BIFURCATIONS FOR A CIRCLE MAP FAMILY ASSOCIATED WITH THE VAN DER POL EQUATION ## Ll. Alseda (1,2), J. Llibre (1) and R. Serra (1) Levi had reduced the qualitative analysis of the van der Pol equation, essentially, to study a convenient family of circle maps. In this note we give information about the bifurcations of this family of circle maps. ## 1. Levi's results on the van der Pol equation We study the following differential equation of the van der Pol type with periodic forcing $$c\ddot{X} + \phi(x)\dot{x} + \epsilon x = bp(t) \tag{1}$$ where ε is a small but fixed parameter, p(t) is a periodic function of period T, $\phi(x)$ and p(t) are in C¹-neighborhood of the functions $\phi_0(x) = \text{sgn}(x^2-1)$ and $p_0(t) = \text{sgn}\sin(2t/T)$, and b belongs to some finite interval $[b_1,b_2]$ (independent of ε). Levi describes the nonautonomous flow (1) by using the Poincaré map D: $$(x, \hat{x})_{t=0} \longrightarrow (x, \hat{x})_{t=T}$$ In [5] one shows that the range $[b_1,b_2]$ of b-values consists of the alternating open subintervals A_k , B_k separated by the gaps g_k of small (with ϵ) total length, such that the qualitative behavior of the map D throughout each interval A_k , B_k is preserved, while g_k are the bifurcation intervals. For all be $[b_1,b_2]$, D has one totally unstable fixed point z_0 ; furthermore, - (A) for b $^{\epsilon}$ A_k, has exactly one pair of periodic orbits of period 2n-1 with n = n(k) \approx 1/k constant throughout each A_k. One of these orbits is a sink, another a saddle. - (B) for b ϵB_k , the invariant set of D consists (besides z_0) of two sink-saddle periodic orbits of periods 2n+1,2n-1 correspondingly, and of an invariant hyperbolic Cantor set wich is given by using a subshift of finite type. Both cases: b ϵA_k and b ϵB_k correspond to D structurally stable. - (C) as b crosses the gap g a complicated sequence of bifurcations occurs.