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THE MONOTONICITY OF THE ENTROPY FOR A FAMILY OF
DEGREE ONE CIRCLE MAPS

LLUIS ALSEDA AND FRANCESC MANOSAS

ABSTRACT. For the natural biparametric family of piecewise linear circle maps
with two pieces we show that the entropy increases when any of the two param-
eters increases. We also describe the regions of the parameter space where the
monotonicity is strict.

1. STATEMENT OF THE RESULTS

In this paper we study the monotonicity of the entropy for a biparametric
family of degree one circle maps. The monotonicity of the entropy for particular
families of maps of the interval has been considered by several authors for
several families (see [MV, BMT, MT, DH]). We consider a problem similar to
the one considered in [MV]. We deal with the biparametric family of piecewise
linear circle maps with two pieces and we prove that the entropy increases when
any of the two slopes increases. We also describe the regions of the parameter
space where the monotonicity is strict.

In [AM] a kneading theory for a class of bimodal continuous circle maps
of degree one (called class &) was developed. The framework of the present
study will be that kneading theory. Therefore, this paper has to be considered
as a second part of [AM]. Hence, we assume the reader is familiar with the
notation, definitions, proofs, and techniques developed in [AM] and we shall
use them freely in this paper.

The family we are going to study can be defined as follows (see Figure 1).
For A>1 and u >0 we set

Ax ifxe[O,ﬂH]
Gru(x)=4¢ 1+ pl-x) lfxe[m, 1],
E(x) + G;,u(D(x)) if E(x)#0,
(where E(-) denotes the integer part function and D(-) the decimal part func-
tion, i.e., D(x) =x — E(x)).
Clearly G, , €%, cg,, £+ and G; ,(0)=0 forall A>1 and u>0.

,u+/1
Hence I . (0) remains constant when the parameters vary. On the other hand,
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FIGURE 1. The map Gj

for each A and u the rotation interval of G;,, is of the form [0, b; ,] (of
course b; , > 0).

To simplify the notation we set ¢;,, = cg, ,, K(4, u) = lGM(c,l,,,), and
h(4, u) = h(G,,,) . Also we shall write (4, ¢') > (4, p) if and only if A’ > 4
and u' > u. If additionally either A’ # A or u’ # u we shall write (', ¢') >
(4, u).

The main results of this paper are the following:

Theorem 1.1. Let A, A, u, and ' be such that (A, u) < (A', 4'). Then
KA, u) < K(A', 1'). Moreover K(A, u) = K(A', u') if and only if for some
meZ, m>1,wehave by , =by =L and ’my < 1.

Theorem 1.2. Let A, A, u, and u' be such that (A, u) < (A, ¢'). Then
h(A, u) < h(X, u). Moreover h(A, u) = h(A', u') if and only if for some
meZ,m>1,wehave by , =by =% and p' <XV/(A™ —1). In this last
case h(A, u)=h(A, u') = 'B(;,l/m‘

Remark 1.3. We recall that B, , isthelargest root of the equation R, ,(z) = 3
where R ,(z) =3 z7? and the sum is taken over all pairs (p, ¢) € ZxN for

which a < £ < b. In the special case in which ¢ =0 and b = # the formula is
specially simple. From Proposition 1.1 of [ALMM] and Theorem C of [ALMS]
we get that B, m is the largest root of the polynomial z"*! —zm — z — 1,

When studying the monotonicity of the entropy (and of the kneading se-
quences) of a family of piecewise linear maps from &/ with two pieces, the
more general family to consider is the three parameter family ®; , , defined
by G,,,+a with A>1, u>0,and a € R. As the following example shows,
if a # 0 then we cannot extend Theorem 1.2 to this family. So, in what follows
we only consider the family ®; , o =G, ,.

Example. Consider ®; , , and ®; , , with a =04, A =22, u =02,
A'=25,and u' =0.5 (see Figure 2).



MONOTONICITY OF ENTROPY FOR A FAMILY OF CIRCLE MAPS 653

2 2

(a) (b)

We note that the map x — 0.5 — x conjugates the map ®; , , with
G, - Therefore, from Theorem 1.2 it follows that 4(®; , ) > 0. However,
h(®y v ,4) = 0. To see this we can argue as follows. If we denote by g the
circle map which has ®;, , , as a lifting, we have that ¢(0.6) and ¢(0.4) are
fixed points of g (where e(x) = exp(27ix) denotes the natural projection from
R to S!). Moreover, ¢(0.6) attracts e¢((0.4, 1)) and e([0, 0.4)) is mapped
around the circle only once. Therefore, g has only two nonwandering points
which are fixed points and, hence, the entropy of g is zero.

We recall that lGM(O) remains constant when the parameters vary and
hence, the problem of the monotonicity of the kneading sequences for the fam-
ily G, , is essentially one dimensional. However, ldh,,,,a(o) does not remain
unchanged when the parameters A and u vary and a # 0. Thus, when con-
sidering the case a # 0 it is necessary to take into account another kneading
sequence and the problem becomes two dimensional. In this case the natural
extension of Theorem 1.1 in order that we would get A(®y u q) > A(Ps, 4,a)
as a corollary would be the following (see Corollary 3.5 of [AM]):

If (A, u)> (A, u) then

ld)).’,p’,a(cq)l’,u',a) 2> l‘bl,u,a(cq)l,lhﬂ) and lq);!,,;',a(o) < ld);””'a(o) .
For the maps from the example it is not difficult to show that
Iy, , 0) <Ly, , (0)<Iy, , (co,,.) <lo, , (Coy,.)

and the natural extension of Theorem 1.1 does not hold when a # 0. Thus, in
the sequel, we concentrate on the case a=0.

Now we start the proofs of Theorems 1.1 and 1.2. The strategy of the proofs
for F, is as follows. In §2 we fix A and we study the uniparametric family
F, = G, ,. For this family we prove Theorems 2.1 and 2.2, which are the
analogues of Theorems 1.1 and 1.2, respectively. In §3 we study the family
F, = G;,, for u fixed. Then we prove Theorems 3.1 and 3.2, which are the
analogues for F; of Theorems 1.1 and 1.2, respectively. Then Theorems 1.1
and 1.2 follow from Theorems 2.1, 2.2, 3.1, and 3.2.
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2. THE FAMILY F),

In this section we assume that A is fixed and we study the uniparametric
family F, = G, ,. Weset b(u) = b, ,, h(u) =h(d, u),and K(u) = K(4, u).
The main results of this section are the following versions of Theorems 1.1 and
1.2 for our family F,:

Theorem 2.1. Let u, and u; be such that pu, < uy. Then K(u;) < K(us).
Moreover K(u;) = K(uy) if and only if there exists m € Z, m > 1 such that
b(u) = b(uz) = 5 and A" 'uy < 1.

m

Theorem 2.2. Let u; and u, be such that pu, < pu;. Then h(u) < h(uy).
Moreover h(u,) = h(uz) if and only if there exists m € Z, m > 1 such that
b(u1) = b(a) = 3 and pp < A/(A™ —1). In this last case h(u1) = By ), -

m

We introduce some new notation to be used in this section. We set ¢, =
Cius Jn(u) = Fi(cu), and gn(u) = dfu(u)/dp when D(fi(n)) ¢ {0, c,} for

i=1,...,n—1. Also set K(u) = Ao(n)A1 () -+ = Sdo(u)"¥d,(p)--- , and
define
’ o )_{ 1 if Card{i € {1, ..., n—1}:s;(u) = R} is even,

W= 21 ifCard{ie {1, ..., n—1}:si(u) = R is odd.

Lastly, set ¢, =dc,/du=(A—-1)/(A+p)*.
The next result gives a first reduction of our problem to a particular case.

Proposition 2.3. If u' > u and b(u') # b(u) then K(u') > K(u).

Proof. Since u' > u we have (Fy), > (F,), and since (F,/), and (F,), are
nondecreasing we get (F,)" < (Fy)r for all n € N. Therefore, the rotation
number of (F,), is smaller or equal to the rotation number of (F,/),. Then,
from Lemma 4.7 of [AM] we obtain b(u') > b(u). Therefore, by Theorem B
and Lemma 4.9 of [AM] it follows K(u') > K(u). O

From Proposition 2.3 it follows that it is enough to prove Theorem 2.1 when

b(u') = b(n).

Now we start the study of the case b(u) = b(¢’). Let m € N be such that
m—1< gz < m. Clearly, if b(u)>1 we have m =1 and b(u) € [, 7e7)
otherwise. We shall keep this assumption until the end of this section. We shall
split the study of this case into several lemmas.

We note that when b(u) < 1 (thatis m > 1) then F,(x) < 1+ x for all

x € R. Hence 4p,(x) € {M0,L0,L1,1,R1} forall x eR.

Lemma 2.4. The following statements hold.

(1) Am —im=1 —1>0;

(2) u>1/(Am =am=t = 1);
B) If m>1 and A" —Am=2—1>0 then u<1/Am"' —Am=2-1);
(4) If m> 1 then

1

1o =K (,Tm—:pm_—l

) < K(1) < (C1(E0)™=2)e.

Otherwise K(u) > (€1)>°.
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Proof. First we prove (4). Assume m = 1 and suppose that K(u) < (€1)~.
Then we obtain Fj,(cy) < 1+ ¢, and hence F,(x) < 1+ x forall x € R; a
contradiction because 1 € Lf, .

If m>1 weget b(u) € [+, -L5). Suppose that K(u) < (C1(£0)m—1)= .
Then we have K(u) = €1(*0)"~1L4... (thatis s,,(u) = L). Hence D(F"(c,))
< ¢y . On the other hand from Lemma 4.1 of [AM] since b(u) > # , F, hasa
TPO (twist periodic orbit) P of period m and rotation number L. If ¢, € P,
from Lemma 4.4 of [AM] we obtain K(u) = (°1(£0)"~")*. So ¢, ¢ P. Then,
from Lemma 4.4 and Remark 3.1 of [AM] we get Ip (vp) = (F1(F0)m=1))>
(recall that vp = max P N[0, 1)). Thus, since I (cy) = €1(*0)™~!... and
Ip (vp) = L1(L0)™=1... we obtain that Fwp,c, is linear with slope A" and
E(FM)wp,c,) = 1. Since (F™ — 1)(vp) = vp we obtain (F™ — D)(cy) > cu.
Therefore s,,(u) = R; a contradiction.

Now suppose that K(u) > (¢1(£0)"=2))* . Then zFM(c;) > (1£(0L)m—2)e
and from Proposition A of [AM] we get (1£(0X)™~2)> is a reduced itinerary of
F, (note that S”((15(0L)m=2)>) < (1£(0F)™=2)~ forall n > 0). Let x € R
be such that ZF“ (x) = (1£(0F)m=2)>. Then pg,(x) = =15 contradicting the
assumption that b(u) € [L, —L5).

Now we prove (1) and (2). From the above arguments we know that there
exist a TPO P such that I (vp) is either (£1(£0)"~!)> or (C1(LO)m=1)e .
In both cases we get A"~ !(Avp — 1) = vp. Therefore (A™ — 1)vp = A™~! . Since
vp<c, <1 weget A" —1>A""! and (1) holds. On the other hand we have

Am—l u+1

K T e ey

and hence,
A A <A — A1,
Thus (2) follows.
Lastly we prove (3). Assume that m > 1, A~! —1"=2_ | > 0 and suppose
that u > 1/(A™~! — A™=2 — 1), which is equivalent to

m-2
A S,u+1=
A=l — 1 = u+A

Cu-
Set x =A"=2/(Am~! —1). Clearly F"~'(x) =1+ x. Hence, g €Lr;a
contradiction. This ends the proof of the lemma. 0O

From Lemma 2.4 it follows that we also we may assume that A™ — im—! _ |
> 0 and we shall do so in the rest of this section. Also we set J(m) =
[1/(Am™ — Am=1 - 1), k(m)), where

m ifm>1andl’""—l’"—2—l>0,
K(m) = . Lo
o0 fm=1lorm>1and A" ! - Am-2_1<0.

From Lemma 2.4 we can also assume that u € J(m).
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Remark 2.5. From Lemma 2.4(4) it follows that for m > 1 and for u € J(m)
we have K(u) = €1(£0)"~2Ld... with d € {0, 1}. Therefore, from Proposi-
tion A of [AM] we get that if for some i >0, d;(1#) =1 then s;,;(u) = L for
j=1,...,m—1 and di;j(u) =0 for j=1,..., m-2.

Note that, in general, the map F, does not belong to the class & (see [AM]).
The following lemma shows that for some values of the parameter x4 the maps
F, preserve the properties of the maps of class & . We set I(m) = {1 €
J(m): u>A/(A™ —1)}. We recall that JF is the set of all preimages of 0 and
cr under F.

Lemma 2.6. JF, is dense in R for all u € I(m).

Proof. Suppose that JF, is not dense and let U be the complement of cl(JF,) .
The set U is open and hence it is a countable union of disjoint open intervals.
Let U' = UN[0,1) (note that U = {J,,czm + U’). Number the intervals
of U’ by {Ux}2, and denote by ¢, the length of the kth interval. Clearly
Y reoCk < 1. Hence limy_,o, cx = 0 and there exists ko € N such that ¢, < ¢,
for every k € N. Note that U'n{0, c,} = @. Therefore either Uy, C (0, c,)
or Uy, C(cu, 1). In the first case we get F,(x) =4 > 1 forall x € Uy, . In the
second case, from Remark 2.5 we obtain (F;*)'(x) = Ay > Amim—1) > 1
for all x € U'. Since F(U) c U we have that either F or F” maps Uy, to
a larger interval of U ; a contradiction. O

Remark 2.7. From the above lemma it is easy to see that all of the results proved
in [AM] for class % (that is from Lemma 3.6 until Proposition 3.12) are also
valid for the maps F, when u € I(m).

Now we are interested in characterizing the values of the parameter u for
which there exist a subinterval of [0, 1] containing ¢, which is invariant for
Fm™ — 1. This problem is closely related to the characterization of the values A
for which A/(A™ — 1) € J(m). To this end we introduce the following family
of polynomials. Set

Pu(A) =AMl 2™ — )+ 1.

Lemma 2.8. For each m > 1 the polynomial P,(A) has a unique root larger
than one. Moreover if we denote this root by m,, we have

1 2<m, <3;

(2) If n < m then my, > Ty ;

(3) A —mm-1—1>0.
Proof. Since P,(2) = —1 forall m > 1, the equation P,(4) =0 is equivalent
to the equation A™ = R(1) with R(1) = 4=}.

Since lim;j; R(A) = oo, R(3) =2, and R|(3,, is decreasing we obtain (1)
and (2) (see Figure 3).

Since nl? = R(m,,) we get

T — 1 T, — 1 (tm —1)?

m _ m_l— = —_ —1="——1.
Tm = Tm =~ G = D o (Tim — 2)

Since 7, > 2 we obtain (3). O

It is not difficult to show that for u € J(m) the point x = A"™~1/(A™ —1) is

the largest point in [0, 1) of a TPO of period m and rotation number ;‘5 (in

fact Ir (x) = (E1(£0)™~")>). Let x, be the F,-conjugate of x. Clearly, the
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1 2m m 3
FiGure 3. The roots 7,

existence of a subinterval of [0, 1] containing ¢, and invariant under Do F™
is equivalent to the fact that D(F™(c,)) < x,. In the next lemma we relate
this problem to the fact that 1/(A™ — 1) € J(m). Also we characterize the
situation A/(A" — 1) € J(m) in terms of the roots of P,(4) and we obtain
some preliminary results about kneading sequences. For this we shall use the
following sequence

E — Cl(LO)m—lRl((LO)m—lLl)oo .

Lemma 2.9. The following statements hold,
(1) A/(Am —=1) e J(m) ifand only if 1> ny;
(2) For pe J(m), fm(p) <1+x, ifandonly if u <i/(A™ —1);
B)YIfA>my and p, u' € J(m) with u <AJ/(A™ —1) < u’ then

K(u) <K (/Tr?/l—“i) =B <K);

(4)If A<my and u € J(m) then K(u) > B.
Proof. (1) By Lemma 2.8 the equation A > 7, is equivalent to the equation
P,,(2) > 0 and this is equivalent to 1/(A" —1) > 1/(A™ —A"~1—1). To see that
A/(A™ — 1) € J(m) when A > m,, it only remains to show that A/(A™ — 1) <
k(m). If xk(m) = oo there is nothing to prove. Now assume that m > 1 and
Am=1 _ ) m=2 _ 1> 0. Then we have

A 1 1

p Sl T ey R T ey e e GO

and (1) holds.
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(2) First we compute x,. We recall that x, is the F,-conjugate of x =
Am=1/(Am —1). Then we have

am—1
u(l = x,) + 1 = Fy(x,) = Fy(x) =1;1m__1‘
Hence,
x,=1- —l_
KTy
Now we consider the inequality
_ 1
(*) fm(#)zlm l(lcﬂ_l)+l>2_ﬁlm—_15:l+xﬂ'

An easy computation shows that for u € J(m) the above inequality is equiv-

alent to
b=am—1 ) \F ™ 11 '

Then, for all u € J(m) (x) holds if and only if u > /(A" — 1). This proves
(2).

Now we assume that A > m,, and we compute K(4/(A™ —1)). We get

AOm—1)+1 amyi—1 1 A-1
om-) = 2 iom Ny ¥ A g ad Xygmon=1-3= '

A A
Therefore

A L, (A A=
Im (Am - 1) =am (’1 (W) - 1) =1+ XGm-1) -
Hence,

A - m— - 00
K (g ) = 10 Ly (agany) = 1O R (0121 = B.

Let ue (1/(A™ —Am=! — 1), 1/(A™ — 1)). Then, since Jm(p) < 14+x, <2
we have

K(u) = “1(:0)" 'L, (fm(w)) < “1(*O)™ "I, (x,) = B.

If ue(A/(A"-1), k(m)), from (2) we obtain fo,(u) > 14+x,. If fru(u) > 2,

then
( )_{Cd--- withd >1 ifm=1,
W=V ergom-2Lr. itms1.

Thus, in both cases we have K(u) > B. If f,(u) < 2 we have K(u) =
10 L, (fn(w)) -

On the other hand, since 1+ x, < fi(u) < 2, we get x, < D(fm(u)) and
from Lemma 3.7 of [AM] and Remark 2.7 we have Ie (fm(w)) > I (xu). So
K(u) > B.

(4) When A < &, , from (2), we get fi,(u) > 1+x, forall u € J(m). Then,
by the same arguments as in the proof of (3) we obtain K(u) >B. O

Remark 2.10. From Lemma 2.9 it follows that f,(u) < 1 + x, for A > m,
and for pu € (1/(A" —A"~! = 1), 4/(A" = 1)). Since Fr(A™!/(A™ - 1)) =
1+Am=1/(am-1), Fl'(cy) = fm(u) < 14x,,and F"(x,) = 1+Am"1/(Am - 1)
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Foultt)

am-—1 Xy
Am—1

FIGURE 4. The map (F”m — l)lli’""/(im—l),fm(ﬂ)—ll

we get that F)" maps the interval [Am=1/(A™ — 1), fm(u) — 1] into itself (see
Figure 4). On the other hand, since
Ip () =£1(k0)"" ... forally € (A"!/(A" - 1), cu)
and
Ip(z)=R1(*0)"~"--. forall z € (cu, fn(n) — 1)

we get that Fﬂml[l”“'/(l'"—l),c,,] has slope A™ and Fﬂmllq‘,fm(ﬂ)—l] has SlOpe
_im—1 U

In view of Lemma 2.9 we can split our problem into two different cases. The
firstoneis A > 7w, and p € [1/(A"—A""1-1), A/(A™—1)] and the second one
is u € (max(1/(Am—-Am—1-1), /(A" —1)), k(m)). To study the monotonicity
of K(u) in the first case we use a result of Misiurewicz and Visinescu (see

[MV]) about maps of the interval. To state it we introduce new notation.
For A>1 and x>0 we define H; ,:[0, 1] — [0, 1] as follows (see Figure

5 on next page)
Ax if x € [0, 11,
HA,N(X) = 1 . 1 A
-u(x—-7)+1 ifx e[z, 1].
In order that H) , maps [0, 1] into itself it is necessary that —,u(x—%)+l >
0. Thus we obtain x < 724; or equivalently,
1 1

—4+=>1.
7t 52 1
Remark 2.11. Consider the family H; x defined as follows:
Ax . if x €[0, c],

0 = {

Note that I?IL x maps [0, 1] into itself if and only if ic < 1. By the above
considerations we get that H, , maps [0, 1] into itself if and only if %‘*’;l; >1

—u(x—-c)+4i ifxelc,1].

(or equivalently u < 74;).
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1

0
0

a— ),__._

FIGURE 5. The map Hj |

The maps H,; , with A>1 and u < %4 1 are called skew tent maps in [MV]
and they form a biparametric famlly of ummodal maps of the interval with a
local maximum d; , =d,; = /1 Set K(A, u) = 1y, , (d,l,”) , Where the notion
of itinerary is the usual in unimodal maps (i.e., A(x) is L, C,or R according
as x is less, equal, or greater than d, , = %). The following theorem studies
the monotonicity of the kneading sequences of the skew tent maps.

Theorem 2.12. If (A, u) < (A, u') then 12(1, u < IZ(A’, u'). Moreover if
uw>1 then K(A, u) < KA, u').

Theorem 2.12 has been proved by Misiurewicz and Visinescu in the case
u>1 (see [MV]). However, the extension to the case u < 1 is trivial.

Proposition 2.13. Let A, u, and u, be such that A > mn,, and
L/ = am= = 1) <y < g SA/(A™ = 1).
Then K(u;) < K(uz). Moreover if 2™ 'uy > 1 then K(u;) < K(u).

Proof. By Remark 2.10 we get that F,;” — 1 maps the interval [A"~!/(A" - 1),
Jm(u) — 1] into itself (see Figure 4) and (F)" — 1)|pm-1/am_1), fuu)—1] 1S @
rescaled version of Hjm ;m-1,. Also we note that K(u) is directly obtained

from K(A™, Am=14) by substituting the symbols L, C, and R by L1(£0)m~!
€1(*0)"~!, and R1(*0)"~! respectively. Hence K(u;) < K(u,) if and only if

K™, am- 'yl) <K(A’” 2™=1uy) . Then the proposition follows from Theorem
2.12. O

In what follows we consider the second case. That is
1€ I(m) = (max(1/(A" — A"~' = 1), 2/(A" = 1)), k(m)).

We study this case through a sequence of lemmas. To do this we need again
some more definitions. Each sequence of the form %dg'd,---*»-'d,_; with
sie{M,L,C,R} and d; € Z forall i=0,...,n—1 will be called and n-
strip. Let A" be an n-strip. Then o(4") denotes the parity of (sg, ..., Sp—1).
That is a(A4") will be +1 or —1 according as (sg, ..., S,—1) has an even or
odd number of symbols R. Also we define A, . as the interior of the set of
w’s such that K(u) starts with 4" . We note that if A4» # @ then 5o = C and
Jnla,. 1s a rational function on u. Now set I'yn = Ay NI(m).
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C4(l¢) 64(/‘)

ca(p) = ¢y / ca(p) = ey
(b)

ca(p) C2(l‘)
N\

N (k) c1(p)

(a)

FIGURE 6. (a) shows a decreasing map. Hence it is
strongly decreasing. (b) shows an increasing map which
is not strongly increasing. In both pictures the curves
ci(u) are the graphs of the turning points depending on

u

Let (a, b) cR* and f: (a, b) — [0, 1] be a continuous map. We say that
S is strongly increasing if f isincreasing and forall u, u’ € (a, b) with u <y’
we have A4,(f(u)) < Ay (f(1')) (Au(x) denotes the F,-address of x). We say
that f is strongly decreasing if f is decreasing and for all u, y’ € (a, b) with
u < pu' wehave A,(f(n)) > A, (f(u')). Note that since each turning point of
F, depend on u in a nondecreasing way, to show that f is strongly decreasing
it is enough to show that f is decreasing (see Figure 6(a)). We also note that
the notions of strongly increasing and increasing are not equivalent (see Figure
6(b)).

Remark 2.14. The situation described in Figure 6(b) is not possible if f"(u) —
¢ (u) >0 forall p.

The strategy of the proof of Theorem 2.1 in this case is as follows. We
shall show by induction that for all » > 0 and for each n-strip 4" such that
[y» # & the set I'y» is an interval in which Jnlr,. is strongly increasing or
strongly decreasing according to the parity of 4". From this it follows easily
the monotonicity of the kneading sequence depending on x. Unfortunately
to be able to make the induction step we shall need to prove some additional
properties. We start this proof with some preliminary lemmas. See Figure 7
(next page) to illustrate the first one of them.

Lemma 2.15. Let f, g:[a, b) > R with b € RU {oo} be functions such that
f(a) < g(a) and f and g are convex and concave on [a, b), respectively.
Then the equation f(x) = g(x) has at most one solution.

Proof. Assume that there exist z and y such that a < z <y, f(z) = g(z2),
and f(y) < g(y). Then z = ta+ (1 —t)y for some ¢t € (0, 1) and we get
f2)<tfla)+ (1=t f(y) <tg(a)+ (1 —1t)g(y) < g(z); a contradiction. O

Remark 2.16. From Lemma 2.15 it follows that if f:[a, b) — R is a differ-
entiable function, increasing and convex and f(a) < ¢, then f is strongly
increasing. Moreover, in this situation, to see that f is strongly increasing it
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z

FIGURE 7. The maps f and g

suffices to show that 4,(f(y)) > 4,(f(a)) forall y € [a, b) (recall that Au(x)
denotes the Fj,-address of x).

Lemma 2.17. Let A" = %dy---S-'d,_, be an n-strip. Then for all u € Ayr
and k=1,..., n we have
k-1

E(fi(w) =) d;.
i=0

Proof. Cleatly E(fi(1)) = E(fe(1)) — E(cy) = S5 (E(fi(r) - E(fin1(w))) =
Yo diw=X{5'd. 0O

Lemma 2.18. Let 4" = Cdp’d,---Ld,_, be an n-strip. Then for all p € Ay
and k=1,...,n we have

felw) = Acu + p4a (1),

where pk,.(4) is a polynomial of degree k — 1 in A which depends only on
do,...,dn.

Proof. We use induction on k. If k =1 then fi(u) = Ac,. Now assume that
the statement holds for k—1 > 1 and we prove it for k. Since u € A4~ and k—
1 <n—1 we have that A(fi_i(u)) =Ld;_,. Hence, by Lemma 2.17, f;(u) =
Fy(feor(#)) = E(femr () + Fulfiem1 (1) = E(fimr(W)) = T4G di + Afies (1) =
AV S di = ke, +Ap57 1 (2) + (1 - 4) %2 d; and the lemma follows. O
Remark 2.19. From the preceding lemma we obtain that if

A" =C%dotd, - td,_,

then forall u € A4» andfor k =1, ..., n we have g (u) =/lkc;,. Moreover in

a similar way to the proof of Lemma 2.18 we also obtain that if C* isa k-strip
and A" = C* dbdg,y---Ld,y then geyi(u) = Age(u) for i=1,...,n—k
and for p € Ayn.

Remark 2.20. Since F, is old we have
D(Fu(x)) = D(Fy(D(x)))
forall x € R and for all u € (0, x).
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Let A" = €dy---$-1d,_; be an n-strip. We set 4} = Rdj---5-1d,_, and
A” =Ld0...5n—1dn .
Lemma 2.21. Let A" =%d,---*-'d,_, be an n-strip such that s; € {L, R} for
i=1,...,n—1 and assume that T 4» is an open interval, f,,|1—A,, is either
strongly increasing and a(A") = 1 or strongly decreasing and U(A”) = —-1;
and there exists a unique x € I' yn such that D(f,(x)) = cx. Then the following
hold.

(1) If 6(A") =1 thenforall p € T4n suchthat p > x, K(u) > A" AL (42)>.
Moreover, for all 1 € N there exists 8, such that K(u) = A"A}(4") -
forall pe(x,x+9).

(2) If a(4") = —1 then for all p € Tyn such that u > x, K(u) >
A" A" (4%)> . Moreover, for all | € N there exists 6, such that K(u) =
A"A" (ALY - forall pe(x,x+3).

Proof. We only prove (1). Statement (2) follows in a similar way. We set
p=do+ - +dy_, k=Card{i e {1,...,n—1}:5, =R} and K = {y €
I'4n:y > x}. Note that from Remark 2.5 1t follows that n = (k+1)m+r with
r € N. Since fy|r,, is strongly increasing we get that K(u) = A™Rd ... for all
u € K. By Lemma 2.17 it follows that f,(x) = cx+p and p+cy < fuy) < p+1
forall y e K. Set A_ = (4" and A = (d---dL ). Note that
the sequence 47\_ has no symbol M, R, or C and AA‘E = A_. Then since
sn(y) =R forall y € K, we get

(05 < SH(A_) < I (cy)

for all i > 0. Hence A_ is dominated by F, for all y € K (see §3 of [AM]
for a definition of domination). Then, by Proposition A of [AM], for a fixed y
there exists a periodic point y; € (0, ¢,) such that I (y1)=4. Let y, be the
conjugate of y; in (cy, 1). Clearly F'(y1) —p=y1 and I (y2) = AL (A4m)>®
Then we get that (F' — D)l ,y, 18 piecewise linear with two pieces (see Flgure
8 on next page). Moreover by Lemma 2.3 of [AM] we get that

A_<Ip(z)<K(y)=4"do--- forall z €y, 0l

Hence, for all z € [y, ¢y], the map [ Fy(z) = A" ... . Therefore, the slope
of (F}' = D)lyi,¢) is A" *uk . Similarly, Iy (z) = 4}--- forall z € [¢), yal,
and the slope of (FJ = p)lic,,y,y is A" *~1uk*1. Since 2> 1, A"~ 'u>1, and
1/Am +1/Am" 1y < 1 for all u € I(m) we get

1 1 1 1
An—k‘uk + ln—k—lﬂk+l = l(m—l)k+m+rﬂk + A(m—l)k+m+r—lﬂk+l

(L)<
- (lm—llu)klr am T am—ly :

Hence, from Remark 2.11 we get Fy”"(cy)—p >y, . Therefore, Ig (fa(¥)) >
I (y2) = A3(4%)® . Thus, K(y) = A"L(fn(y)) > 4"43(47)>

"We note that since D( f,,(x)) = ¢y (thatis D(F}(cx)) = cx) we have fi(x) ¢
Z for all i > 0. Moreover, since s; € {L, R} forall 0 <i<n—-1 we also
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FIGURE 8. The map FJ — plyy, ,,]

have s;(x) # C for all i > 0 not a multiple of n. So, by the continuity of f;
for all i > 0 it follows that for each / € N there exists J; > 0 such that for
all y € (x, x+J;) we have di(x) = d;(y) forall i € {0,...,(n+2)/} and
Ai(x) = A;(y) forall i € {0, ..., (n+2)/} not a multiple of n. Then, since
K(y) > A"A%(4")> for such y, we get S,(y) = R and s;,(y) = L for all k
such that kn < /. This ends the proof of the lemma. 0O

Let B" be the n-strip formed by the first n symbols of
_B — Cl(Lo)m—lRl((Lo)m—lLl)oo .

In the following lemma we show that I'4» is an interval such that fy|r,, is

strongly increasing or strongly decreasing according to the parity of 4". This
plays a crucial role in the proof of Theorem 2.1.

Lemma 2.22. Let A" =%dy---5-'d,_, be an n-strip such that s; € {L, R} for
i=1,...,n—1 and assume that T 4» # @. Then the following hold.
(1) Tgn = (agn, Ban) with Ban € RU {o0}.
(2) Either D(fu(ayn)) = 0 or ca,, is periodic of period less than n or
A" = B" and in this case a4» = max(1/(A" —Am=1 = 1), A/(Am - 1)).
(3)If si=L fori=1,...,n—1 then either n < m and A" = B" or
D(fn(ay»)) = 0 and in any case fu|r,, is strongly increasing. Other-
wise, if a(4") =1 then fulr,, is strongly increasing and convex and if
o(A4") = -1 then fur,, is s;rongly decreasing and concave.

Proof. To prove the lemma we use induction on n. First we prove the lemma
for n < m (recall that m = 1 if b(u) > 1 and if b(u) < 1 then m is such
that b(u) € [, ~L5)). We divide this proof into two cases.

Case m = 1. We have I(m) = (max(i15, t47), o0) and B = C1R1(L1)=.
For n =1, since I'y1 # &, we have A' = ¢4 with 0 < d < A. Clearly
Ay =404, B,1) (see Figure 9) where 1 = 2 if A>d+1 or B, =0

otherwise. If d =1 then 4' = B' and we get a1 = max(;15, 747). If d > 1
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FIGURE 9. The values ac, for d=1,2,3

clearly we obtain ay: = %}i}’—l and hence D(fi(a,1)) = 0. Thus (1) and (2)
hold.

Since g(u) = Ac, = A(A—1)/(u+ A)? > 0 it follows that f; is increasing.
To prove that f; is strongly increasing, in view Remark 2.14, it is enough to

show that fij(u)—c, and fi(u)—(1- /%) are increasing for i =2, ...,d - 1.
Clearly g(u)—cj, > 0. To prove that g(u) —i/u*>0 for i=1,...,d -1
we shall show that
A-1 d-1
gl(.u)=j'(,u+/1)2 > ,uz s

which is equivalent to

Ui ul  A-1

il 1=

thA(ﬁ(#) ) T L

Since fi(u) > d it suffices to prove that ,‘;%1 > 1 which holds for u > Zi—l
Hence (3) follows for n=1.

Case m > 1. We have b(u) < 1 and hence d;(u) € {0, 1} for all i > 0.
From Remark 2.5 we get that if d;(u) = 1 then d;;(u) = - - dizm—a(u) =0
and s;.1(u) =+ = Siym-1(u) = L. First we prove the lemma for n < m. By
Lemma 2.4 we get 4" = B" and I'y» = I(m). Hence

ayn = max(1/(Am —im=' — 1), A/A—1).

By Lemma 2.18 we have g,(u) = A"c, > 0 forall u € I(m). Therefore, ful1m)
is increasing. Lastly, from Remark 2.5 we get that s,(u) = L for all u € I(m).
Hence f,(u) <c, forall u € I(m). Therefore, f, is strongly increasing.
Now we prove the lemma for n = m. Since f,_1|;m) is strongly increas-
ing we obtain (1). By Lemma 2.4 we get that either 4™ = B™ or A" -

>d-1.
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FIGURE 10. The graph of the map f,_, Ir,._, and thein-

tervals I'4» in different cases. Note that « g1 = d) =
Qqn-1Ly, Qqn-12p = Ay and, by Remark 2.20, D(f,(a2))
= D(Fa,(D(fa-1(a2))) = D(F,(3)) = 03 agn-1p, = a3
and D(f,-1(a3)) = cay, and finally a,4.-1z; = a4 and
D(fn(a4)) = D(Fa,(fn-1(as))) = D(Fo,(1 = 1)) =0

C1(f0)ym=2L1. Clearly, in the first case aym = max(1/(Am—A""1-1), A/A—-1).
If A" = €1(£0)"=2L1 we get that f,,(aym) = 2. Hence (2) holds. Now we
prove (3). From Lemma 2.18 we have gn(u) = A"c, > 0 forall u € I'ym.
Therefore fiu|r,, is increasing. If A™ = €1(£0)"~2L1, from Remark 2.5
sm(u) = L forall ue Iym. So fmlr,. is strongly increasing. Assume that
A™ = B™. Then by Lemma 2.9 it follows that Sm(u) = R forall u €T ym.
Thus fu|r,. is strongly increasing. This ends the proof of the lemma for
n<m.

Now assume that the lemma holds for n—1 > m and we prove it for n. Let
A" = AgA,--- A,_; be such that Ty, # @ and let A" ' = 4y---A,_,. First

we note that since I'y» C I'jus and Do fn—lll"A,,_. is strongly increasing or

strongly decreasing according to o(4"~') we obtain that the set of u € 41
such that A(F,(D(f,—1(1)))) = "-'d,_, is connected (see Figure 10). Hence
(1) follows.

Now we prove (2). If D(f,(a4-)) # 0 then either D(f,_i(a4n)) = Ca,. OF
agn = ayn-1 (see Figure 10). In the first case c,,, is periodic of period smaller
than or equal to n— 1. If agn = ay»-1 and D(f,,_l(ad,._.)) = 0, then from
Remark 2.20 we get D(fu(e4n)) = D(Fa, . (D(fa—1(agn-1)))) = D(Fy,.(0)) = 0.
Also if agn = ayn-1 and Cagns is periodic of period less than n — 1 then
Ca,. 18 periodic of period less than n. By the induction hypotheses the only

remaining case is a4n = a -1, A" = B""', and

agn = max(1/(A" — Am=' — 1), A/(A™ = 1)).
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If max(1/(A" —Am~1—1), 1/(A" —1)) =1/(A" — 1), from Lemma 2.9 we get
K(ayn1) = K(A/(A™ — 1)) = B. Hence sij(ay.-1) € {L, R} and Sfilagn) ¢
Z for all i > 1. Then, from the continuity of f,_; we get du_1(p) =
dyr(agrt) = dnot () = 1)) and su1 (1) = Sn1(agn-1) = Sn-1 (B (27 = 1))
for 4 > a4 sufficiently close to a,.-1 . Then we obtain A"=B".If

max(1/(A" — A1 = 1), /(A" = 1)) = 1/(A™ _amlo)
then A < m,, and, from Lemma 2.4, we obtain
K(ayn) = K(1/(™ = am=! = 1)) = (C1(F0)™ 1),

From the continuity of f; for i > 0 and since fi(ay.-1) ¢ Z for i >0 we
get d;(u) = di(ayn-1) for p sufficiently close to a, 1. If i is not a multiple
of m then s,_(c4.—1) = L. Again by the continuity of f;, s;(u) = L for u
sufficiently close to a4.—1 and i less than 7, not a multiple of m. If i =km
with k € N, by Lemma 2.9, we get K(u) > B forall u € IT'4x. So,

S_()_{R ifk=1,
W=\ L ifk>1,

for u sufficiently close to a,.-1 and for i less than n and multiple of m.
Then A" = B" and (2) holds.
Now we prove (3). We divide this proof into five cases.

Case (A). s; = L for i = 1,...,n— 2. First we study simultaneously the
cases m = 1 and dy > 1, and m > 1 and d,—; = 1. By the induction
hypotheses we have that D(fy—i(ayn-1)) = 0. If s,y = L then ag. is such
that ayn € Fﬁn—l, D(f,,_l(aén)) < Cayn s and Fa/_‘,,(D(f,,_l(aAn))) =d,_1.
Hence, D(fy_i(a4n)) = dn—1/A (see Figure 11). By Remark 2.20, D(fu(a4»)) =
D(F,,,(D(fy-1(a4n)))) = 0. From Remark 2.19 we also obtain

8nlr . =A"c, > Acy = &ilr,n -
Therefore, if ¢, (1) denotes the kth turning point of F, we get

gn(t) — k() > &1(u) — cx(u) >0
forall uel'4n.

/

FIGURE 11. The map fy—1|r,

in Case (A)

n—1
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If s,—1 = R then there exists 4 € I'4.—1 such that D(f,_(u)) > c,. Since
D(fn—1(agn-1)) = O there exists x € I'y.—1 such that D(f,_;(x)) = ¢x and
K(x) = (4""")*° . Moreover, from Remark 2.19, gn—1(u) = A"“c,’, > ¢, forall

u € I'gn-1. Therefore, for all u € (x, B4.-1) we get K(u) = A"'Rg, . Now
we show that f |, B,._1) 18 concave. From Remark 2.19 we have g, (u) =

An=le, = A"~1(2—1)/(u+ A)?. By Remark 2.20 we also have
D(fu(1)) = D(Fu(D(fu-1(1))) = D(u(1 = D(fu-1(1))) + E(fu-1(1))).

Hence,

gn() =1 —=D(fu_1(1)) — u&n-1 = 1 = D(fr_1(n)) — ua""!
Thus,

A-1
(u+4)>

A A-1
/ =-2g,_ 2uAn— 1— n
&) = =281 +2uk TESE 21( )7 <0.

Hence ful(x, B,._1) 1s concave as it was claimed. Therefore to see that
Jalix, g,._1) 18 decreasing it suffices to show that g,(x) <0.

Now suppose that g,(x) > 0. By Lemma 2.21, for all k > 1 there exists
O > 0 such that K(y) = 4" 14" (4" ")k... forall y € (x, x +&). Then,
by using Remark 2.19 we have

An=1)(k+1)-1

8(n—1)k+2)(X) = 8n(X).

Therefore, for k sufficiently large we obtain

812 (%) > (A= 1)/(x + 4%) = cy.

Since ¢y is periodic of period a divisor of n — 1 we get D(fu—1)k+2)(X))
= ¢y forsuch k. Since the functions ¢, and D(f(,_1)k+2)(#)) coincide at u =
x and gu_1yr+2)(X) > (A=1)/(x+24)? = ¢} > 0 we have D(fin_1)k+2)(¥)) > ¢
for y > x sufficiently close to x. Therefore, K(y) = A"_léfl(é’fl)“d---
which is a contradiction with the above claim. Hence, g(x) <0 and ful(x,5,,_,)
is decreasing. So it is strongly decreasing and (3) holds. -

It remains to consider the cases m =1 and dy=1,and m > 1 and d,,,_ =
0 (recall again that when m > 1, d;(u) € {0, 1} for all i>0). By Lemma 2.4
it follows that n = m+1 and A’”“ C1(£0)m—1R] because ['4» # @ . Clearly
agmn = agm = max(1/(A™ — Am=1 — 1), /(A™ — 1)) . By the same arguments
as above Jm+1lr,,.,, 1s concave. Then, to prove that f.1]|4m+ is decreasing it
suffices to show that g,,,;(« 4m+1) < 0. By Remark 2.5 it follows sy41(agme) =

= Som—1(agme) = L. Then, from Remark 2.19 we obtain that gm+1(a gm+1)
and &mlay m1) have the same sign. Now we compute the sign of &am(oy mi1) .
Assume that max(1/(A" — A"~ — 1), 4/(A" = 1)) = 1/(A" =A™l —1). We
have 1/(Am —Am=1 - 1)+ 1 am-1

D(fam(agm)) = Cogma = 1/(Am = Am=1 — 1)+ ] TAm -1

By Lemma 2.9, K(u) > €1(*0)m~1R1(Lo)ym=1(E1(Lo)m=1)> for all u €

I'gmei . Hence, Ig (fom(n)) < < (E1(L0)m=1 forall u € [4me . Since

Lg, (=1 = 1)) = (F1(Foym= 1)
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from Lemma 2.3 of [AM] we obtain fo,, (1) < A™=1/(Am —1) forall u € I jmn
and hence, gm(aym+) < 0. Now assume that

max(1/(A™ =A™ —1,4/(A" = 1)) = A/(A" = 1).

Then,

D(fm(@gm)) = 7= -
As above, by Lemma 2.9 we get K(u) > €1(L0)" 1R (LOo)ym—1(L1(LO)m—1)o
for all 4 € Tymn and, hence, I (fom(w)) < (F1(*0)"~1)> forall u €T gmu .
Since Ip, (1/(A" = 1)) = (*1(*0)"~")>, from Lemma 2.3 of [AM] we obtain
Sfom() < 1/(A"—1) forall u €T ymu . Then g2m(agm) < 0. Thus, finiilr,

is decreasing and hence it is strongly decreasing.

Case (B). a(4"™!) =1, sj = R for some j e {l,...,n—2}, and s, =
L. Since o(4"') = 1 by the induction hypotheses we know that f,_, I, 18
strongly increasing and convex. Thus A(f;—(c 1)) < $-1d,_, because I'4» C
T no1. Since Sy_y = L weget S,_1(ayn-1) € {M, L} and d,_j(a 1) < dn_y .
Furthermore, from Remark 2.20 it follows that D(f;(x)) = D(Fx(D(fy-1(x))))
= D(AD(fn-1(x)) for all x € I'y». Hence, gulr,, = A&n-1lr,, and &nlr,n =
A8, _ylr,. - Thus fy|r,, is increasing and convex. Hence only it remains to
prove that Jalr, . 18 strongly increasing.

If dp_1(0gn-1) < dn_y we get D(fy(ayn)) =0 (see Figure 12). Then, since
the functions (u+1)/(u+4) and 1-k/u for k € N are increasing and concave,
by Lemma 2.15, we obtain that Do fy|r,, is strongly increasing.

Now we assume that dy_j(a n-1) = dy—1. Then agn =a n-1. If

D(fu-1(age-1)) =0

we obtain that Do fy|r,, is strongly increasing by the same arguments as above.
Hence we assume that D(f,— (a n-1)) # 0. If sy(ayn) = L we obtain (3)
from Lemma 2.15. Therefore, we also assume that s,(a4:) € {C, R}. Since
0(4"_1) = 1 and there exists j € {1,..., n — 2} such that s; = R we get

m+1

FIGURE 12. The map f,,_llr“_l in Case (B) when m >
1. Note that f,_,(a) = i/A and hence D(f,(a)) =0
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4! # B""!. By the induction hypotheses we have that c, = Ca is

én—l
periodic of period k < n—1. Set A% = Ay--- A,_, and consider two subcases:

Subcase (B1) o(4*) = 1. By the induction hypotheses we have that Jielr
is strongly increasing. Since a(ék ) =1, from Lemma 2.21 we get K(y) >
4"4’1(4&)‘” for all y > a4 . Therefore, either 4" = Akélj(éli)deoAl - A
forsome j>0and 0<i<k—1 or 4" =4de0A1 ..-A; forsome 0<i<k-—
1 or A" = 4* 4% (4% )/ forsome j > 0. Since a(4") = 1 and o (4’4" (4*)/) =
—1 the last possibility cannot occur and in both of the remaining cases we have
o(4y---A4;) = —1. In view of Remark 2.16, to show that fu|r,, is strongly

increasing it suffices to prove that A(f,(y)) > A(fa(agn)) = Aiy1 forall y €
I'4» . In the first case we have

K(y) = AoAy -+ Aidiyy -+ Ap 1 A5 (A do Ay - A4, (p) -
forall y € I'y». Hence,
L5 (FP%(c))) = SUK(K(y)) = Fdody -+ Aidn(p) -+~ < Ip (c5).
Since A9 = €dy and o(A4;---A4;) = —1 we obtain A,(y) = A(f(y))
Aiz1 = A(fa(ayn)) . In the second case,
K(y) = AoAy -+ Aidiy - AnRdoAy -+ - AiAn(y)
for all y € I'y». Therefore
L5 (F(cy) = SK(K(1)) = RdoAy - Aidn(¥) -+~ 2 Lg,(cf) -

Since Ay = €dy and a(A4;---A4;) = —1 we get A,(y) = A(fu(¥)) > Aiy1 =
A(fn(agn)) .

Subcase (B2). U(Ak) = —1. By the induction hypotheses, fker . 1s strongly
decreasing. We shall prove that A,(y) > Anx(ays-) for all y € I'y». From
Lemma 2.21 we obtain

(o) K(y) > AkA’i(A'i)w forall y > ayn.

Thus, either 4" = Akﬁli(é'i)fkdoAl ---A; forsome j >0 and i > 0 or
A" = A*tdyA, --- A; for some i >0 or A" = AkA'i(A’fr)f for some j > 0. In
the first and in the second case we have g(A4;---4;) = —1 and we obtain the
desired result as in Subcase (B1). In the last case we note that s,(ay-) = C,
and by (o) we have s,(y) = R for all y € I'4». Therefore, f, is strongly
increasing in I'4» .

v

Case (C). U(A"_') =—1 and s,y = L. Since g, = Ag,—; and g, = Ag,_,,
falr,. is decreasing and concave because f,_; |rA,H is decreasing and concave
by the induction hypotheses. i

Case (D). a(4""") = —1 and s,—; = R. Since gu(u) = (1 — D(fu_1(1))) —
18n—1(p) and gy (u) = —28n—1(1) —u8gy_1(1), falr,, 1s increasing and convex.
To see that f, is strongly increasing we use similar arguments to those of Case

(B).
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Case (E). g(4" ) =1, sj =R forsome je{l,...,n-2} and s, = R. By
the induction hypotheses we know that f,_i|r ,_, isstrongly increasing. Hence,
there exists an interval K such that I'4. C Kc Iyn-1 and s,-1(u) = R forall
u € K (recall that I'y» # @). Clearly gn,(u) =1— D(fo—1(1)) — ugn—1(#) and
gn(u)=—2gn—1(1)—g,_,(n) forall u € K. Since, by the induction hypotheses,
8&n-1lr,,_, >0 and g;_,|r,,_, >0 we obtain that f,|x is concave. To see that

Jalr “is decreasing (i.e., strongly decreasing) we consider again two subcases.

Subcase (E1). s,_1(ayn-1) € {M, L}. Since s,_; = R, there exists x € ['4»—
such that f,_;(x) = ¢, . Clearly K = (x, f4-—1). Then, since fy|x is concave,
to prove that f,|r,, is decreasing it suffices to show that g,(x) < 0.

From Lemma 2.21 we have that K(y) > 4" '477' (4”1~ forall y € K.
Moreover, for each / € N there exists d; such that K(y) = 4" 1474”7 1) ..
forall ye(x,x+4d).

Set Qi(cy) = fi(u) = F,f(c”) for i > 1. Note that g;(u) = Qj(cu)c, , and
since ¢, > 0, Qj(cy,) has the same sign as g;(u) for all i > 0. Moreover,
we also note that if K(y) = €dpA4,---4;--- and Ig(2) = Ldy---4;---, then
Fj(z) =Qi(z) for i=1,..., j+ 1. These properties will be used later.

We recall that for y € K we have s,_;(y) = R. Hence D(f,—(y)) >
¢, . Now, for such y, we denote by fu—1(y) the conjugate of D(f,,~_|(y)) in

(0, ¢y]. By the definition of the conjugate of a point we have Af,_(y) =
y(1 = D(fp-1(y))) + 1. Hence,

_ L+y(1-D(h()

fn—l(Y) 7
On the other hand, if y > x is sufficiently close to x we have K(y) =
A" '4"'... | Hence, by Remark 2.20,

D(fo—14x(¥)) = DFK(D(fu-1(0)))) = D(Ff (fum1())) = D(Qk(fu=1(»)))
for k=1,...,n—1. Thus,

&n—14k(V) = Qe(fuc1 V) (fuc1 )Y

— Q;((f;l—l(y))l _D(fn—l(y/%) —ygn—l(y)

= 201 )80

In particular, for y > x sufficiently close to x we obtain gy_1)(¥) =

%Q;_l(ﬁ,_l(y))g,,(y). We also note that for y € [x, x+4d;) and k=1, ...,
n—1 we have

D(frn—1)+k(¥)) = D(Q(D(Sfon—1)(¥))))

and
&n-1)+k(¥) = Qi (D(Sf2(n=1)(¥))) &2(n—1)(¥)

= 20D ain (V))& (7).

Therefore,

8501009 = s 1 DUty 0 Gy ot ()80 -
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FIGURE 13. The map (Do Ja-1)Ir,,_, in Subcase (E1)

n—1

Iterating this process for / =1, 2, ... and for y € (x, x + J;) we obtain
I+1
1

8u+2n-1)(¥) = 78011 fa1 (1)) [1 Gr s D Sitn-1y ().

i=2

Since D(fi(n—1)(x)) =cx forall / >1 and f,_;(x)=c, we get

(* Bus2n (%) = 5 (Gho () ().

We recall that to end the proof of the lemma in Subcase (E1) we need to
show that g,(x) < 0. To see this we assume that g,(x) > 0 and we arrive to
a contradiction. Since s,_,(4""!) € {M, L} and D(f,_1(x)) = ¢, , from the
proof of Lemma 2.15 (see Figure 13), it follows that

gn—1{x) = Q,n—l<cx>clx > CIx :
Hence Q) _,(cx) > 1. Then, from (e) we obtain

(*) 8+2)(n—1)(X) > ¢

for / sufficiently large. Let j € N be such that (x) holds with / = j. Set
AV = gl gl 4m7hy | Since K(v) = AYD0D forall y € (x, x+6))
we get that a,g.e-y = x. Since the maps D(fj,2)n-1)(#)) and ¢, coin-
cide at 4 = x and g( 2 n-1)(X) > ¢} it follows that D( Ji+in-1(¥)) > ¢
for y € (x, x + d;) close enough to x. Thus, for such y we have K(y) =
AYUrD=DRG ...+ a contradiction with the fact that K(y) > 4"~' 4" (4" )=
Then gu(x) <0 and hence fy|r,, is decreasing.

Subcase (E2). sp_i(ay.-1) € {C, R}. By the induction hypotheses we have
that ¢, , , is periodic of period k < n—1 and K =T .-i. Since fy|r,, is
concave, to prove that Julr,. is decreasing it suffices to show that g,(a qn-1) <
0. Let A* be the n-strip formed by the first k symbols of K(a,.-1) and set
Qj(cy) = fi(n) for j=1,...,k. Alsoset n = kr +i with k,r € N and
0 < i< k. Asin the previous subcase we have f,(y) = Q:(fix(y)) for y close
enough to a,.-1. Then, for such y, we obtain

8n(¥) = Qi(fk ())& (¥) -
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Since frx(agn-1) =Ca,,, We have gu(ay.-1) = Qi(Cayny)8rk(gn-1). We
note that the signs of Q (ca .,) and g (caA" ) coincide and, by the induc-
tion hypotheses, this sign is equal to the parity of ( ---A;j—1). Further-
more, the sign of g, is equal to the parity of (Ao---4,x_;) and hence, the
sign of gn(ay.-1) is equal to the parity of A0-~~A,k_1A0--~A,~_1 =A4A". So
gn(aﬁn_n)so. 0

Lemma 2.23. Let uy, up € I(m) be such that u; < pup and K(u) # K(uz). Let
n be the first natural such that An(uy) # An(i2). If n > 1 then s;(u1), ...,
sn—l(ﬂl) € {L, R}'

Proof. For i = 1,...,n—1 set A; = %d; = Ai(u1) = Ai(u2) and 4' =
Ag---Ai_ . Suppose that there exists j € {1, ..., n—1} suchthat s; € {M, C}
and let 0 < k < n—1 be the first natural with this property. By Lemma 2.22
we have that fker , is a rational function which is increasing or decreasing

according to the value of o(4*). Then, if 5, = M we obtain that fi|(, ) is
constant; a contradiction. If s, = C we get D(fy(u)) =c, forall u € (ur, uz).
Hence fi|(u,,u, is increasing. Also by Lemma 2.22, if 5; = R for some i =
l,...,k—1 we have that fi|y, ., is convex. This gives a contradiction
because the function ¢, is concave. Otherwise, by Lemma 2.18, we get that
fi(p) = A*c, + p(4) where p(A) is a polynomial of degree k — 1 in 4; again a
contradiction with the fact that D(fi(u)) =c,. O

Proposition 2.24. Let puy, uy € I(m) be such that py < uy. Then K(u;) <

K(uz) -

Proof. Assume that K(u;) # K(uz) and let n be the first natural such that
An(p1) # An(ua). For i=1,...,n—1 set 4; =d; = 4i(11) = 4i(42) and
A'=Ay---A;i—1 . By Lemma 2.23 weget s;e{L,R} fori=1,...,n—1.

Now, by Lemma 2.22, we get that fy|(,, ,,) s strongly increasing or strongly
decreasing according to the parity of a(4"). Thus we obtain A,(u1) < An(42)
if a(4") =1 or Au(p1) > An(u2) if 0(4") = —1. In both cases we have
K(pm) <K(pz). O

Now we are ready to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. If b(u;) # b(uz) the theorem holds from Proposition
2.3. So, we can assume that u;, u € J(m). If A"~y < 1 then the map
(F* = Dlpm=1jam=1), fmw-17 (€€ Proposition 2.13 and Figures 4 and 14) has
a fixed point z such that I (z) = (R1(L0)ym—1)> . Clearly we get K(u) =
C1(Lo)ym—1(R1(LO)"~1)>°, Then, when A"~ !u < 1 the kneading sequence K (u)
remains constant.

Now assume that A™ 'y, > 1. If additionally u, < A/(A™ — 1) then, by
Lemma 2.9, it follows that A > =,, . From Proposition 2.13 we obtain K(u;) <
K(uz). So we assume that u, > A/(A" —1). If u; < A/(A™ — 1) we obtain
the desired result from Lemma 2.9. Lastly we assume that u;, u» € I(m).
From Proposition 2.24 we get K(u;) < K(uz). Suppose that K(u;) = K(uz).
Then we obtain K(u) = K(u;) for all u € [ur, u2]. Set K(uy) = AoAy--- =
sodySidy --- and A" = Ay--- Ay_; . Then, from Lemma 2.23, we get s; € {L, R}
for all i > 0. Since [y, #2] C Tyn for all n > 0, falpu, ) 1s @ rational
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/
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FIGURE 14. The map (F;"—1)|im-1/am—1y, f,s(u)—1] When
Amly <1

function for all » > 0. Suppose that there exists # such that s, = R and let
k be the first natural with the property s, = R. From Lemma 2.18 we have

_ G-
8 (p) = —Zm

for all u € (u1, #2). On the other hand, by Lemma 2.22, the map fu|(,,u,] 18
either increasing and convex or decreasing and concave according to the parity
of A" for all n > k. In particular g, and g, have the same sign for all
n> k. Now set k; = min(A”, A" !y;) and ky = 2AK(A — 1)/(uz + A)3. Since
Uy > A/(A™ —1) we get k; > 1. We claim that

(%x) | &k +nm (1) > ki'k, for all u € [y, uo] and foralln > 1.

To see this note that for all i > 0 either g, (u) = A’”g,’Hm(i_l)(u) or

Girim(B) = 24" gy mii—1) () = A" 184y jm—1y(#) . Then, since gii(i—1ym
and gllc+(i—l)m have the same sign we obtain |g; ;.| > kllg,’c+(,._l)m| on [u;, u2l.
From this (xx) follows inductively.

Now fix x € (u1, u2) andlet n > 1 be such that kl'k, > m Then
since giynm and g, - have the same sign and it is constant on [u;, 2] we

have
X

|&Mamh4&ﬂﬂmn+/|@mamwu> L
H Ha— X

Then, since |gknmlu, ,u) 18 InCreasing,

1
ng+nm(:u)| > ——— forall ue [)C, .‘12] .
H2— X

From the mean value theorem we get

lﬁ(+nm(/‘2) - ﬁc+nm(x)| = |gk+nm(é)|(.u2 - x)

for some ¢ € (x, uy) and hence |fiinm(U42) — fesnm(X)| > 1. On the other
hand, by Lemma 2.17, E(fiinm(1)) is constant for all u € I' 44t . Namely,

E(fisnm()) =X =1 d; . This contradicts the fact that | fi y nm(K2)= fernm(X)]
>1.



MONOTONICITY OF ENTROPY FOR A FAMILY OF CIRCLE MAPS 675

Now we consider the case s; = L for all i > 0. From Lemma 2.18, g;(u) =

,licL forall i >0. Let n be such that A"c;lz > ;72_177. For such n we have
1

gn(u) = A"c, > A"cy, > e

for all u € [y, uz]. Therefore, from the mean value theorem we obtain

Ja(u2) = fa(u1) = 8n(&) (12 — 1)

for some & € [u;, up] and hence f,(u2) — fu(u1) > 1. As above we obtain a
contradiction. This ends the proof of the theorem. 0O

Proof of Theorem 2.2. First we consider the case b(u,), b(u2) € J(m). Assume
that 4 < A/(A™ — 1) and set F = F,. By Remark 2.10, we have that F™ — 1
maps the interval
Am—l m
J = [ﬁ N F (Cp) -1

into itself. Then the set of nonwandering points is the union of two invariant
closed sets: one of them is contained in Z = |J,(k + U;’;{,l Fi(J)) and the
other one in the closure of the complement of Z (think about the situation on
the circle). Then the entropy is equal to the maximum of the entropies on these
two sets. By the unimodality of F™|;, the entropy of F on the first one is
at most # log2. To compute the entropy on the second one we collapse each

of the connected components of Z to a point and we get a bimodal map F
with F(0) =0 and Ix(cz) = (“1(*0)"~!)>. Since F has the same kneading
sequences as Fy it follows that A(F) = log By /m (see [AM]). On the other
hand, since u < A/(A" — 1), Ly = [0, L]. Hence Lg» = [0, 1]. So, by
Theorem 1.2 of [ALMM], s(F™) > B, ,. An easy computation shows that
By = V241> 2. Thus, s(F) > 2'/™ and, hence, h(F) = logﬂo"l/m.

Now assume that 4 > 1/(A" —1) andset F =F,, c=c,, and ¢ = ¢r the
map defined in §2 of [AM]. First we show that ¢ is a conjugacy. To do this
suppose that the opposite is true. Then since ¢ is nondecreasing there exists
J = [x1, x2] € [0, 1] such that ¢|; is constant. Then, from Lemma 2.7(3)
of [AM], A(J) = 0. From Lemma 2.6 we know that Jr is dense in R and,
by taking F"(J) instead of J, we can assume that either 0 € J or c € J.
If 0 € J then there exists k such that [0, 1] ¢ D(F¥(J)); a contradiction.
Hence ¢ € J. Now assume that J is maximal with the properties that ¢ € J )
and A(J) =0. If for some k, 0 € D(F¥(J)), as above, we get a contradiction.
Since 7 is dense in [0, 1] we obtain that ¢ € D(F*(J)) for some k > 1.
Now assume that k is the first natural larger than O such that ¢ € D(F*(J)).
By the maximality of J we have D(F¥(J)) c J. Since {0, c}ND(F'(J)) =@
for i=1,...,k—1, we get that 4;(x) remains constant when x varies in J
for i=1,..., k—1. We denote this value by A4; =%d;. Set

g=Card{ie{l,...,k—1}:s5,=R}.

We note that from Lemma 2.4 and Remark 2.5 we get £k > m and if s; = R
forsome i=1,...,k—1then i<k—-(m—-1) and sjy; = - =Siym—1 = L.
Since §; =+ =S§,—; = L we have gm +m < k. Then, D(F¥)|; is piecewise
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linear with two pieces. Therefore D(F¥)|i, .. has slope (A"~!u)93*~m4 and
D(FF)|ic,x, has slope (A™~!u)a+1pk—ma—m _This gives a contradiction because

1 1 1 1
(,{m—lu)qlk—mq + (Am—lu)q+llk—mq—m < m + Am=Ty

Hence, F, and fp are conjugate and, by Proposition 3.12 of [AM], (recall
that from Remark 2.7, Proposition 3.12 of [AM] works in this case) K(u) =
I 7 (c~Fv). Therefore, if pu;, up € I(m) and u; < u, then, from Theorem 2.1

" "

we have that K(u;) < K(uz) and hence F, # F,, . Since T(F,) = T(F,,)=0
we obtain s(F, ) # s(F,,). On the other hand, since K(u;) < K(u;), then
s(u) < s(u2). So, s(puy) < s(p2) and h(py) < h(ua). If up > A/(A—1) > u
take u3 € (A/(A™ — 1), uz). Then, by the above argument we have h(u;) >
h(us) > h(uy) . Hence (2) holds.

Lastly, assume that u; € J(m;) and u, € J(my) with m; # m,. By
Proposition 2.3 we have m; > m,. Let u3 € I(m;) be such that u; < us.
Then h(u;) < h(us3) . From Proposition 2.3 we have K(u3) < K(u;) and hence
h(us) < h(p) . So, h(u1) < h(uz) < h(pz). O

<.

3. THE FAMILY F;

In this section we assume that u is fixed and we study the uniparamet-
ric family F; = G;,,. We use a similar notation to the preceding section.
We set ¢, = c1,u, b(A) = by, fu(d) = F'(c;) and gu(A) = dfu(A)/dA
when D(fi(4)) ¢ {0,¢c;} for i=1,...,n—1. Also set K(A) = K(4, u) =
Aog(A)A1(A) -+ = Cdy(A)*Pd,(A)--- , and define

P (A)—{ 1 1fCard{l€{l, cee, N — l}sl(ﬂ,):R} is even,
A U | if Card{i € {1, ..., n—1}:5;(4) = R} is odd.

Lastly, set ¢}, =dc;/di=—(u+1)/(A+p)?.
The main results of this section are the following.

Theorem 3.1. Let Ay and A, be such that Ay < A;. Then K(i;) < K(4,).
Moreover K (i) = K(43) if and only if there exists m € Z, m > 1 such that
b(A)=b(A) =L and A7 'u< 1.

m

Theorem 3.2. Let A, and A, be such that A, < A,. Then h(d1) < h(4z).
Moreover h(i;) = h(Ay) if and only if there exists m € Z, m > 1 such that
b(A1) =b(A2) =L and u <2y/(AF —1). In this case h(4,) = B tjm-

m

Theorems 3.1 and 3.2 will be proved in a similar way to Theorems 2.1 and
2.2.

The next result is the equivalent to Proposition 2.3 for this new family. Its"
proof is analogous.

Proposition 3.3. If ' > A and b(X') # b(A) then K(X') > K(4).

From Proposition 3.3 it suffices to prove Theorem 3.1 when b(A’) = b(4).

Let m € N be such that m — 1 < b(A) < m. Clearly if b(4) > 1 we have
m =1 and b(4) € [L, -L;) otherwise. We shall keep this assumption until
the end of this section and again we shall split the study of this case into several
lemmas.
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1
1

1 k3 ky &y

FiGURE 15. The roots k,, of R, (1) =0

First we state results analogous to Lemmas 2.4 and 2.9 for the family F;.
To do this we need some notation.

Set R,(A) = A" — A™~1 — 1. Since for A > 1 the equation R, (1) =0 is
equivalent to A"~ ! =1/(A—1), limy_+1/(A—1) =00, 1/(A—1) is decreas-
ing and A™~! is increasing (see Figure 15), we have that R,,(4) has a single
root k, in (1, 00). Since for A > 2, 1/(A—1) < 1 we obtain k, < 2 for
all m > 1. Also, if m > n we get k,, < k,. Moreover, for A > k,, we have
R, (A)>0.

Now we consider the maps ¢,,: (kn, ©0) — (0, 00) and yp,: (1, 00) —
(0, 0o0) defined as follows:

1 A
om(A) = o=y ad Vm) =5y

Clearly we have that ¢, and y, are decreasing, lim;_;:+ ¢m(4) = oo,
limy_ o om(4) =0, lim;_,+ ¥y(4) = 0o, and

) 0 ifm>1,
AILTOW"'(A)—{ 1 ifm=1.

From Lemma 2.9 we get that ¢,,(1) < w,(4) if and only if 4 > &, . Let
om': (0, 00) = (km, o) and y,,': (a, o) — (0, co) be the inverse functions
of ¢, and w,, respectively (where a =1 if m = 1 and a = 0 otherwise).
Clearly ¢,,' and y,,' are decreasing (see Figure 16). We note that when m = 1
and u <1, y,;'(u) is not defined.

The next lemma is the analogue of Lemma 2.4 for the family F;.

Lemma 3.4. The following statements hold.
(1) If m=1 then A € [p,' (1), );

(2) If m>1 then A €lpy' (1), oyl ()5
(3) If m>1 then

(C1(*0)™1)>® = K (9, (1)) < K(A) < (C1(*0)"~2)=.
Otherwise K(A) > (€1)*°.
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FIGURE 16. The maps ¢;,' and ! for m>1

Proof. (3) follows in a similar way to Lemma 2.2(4). Also, from Lemma 2.4(1),
we get R,,(4) > 0 and hence 4 > k,,. Thus, by Lemma 2.4(2) it follows that
¢m(A) < u. Hence A > ¢;'(u). This proves (1) and the first inequality of
(2). Now assume that m > 1. If 4 > k,,—; we get that R,,_;(4) > 0 and, by
Lemma 2.4(3), it follows that u < ¢,,—;(4). Thus, 4 < (p;,‘_l(u) LI A<ky

we have ¢! (1) > kg > 4. O

Now we set
K (m) = { Omer () i m > 1,
ifm=1,

and J!, = [p;'(u), k'(m)]. Also set @), = @p(m) = Wm(Aw) and I'(m) =
{ReJ(m): 2> ¢ (u)}. When m=1 and u <[ weset ['(m)=2

Remark 3.5. From Lemma 3.4(4) it follows that for m > 1 and for A € J'(m)
we have K(1) = € 1(L0)"-2Ld ... with d € {0, 1}. Therefore, from Proposi-
tion A of [AM], we get that if d;(4) =1 for some i > 0, then s;;;(A) = L for
j=1, —landd,ﬂ(/l) 0for j=1,...,m-2.

The followmg result is the analogue of Lemma 2.9 for the family F; and
follows easily from its proof. When A € J/(m) we define x; as for the family
F, . Thatis, x; is the Fj-conjugatein [c;, 1) of the largest element of the TPO
of period m and rotation number 1 in (0, ¢;] (recall that this TPO exists in

view of Lemma 4.1 of [AM]).

Lemma 3.6. The following statements hold.
() Ifm>1,0or m=1 and p > 1 then y,,'(u) € J'(m) if and only if
uny
2 Ifm>1,0or m=1 and u>1 then for A€ J'(m), fm(A) <1+x; if

and only if A < y,'(1);
(3) If m=1 and p<1 then fu(A)<1+x; forall A€ J'(1);



MONOTONICITY OF ENTROPY FOR A FAMILY OF CIRCLE MAPS 679
(4) If u<n' and A, € J'(m) with A< y,' (1) <A’ then
K@) <K(yy,'(w) =B <K@X);
(5) If u>nl, and A€ J'(m) then K(A) > B.

In view of Lemma 3.6 we can split our problem into two different cases.
Namely u <, and A € [p,' (1), ¥»'(#)] and

A€ (max(p,' (1), Ya' (1), K'(m)).

To study the monotonicity of K(4) in the first case we use again Theorem 2.6.
The proof of the following result is similar to the proof of Proposition 2.13.

Proposition 3.7. Let p, Ay, and A, be such that p < m,, and o) <A <
22 < w,'(1). Then K(4;) < K(42). Moreover, ifl;"‘l,u > 1 then K(4)) <
K(4,).

Now, we consider the second case. That is

A€ I'(m) = (max(py' (1), ¥y' (1), K'(m)).

We study this case through a sequence of lemmas.

Let A" be an n-strip. Now we denote by A,» the interior of the set of A’s
such that K(A) starts with 4”. We note that if Ay» # @ then 50 = C and
fnla,» is a rational function on 4. Now set I'y» = Ay N1I'(m).

Let (a,b) c (1,00) and f: (a, b) — [0, 1] be a continuous map. We say
that f is strongly increasing if f is increasing and for all 4, A’ € (a, b) with
A < A we have A;(f(A) < Ap(f(A)) (now A;(x) denotes the F;-address
of x). We say that f is strongly decreasing if f is decreasing and for all
A, A € (a, b) with A < A’ we have A;(f(4)) > 4 (f(4')). Note that, contrarily
to the situation for the family F),, since each turning point of F; depends on
1 in a nonincreasing way, to show that f is strongly increasing it is enough to
show that f is increasing (see Figure 17(a)). We also note that the notions of
strongly decreasing and decreasing are not equivalent (see Figure 17(b)).

The next results follow in a way similar to the corresponding results for the
family F, (see Figure 18 on page 681). ‘

Remark 3.8. From Lemma 2.15 it follows that if f: [a, b) — R is a differ-
entiable function decreasing and concave and f(a) > ¢, then f is strongly
decreasing. Moreover, to see that f is strongly decreasing it suffices to show
that 4,(f(»)) < 4a(f(a)) forall y €[a, b).

Lemma 3.9. Let A" = CdyRd,---Rd,_, be an n-strip. Then for all A € Ayn
and k=1,...,n we have ;

Selw) = (=) Acy + pla (1) s

where pk.(u) is a polynomial of degree k — 1 in u which depends only on
do,...,dn1.

Remark 3.10. From the preceding lemma we see that if A" =CdoRd;---Rd,_,
then for all € Ay» and for k=1, ..., n we have

g(d) = (D)@ (u+ D/ (n+ 1?2
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/ ca(A) ca(A)

s \ () = o
ea() § eN)

Cl(/\)

(a) (b)

FIGURE 17. (a) shows a map increasing and strongly in-
creasing. (b) shows a map decreasing and not strongly
decreasing. The curves c;(u) are the graphs of the turn-
ing points depending on A

Moreover, if C* is a k-strip and 4" = C*RdRdy,,---Rd,_, then g ;(4) =
(—n)igk(4) for i=1,...,n—k and for A€ Ayn.

Lemma 3.11. Let A" =%d,---~1d,_, be an n-strip such that s; € {L, R} for
i=1,...,n—1 and assume that T 4» is an open interval, fnlr,,,. is either

strongly increasing and a(A") = 1 or strongly decreasing and a(_/_l_”) = —1;
and there exists a unique x € I’ 4n such that D(f,(x)) = cx. Then the following
hold.

(1) If o(4") =1 thenforall 2 € T 4n suchthat > x, K(A) > A"A (4 ")°°
Moreover, for all [ € N there exists 6; such that K(A) = A" A (4")" -
forall A€ (x,x+3).

(2) If 6(4")=—1 thenforall A€T 4n suchthat A>x, K(A) > A" A" (4})>.

Moreover, for all | € N there exists 6; such that K(A) = A" _A_” (A4n) -
forall Ae(x,x+4)).

Lemma 3.12. Let A" = %d,---*-'d,_, be an n-strip such that s; € {L, R} for
i=1,...,n—1 and assume that T 4» # @. Then the following hold.
(1) Tyn = (agn, Bar) with Bgn € RU {o0}.
(2) Either D(fu(agn)) = 0 or ca,. Is periodic of period less than n or
A" = B" and in this case ay» = max(p,' (1), v,'(1)).

B)Ifsi=R fori=1,...,n—1 then fulr,, is strongly increasing
if 0(4") = 1 and strongly decreasing if o(4") = —1. Otherwise,
if o(4") = 1 then fulr,, is strongly increasing and convex and if
a(4") =—1 then fulr,, is strongly decreasing and concave.

Proof. The proof is very similar to the proof of Lemma 2.22 and it uses exactly
the same ideas. Thus, rather than writing the whole proof we are going to
point out its differences with the corresponding proof for the family F,. So,
from now on we shall use freely the whole proof of Lemma 2.22. We use
induction. For n = 1 we have 4' = €d with 0 < d < E(u) + 1 (where
E(x) denotes E(x) for x € R\Z and x — 1 for x € Z). If m > 1 then
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0 1

FIGURE 18. The values a¢, for d=1,2,3

'= B! = €1 and Iy = I'(m). Hence (1) and (2) hold. If m =1 then
1= (dp/(n—d+1), Bgr) (see Figure 18) where

5 _{ @l if d < Eu),
Al =

00 ifd>E(u).

D>

If d =1 theneither £ <1 and I'(1) = @ or x> 1 and then we get A'= B!
and oy = max(p,' (1), v, (). If d>1,wehave ay =(d—-1)i/(A-d).
Hence (1) and (2) hold for n=1.

Note that fi(4) = Ac; . Therefore gi(A) = u(u+1)/(u+4)*>0. Thus fi|r
is increasing and hence it is strongly increasing. -

Now we assume that the lemma holds for n—1 > 1 and prove it for n. The
proof that (1) and (2) holds for 7 is analogous to the corresponding proof of
Lemma 2.22. To prove (3) we distinguish three cases.

Case (A"). si=R for i=1,...,n—=2.If m > 1 then, by Lemma 3.4, we
have n =2 and 4% =C1Ld. Hence

HLA)=AAMR) - +1 and g(A)=4ga(d)+ /(4)-1>0,

forall A €T .. Thus, lerA2 is increasing and hence it is strongly increasing.
Moreover, we get -

i+ D+ 1) 2
g(A) = Agl(A) +2g1(A) = {t;i:)z)‘ (Z(f;)}): A(tu(it;r);))o

forall €T 4.. Then f|r,, is convex.
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Now we consider the case m = 1. If dy =1 then n <3 by Lemma 3.6(5).
If n=2 then 4°> = B> = C1R1 and hence g(u) = —ugi(u). Thus flr,, is
decreasing. Moreover, -

Ax(ay2) =

1 if Qg2 = om' (1),
L1 if ey = v (1),

because a2 = max(¢;' (1), ¥y'(4)). By Lemma 3.6(5) we obtain A»(4) < *1
for all A € I'y.. Thus f|r,, is strongly decreasing. If n = 3 we get 4° =
C1R1Ld by Lemma 3.6. Since s,(u) = L for all A € 4. we have

83(A) = 1&(4) + D(2(4)) and  g;(4) = 2&(4) + 1&(4)

forall A €T ,:. An easy computation shows that

217 (n+1)
wrap <O

forall A €T 4. Since I'ys CT 4 it follows that f3|1"4 , 1is concave. Then, to
prove that f3|1",;3 is decreasing it suffices to show that g3(a,:) < 0. To do this
we use the same arguments as in Case (A) of Lemma 2.22 when dp = 1. Note
that these arguments also show that f3|1~A3 is strongly decreasing.

Lastly, it remains to consider the case dp > 1. If s,_; = R we get gy|r,, =
- ,ug,,_1|rA,, . Hence, f, is increasing or decreasing according to the parity of

Assume that o(4") = —1. Since A" # B" (recall that dy > 1) we get
that either D(fy(ayn)) =0 or ay. is periodic of period less than n. In the
first case, by Remark 3.8, we obtain that f,,h-A,, is strongly decreasing. In the
second case we use the same arguments as in Case (B) of Lemma 2.22 to show
that fu|r,, is strongly decreasing. If s,_; = L we get from Remark 3.10

g(4) = -

-2, n— 1
o1 (3) = (-1 2 )

and

' o qpyn=2,m—2M(u+1)
gn-1(A) = 2=1)"2W P E

for all 2 € T'ya-1. Since gn(4) = D(fu(4)) +A8n—1(4) and gn(A) =Ag,_(A) +
284—1(4) forall A € T4, we obtain

gn(A) = —2(—1)"-2un—2w +2(=1yr-2yn-2 plu+1)

PERE TEL
— n—-2,n— #(:u'*'l) —A
=21 Qu+m2<u+z+‘)
n—-2 n 2/‘ (lu+1)
=21 TERE

forall A € I'yn. Hence, if 6(4") =1 then f,,|1-4,, is convex and if o(4") = -1,
fnlr,» 1is concave. If ag(4") = 1, from the induction hypotheses we get that
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Ja-1lr,,_, is increasing. Since gn(4) = D(fu(4)) +Agn—1(4) forall 1 € T4 it
follows that f,, Ir,. 18 increasing and hence it is strongly increasing. Assume that
o(4™) = —1. Since Jnlr,» is concave, to see that f,|r,, is decreasing it suffices
to show that g,(a,n) < 0. To do this we use the same arguments of the proof
of Case (E) of Lemma 2.22. To show that f,|r,, is strongly decreasing we use
either Remark 3.8 or the arguments of Case (B) of Lemma 2.22 depending on
whether D(ayn) = 0 or whether ay. is periodic of period less than 7.

Case (B'). a(4"') = -1 and sj = L for some j € {1,...,n—2}. Since
0(4""') = —1, by the induction hypotheses we know that f,_, |1-A"_l is strongly
decreasing and concave. If s,_; = R we get -

gn(A) = —pugn-1(4) and g, (4) = —pgn-1(4)
for all A € I'y». Hence fu|r,, is strongly increasing and convex. If s,_; = R
then -

&n(4) = D(fo-1(4)) + Agn-1(4) and g,(2) = 2gn-1(4) +A8y_1(4)

for all A € I'y». Therefore fy|r,, is concave. Then, to see that fy|r,, is
decreasing it suffices to show that g,(a4-) < 0. To do this we use the same
arguments as in Case (E) of the proof of Lemma 2.22. To show that it is strongly
decreasing we use the arguments of Case (B) of Lemma 2.22. In the particular
case when 4" = B" we use again the corresponding arguments from the proof
of Lemma 2.22.

Case (C)). o(4" ") =1 and sj = L for some j € {1,...,n—2}. Since
o(4" ") = —1, by the induction hypotheses we get that f;_; Ir, is strongly
increasing and convex. If s,_; = L we have -

&n(4) = D(fo-1(2)) + gn-1(4) > 0

n—1

and
8n(4) =28n-1(A) +2g,_1(4) > 0
for all A € I'4». Hence (3) holds in this case. If s,_; = R we have

gn(A) = —ugn-1(A) <0 and g,(4) =—png, (1) <0
for all A € I'y». Therefore f,,lry is decreasing and concave. If D(f,(ay4n)) =
0, from Remark 3.8, we get that f,,|1-4,, is strongly decreasing. If oy~ is

periodic of period less than #, by using the arguments of Case (B) of Lemma
2.22, we obtain that f,|r,, is strongly decreasing. In the particular case when

A" = €1(£0)"~!R1 we use the corresponding arguments from Lemma 2.22. O

The following proposition is the equivalent to Proposition 2.24 for the family
F; . Its proof is analogous.

Proposition 3.13. Let A, Ay € I'(m) be such that 1, < Ay. Then K(4) <
K(A,).

From all these results we can prove Theorems 3.1 and 3.2 in a similar way
to Theorems 2.1 and 2.2.
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