MINIMAL PERIODIC ORBITS FOR CONTINOUS MAPS OF THE INTERVAL®

by

Lluis Alsedà Jaume Llibre Rafel Serra

Secció de Matemàtiques, Fac. de Ciències Universitat Autònoma de Barcelona Bellaterra, Barcelona, SPAIN.

Let I denote a closed interval on the real line and C(I) the set of continous maps from I to itself. A point $p \in I$ is a periodic point of a map $f \in C(I)$ if $f^{n}(p) = p$ for some positive integer n. The period of p is the least such integer n, and the orbit of p is the set $P = Orb(p) = \{f^{k}(p): k=1,2,\ldots,n\}$. We refer to such an orbit as a periodic orbit of period n. Let P(f) denote the set of positive integers n such that f has a periodic orbit of period n.

Let N denote the set of positive integers and + denote the following ordering of N:

3+5+7+...+2.3+2.5+2.7+...+4.3+4.5+4.7+...+8+4+2+1.

In the + ordering, called Sarkovskii's ordering, the smallest element is 3 and the greatest one is 1.

THEOREM 1(Sarkovskii, [Sa], [St], [BGMY]). Let $f \in C(I)$ and suppose that $n \in P(f)$ and n+k. Then $k \in P(f)$.

<u>Definition 2</u>. Let $f \in C(I)$. Suppose that $P(f) \neq \{1,2,4,8,16,...\}$ and let n > 1 the smallest element of P(f) in the + ordering. We say that a periodic orbit is minimal if its

* The complete version will appear in Trans. Amer. Math. Soc.

period is n and we will refer to such an orbit as MPO. Note that if $P(f) = \{1, 2, 4, 8, 16, ...\}$ then the smallest element of P(f) in the \Rightarrow ordering does not exist.

Definition 3. Let $P = \{p_1, p_2, \ldots, p_n\}$ be a periodic orbit of $f \in C(I)$, with $p_1 < p_2 < \ldots < p_n$, of period $n = 2^m q$ where either m > 0 and q = 1 or m = 0 and q > 3. Suppose that m = 0 and let t = (q+1)/2. We say that P is a simple periodic orbit of type +, or equivalently SPO^+ , if $f(p_{t-k}) = p_{t+k+1}$ for $k = 0,1,2,\ldots,t-2$

$$f(p_{t+k}) = p_{t-k}$$
 for $k = 1,2,3,...,t-1$, and $f(p_1) = p_1$

Similarly we say that P is a simple periodic orbit of type -, or equivalently SPO, if

$$f(p_{t-k}) = p_{t+k}$$
 for $k = 1,2,3,...,t-1$,
 $f(p_{t+k}) = p_{t-k-1}$ for $k = 0,1,2,...,t-2$, and
 $f(p_q) = p_t$

For the case q=1 we define a simple periodic orbit, SPO, inductively. If m=1 then P is simple. Suppose m > 1, then we say P is simple if the two subsets $\{p_1, p_2, \ldots, p_{n/2}\}$ and $\{p_{(n/2)+1}, \ldots, p_n\}$ of P are simple periodic orbits of period n/2 of f^2 . Then we have $f(\{p_1, p_2, \ldots, p_{n/2}\}) = \{p_{(n/2)+1}, \ldots, p_n\}$

This definition was given by Stefan [St] and Block [Bl1] for the cases m=0 and q=1, respectively. In [Bl1] the definition of simple periodic orbit is discussed for a periodic orbit of period 8 and some examples are given.

<u>Definition 4</u>. Let $f \in C(I)$ and let $P = \{p_1, p_2, \dots, p_n\}$ be a periodic orbit of f where $p_1 < p_2 < \dots < p_n$. We denote by \overline{f} the map such that:

- (1) $\xi \in C(I)$
- (2) $\overline{f}(x) = f(p_1)$ for $x < p_1$
- (3) $\overline{f}(x) = f(p_n)$ for $x > p_n$