Twist periodic orbits and topological entropy for continuous maps of the circle of degree one which have a fixed point

LLUÍS ALSEDÀ^{1,2}, JAUME LLIBRE¹, MICHAŁ MISIUREWICZ³
AND CARLES SIMÓ⁴

Seccio de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain;
 Departament de Teoria Econòmica, Facultat de Ciències Econòmiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain;
 Instytut Matematyki, Uniwersytet Warszawski, Pałac Kultury i Nauki IX p., 00-901 Warszawa, Poland;
 Facultat de Matemàtiques, Universitat de Barcelona, Barcelona, Spain

(Received 14 February 1984 and revised 28 February 1985)

Abstract. Let f be a continuous map from the circle into itself of degree one, having a periodic orbit of rotation number $p/q \neq 0$. If (p,q)=1 then we prove that f has a twist periodic orbit of period q and rotation number p/q (i.e. a periodic orbit which behaves as a rotation of the circle with angle $2\pi p/q$). Also, for this map we give the best lower bound of the topological entropy as a function of the rotation interval if one of the endpoints of the interval is an integer.

1. Introduction and results

Let S^1 be the circle. We denote by $C_1(S^1)$ the set of all continuous maps from S^1 to itself of degree one. For $x \in S^1$, we say that x is periodic if there exists a positive integer n such that $f^n(x) = x$. The period of x is the smallest integer satisfying this relation. Let P(f) be the set of periods of f. If $x \in S^1$ is a periodic point of period f, then the orbit of f is the set $f^k(x)$: f is a periodic orbit of period f is a periodic orbit of period f.

Let $f \in C_1(S^1)$, F its lifting to the covering space $\mathbb R$ and $e(X) = \exp(2\pi i X)$ the natural projection of $\mathbb R \to S^1$. We note that F is not defined uniquely; nevertheless, if F and F' are two liftings of f then F = F' + m with $m \in \mathbb Z$. Since $\deg(f) = 1$ we have F(X+1) = F(X) + 1 for all $X \in \mathbb R$. If x is a periodic point of f of period f and f and f and f are two liftings of f where f and f are two liftings of f are two liftings of f are two liftings of f and f are two liftings of f are two liftings of f and f are two liftings of f are two liftings of f and f are two liftings of f and f are two liftings of f are

(1) $\rho(x)$ does not depend on the choice of X. Actually, it depends on the periodic orbit.