KNEADING THEORY FOR A FAMILY OF CIRCLE MAPS WITH ONE DISCONTINUITY

LL. ALSEDÀ AND F. MAÑOSAS

ABSTRACT. We apply the kneading theory techniques to a class of circle maps with one discontinuity and we characterize the rotation interval of a map in terms of the kneading sequences. As a consequence we obtain lower and upper bounds of the entropy depending on the rotation interval.

1. INTRODUCTION

We study the class \mathcal{C} of maps $F \colon \mathbf{R} \longrightarrow \mathbf{R}$ defined as follows (see Figure 1). We say that $F \in \mathcal{C}$ if:

- (1) $F|_{(0,1)}$ is bounded, continuous and non-decreasing.
- (2) $\lim_{x \uparrow 1} F(x) > \lim_{x \downarrow 1} F(x).$
- (3) F(x+1) = F(x) + 1 for all $x \in \mathbf{R}$.

For a map $F \in \mathcal{C}$ and for each $a \in \mathbb{Z}$ we set $F(a^+) = \lim_{x \downarrow a} F(x)$ and $F(a^-) = \lim_{x \uparrow a} F(x)$. In view of (3) we have $F(a^+) = F(0^+) + a$ and $F(a^-) = F(0^-) + a$. Note that the exact value of F(0) is not specified. Then in what follows we consider that F(0) is either $F(0^+)$ or $F(0^-)$, or both, as necessary.

Since every map $F \in C$ has a discontinuity in each integer, the class C can be considered as a family of liftings of circle maps with one discontinuity.

The maps of class C appear in a natural way in the study of many branches of dynamics. The simplest example of such maps is the family $x \to \beta x + \alpha$, which plays an important role in ergodic theory (see [H]). The case $\alpha = 0$ gives the famous β -transformations (see [R]). Also, the class C contains the class of the Lorenz-Like maps which has been studied by several authors (see [ALMT], [G], [GS], [Gu], [HS], [S]).

The aim of this paper is to extend the kneading theory developed in $[\mathbf{AM}]$ for continuous maps of the circle of degree one to class C, to obtain a characterization of the rotation interval of a map in terms of its kneading sequences. From this characterization we shall obtain models with maximum and minimum entropy

Received October 20, 1995.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 34C35, 54H20.

Key words and phrases. kneading theory, rotation interval, bounds of topological entropy. Supported by DGCICYT grant number PB93-0860.