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Let s be the circle. We denote by Cl(Sl) the set of alk

continuous maps from S’ to itself of degree one. For x e sl, we say
that x is periodic if there exists a positive integer n such
that fn(x) = xX. The period of x is the smallest integer
satisfying this relation. Let P(f) be the set of periods of
f. If x € Sl is a periodic point of period n, then the orbit
of x is the set {fk(x): k=1,2,...,n} o We refer to such an

orbit as a periodic orbit of period n.

Iet £ € cl(sl), F its lifting to the covering spice]R
and e(X) = exp(2wiX) the natural projection of R——>S . We
note that F is not defined uniquely; nevertheless, if F and
F' are two liftings of f then F = F'+m with m € 2. Since
deg(f) = 1 we have F(X + 1) = F(X) + 1 for all X €R. If x
is a periodic point of f of period n and e(X) = x, then
F?(X) = X+ k where k € Z. We shall call k/n the #otation
number ( or F-rotation number, if necessary) of x and we denote
it by P (x) or PF(x). We denote by L(f) or LF(f) the set of
all rotation numbers of f.

(*) The complete version of this paper is submitted to
Ergodic Theory & Dynamical Systems.



