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The aim of this paper is to give an account of some of the progress made in these last years in
the combinatorial low-dimensional dynamics and to suggest some research directions and open
problems.
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1. Introduction

The theory of low-dimensional combinatorial
dynamics started with the publication of the
Sharkovskĭı’s Theorem (see Sec. 2.1). It describes
the possible sets of periods of all periodic orbits of a
continuous self-map of the interval. The whole the-
ory which was developed starting with these initial
results, deals mainly with combinatorial objects,

permutations, graphs, etc. In [Alsedà et al., 1993]
we decided to call it combinatorial dynamics. An
important part in this theory is also played by topo-
logical entropy. It is an important measure of the
complexity of a dynamical system, or of the degree
of “chaos” present in it.

The objective of this tutorial paper is to give a
partial account of the progress made in some direc-
tions during these last years in the combinatorial
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