TWIST PERIODIC ORBITS AND TOPOLOGICAL ENTROPY FOR CONTINUOUS MAPS OF THE CIRCLE OF DEGREE ONE WHICH HAVE A FIXED POINT (*)

by

- Ll. Alsedà (1,2) J. Llibre (1) M.Misiurewicz (3) and C. Simo (4)
- (1) Secció de Matemàtiques, Facultata de Ciències Universitat Autònoma de Barcelona.
- (2) Departament de Teorfa Econòmica, Facultat de Ciències Econômiques, Universitat Autònoma de Barcelona.
- (3) Instytut Matematyki, Uniwersytet Warszawski.
- (4) Facultat de Matemàtiques, Universitat de Barcelona.

Let S^1 be the circle. We denote by $C_1(S^1)$ the set of all continuous maps from S^1 to itself of degree one. For $x \in S^1$, we say that x is periodic if there exists a positive integer n such that $f^n(x) = x$. The period of x is the smallest integer satisfying this relation. Let P(f) be the set of periods of f. If $x \in S^1$ is a periodic point of period n, then the orbit of x is the set $\{f^k(x): k=1,2,\ldots,n\}$. We refer to such an orbit as a periodic orbit of period n.

Let $f \in C_1(S^1)$, F its lifting to the covering space \mathbb{R} and $e(X) = \exp(2\pi i X)$ the natural projection of $\mathbb{R} \longrightarrow S^1$. We note that F is not defined uniquely; nevertheless, if F and F' are two liftings of f then F = F' + m with $m \in \mathbb{Z}$. Since $\deg(f) = 1$ we have F(X + 1) = F(X) + 1 for all $X \in \mathbb{R}$. If X is a periodic point of f of period f and f and f are f and f are f and f are two liftings of f then f and f are two liftings of f then f and f are two liftings of f are two liftings of f and f are two lifti

(*) The complete version of this paper is submitted to Ergodic Theory & Dynamical Systems.