## BIFURCATIONS FOR A CIRCLE MAP FAMILY ASSOCIATED WITH THE VAN DER POL EQUATION

## Ll. Alseda (1,2), J. Llibre (1) and R. Serra (1)

Levi had reduced the qualitative analysis of the van der Pol equation, essentially, to study a convenient family of circle maps. In this note we give information about the bifurcations of this family of circle maps.

## 1. Levi's results on the van der Pol equation

We study the following differential equation of the van der Pol type with periodic forcing

$$c\ddot{X} + \phi(x)\dot{x} + \epsilon x = bp(t) \tag{1}$$

where  $\varepsilon$  is a small but fixed parameter, p(t) is a periodic function of period T,  $\phi(x)$  and p(t) are in C<sup>1</sup>-neighborhood of the functions  $\phi_0(x) = \text{sgn}(x^2-1)$  and  $p_0(t) = \text{sgn}\sin(2t/T)$ , and b belongs to some finite interval  $[b_1,b_2]$  (independent of  $\varepsilon$ ). Levi describes the nonautonomous flow (1) by using the Poincaré map

D: 
$$(x, \hat{x})_{t=0} \longrightarrow (x, \hat{x})_{t=T}$$

In [5] one shows that the range  $[b_1,b_2]$  of b-values consists of the alternating open subintervals  $A_k$ ,  $B_k$  separated by the gaps  $g_k$  of small (with  $\epsilon$ ) total length, such that the qualitative behavior of the map D throughout each interval  $A_k$ ,  $B_k$  is preserved, while  $g_k$  are the bifurcation intervals. For all be  $[b_1,b_2]$ , D has one totally unstable fixed point  $z_0$ ; furthermore,

- (A) for b  $^{\epsilon}$  A<sub>k</sub>, has exactly one pair of periodic orbits of period 2n-1 with n = n(k)  $\approx$  1/k constant throughout each A<sub>k</sub>. One of these orbits is a sink, another a saddle.
- (B) for b  $\epsilon B_k$ , the invariant set of D consists (besides  $z_0$ ) of two sink-saddle periodic orbits of periods 2n+1,2n-1 correspondingly, and of an invariant hyperbolic Cantor set wich is given by using a subshift of finite type. Both cases: b  $\epsilon A_k$  and b  $\epsilon B_k$  correspond to D structurally stable.
- (C) as b crosses the gap g a complicated sequence of bifurcations occurs.