SHORT NOTE

A note on a rational difference equation

Lluís Alsedà ${ }^{\mathrm{a} *}$ and Michał Misiurewicz ${ }^{\text {b1 }}$
${ }^{a}$ Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Barcelona, Spain; ${ }^{b}$ Department of Mathematical Sciences, IUPUI, 402 North Blackford Street, Indianapolis, IN 46202-3216, USA

(Received 2 December 2009; final version received 26 January 2010)

Abstract

We answer a question raised by G. Ladas at the ICDEA 2009 conference, by showing that the non-autonomous difference equation $x_{n+1}=1 /\left(x_{n}+A_{n}\right)$ with $x_{n}, A_{n}>0$ and $A_{n} \rightarrow 0$ with the ratios A_{n+1} / A_{n} bounded can have solutions whose set of accumulation points contain a non-degenerate interval.

Keywords: difference equation; rational; non-autonomous; solutions; non-convergence
AMS Subject Classification: Primary: 39A33; 39A20

1. Introduction

At the ICDEA 2009 conference, G. Ladas raised the question whether the solutions of the non-autonomous difference equation

$$
\begin{equation*}
x_{n+1}=\frac{1}{x_{n}+A_{n}} \tag{1}
\end{equation*}
$$

where

$$
x_{n}, A_{n}>0, \quad A_{n} \rightarrow 0
$$

with the ratios A_{n+1} / A_{n} bounded, have to converge to a period 2 or 1 cycle.
We will show that the answer to this question is negative. Namely, the following theorem holds.

Theorem 1.1. Let t, s be real numbers such that $1<s<t<\sqrt{2}$. Then, there exists a sequence $\left(A_{n}\right)$ of positive numbers, with $A_{n} \rightarrow 0$ and the ratios A_{n+1} / A_{n} taking only values $1 / 2$ and 2 , such that the difference equation (1) has a positive solution $\left(x_{n}\right)$ for which the set of accumulation points of the sequence $\left(x_{2 n}\right)$ is equal to the interval $[s, t]$.

2. Proof of the theorem

We fix s and t as above, $x_{0} \in[s, t]$, and $A_{0} \in(0,1 / 9)$ such that $t\left(A_{0}+t\right)<2$. Then, for each n, we define $A_{2 n+1}$ and $A_{2 n+2}$ by induction, setting:
(a) $A_{2 n+1}=A_{2 n} / 2$ and $A_{2 n+2}=2 A_{2 n+1}$, or

[^0]
[^0]: *Corresponding author. Email: alseda@mat.uab.cat

