

International Journal of Bifurcation and Chaos, Vol. 9, No. 9 (1999) 1687–1704 © World Scientific Publishing Company

LOW-DIMENSIONAL COMBINATORIAL DYNAMICS

LLUÍS ALSEDÀ^{*} and JAUME LLIBRE[†] Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

MICHAŁ MISIUREWICZ[‡] Department of Mathematical Sciences, IUPUI, 402 N. Blackford Street, Indianapolis, IN 46202-3216, USA

Received December 3, 1998; Revised January 28, 1999

The aim of this paper is to give an account of some of the progress made in these last years in the combinatorial low-dimensional dynamics and to suggest some research directions and open problems.

1.	Introduction	1687
2.	One-Dimensional Dynamics of Noninvertible Maps	1688
	2.1. Sets of periods \ldots	1689
	2.2. Full periodicity kernel	1691
	2.3. Topological entropy	1691
	2.4. Transitive maps \ldots	1693
3.	Homotopy and Periodic Points in Dimension Larger than 1	1693
	3.1. Nielsen–Thurston theory of surface homeomorphisms	1694
	3.2. Periods of surface homeomorphisms	1696
	3.3. Lefschetz number for periodic points	1698
	3.4. Nielsen numbers for studying periodic points	1700

1. Introduction

The theory of low-dimensional combinatorial dynamics started with the publication of the Sharkovskii's Theorem (see Sec. 2.1). It describes the possible sets of periods of all periodic orbits of a continuous self-map of the interval. The whole theory which was developed starting with these initial results, deals mainly with combinatorial objects,

permutations, graphs, etc. In [Alsedà *et al.*, 1993] we decided to call it *combinatorial dynamics*. An important part in this theory is also played by *topological entropy*. It is an important measure of the complexity of a dynamical system, or of the degree of "chaos" present in it.

The objective of this tutorial paper is to give a partial account of the progress made in some directions during these last years in the combinatorial

^{*}E-mail: alseda@mat.uab.es

[†]E-mail: jllibre@mat.uab.es

[‡]E-mail: mmisiure@math.iupui.edu