiques Universitat Autonòma de Barcelona 08193 Bellaterra, Barcelona, Spain

1. Introduction

In the study of the geometrical model of the Lorenz attractor, a class of one-dimensional maps plays an important role. We refer to such maps as the Lorenz maps (see [GH], [Sp] and [T]) although they are different from the one-dimensional maps presented by Lorenz (see [L]). We describe the use of the kneading theory to study the dynamics of Lorenz maps.

Let I = [-1, 1]. We say that a map $f: I \to I$ is Lorenz if

(L1) f has a single discontinuity at 0, $\lim_{x \to 0} f(x) = -1$ and $\lim_{x \to 0} f(x) = 1$,

(L2) f is odd on $I \setminus \{0\}$ (i.e. f(-x) = -f(x) for all $x \in I \setminus \{0\}$),

(L3) f(-1) < 0 and f(0) = 1,

(L4) f is once continuously differentiable on $I \setminus \{0\}$, and f'(x) > 1 for all $x \in I \setminus \{0\}$.

Note that every Lorenz map is strictly monotone on the intervals [-1, 0) and (0, 1]. Many of our results would also be true for maps satisfying (L1), (L2), (L3) and

(L5) f is strictly increasing on [-1, 0) and (0, 1],

instead of (L4); but the ideas of some proofs seem more transparent for Lorenz maps. It is also easy to see that the particular choice of the interval [-1, 1] and fixing the discontinuity at x = 0 involves no loss of generality.

Let J = [-1, 0]. We say that a map $g: J \rightarrow J$ is piecewise expanding unimodal if

- (U1) g is continuous,
- (U2) there exists $c \in (-1, 0)$ such that q(c) = 0,
- (U3) q(0) = -1,

^{*} This is a summary of [AL].