PERIODS AND ENTROPY FOR LORENZ-LIKE MAPS

by Ll. ALSEDÀ, J. LLIBRE, M. MISIUREWICZ and C. TRESSER

1. Notation, definitions and statement of results.

In the paper we shall use the following notations. When we write p/q we mean that p, $q \in \mathbb{Z}$ and q > 0. If we write k > 0 or $k \ge 0$, we mean that additionally $k \in \mathbb{Z}$. The greatest common divisor of p and q will be denoted by (p,q). If A is a subset of $\mathbb{N} = \{1,2,3,\ldots\}$ then kA will denote the set $\{ka: a \in A\}$. We shall denote by E(.) the integer part function.

We denote by $e: \mathbf{R} \to \mathbf{S}^1 = \{z \in \mathbf{C} : |z| = 1\}$ the natural projection $e(x) = \exp{(2\pi i x)}$ (here $i = \sqrt{-1}$). A map $F: \mathbf{R} \to \mathbf{R}$ is called a *lifting* of a map $f: \mathbf{S}^1 \to \mathbf{S}^1$ if $e \circ F = f \circ e$ and there is $k \in \mathbf{Z}$ such that F(x+1) = F(x) + k for all $x \in \mathbf{R}$. This k is called the *degree* of F. Note that since we do not say anything about continuity here, every f has liftings of all degrees.

A map $F: \mathbb{R} \to \mathbb{R}$ will be called *old* if F(x+1) = F(x) + 1 for all $x \in \mathbb{R}$ (here we follow the terminology of [M3]; old stands for « degree one lifting» with the order of letters changed for mnemonic reasons). It it easy to see that if F is an old map then F(x+k) = F(x) + k for all $x \in \mathbb{R}$ and $k \in \mathbb{Z}$, and that the iterates of an old map are old maps.

The first two authors have been partially supported by DCIGYT grant number PB86-0351. The main part of this research was done during the Dynamical Systems Semester at the Banach Center in Warsaw.

Key-words: Discontinuous circle maps - Set of periods - Topological entropy - Rotation interval - Renormalization.

A.M.S. Classification: 34 C 35 - 54 H 20.