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SHORT NOTE

A note on a rational difference equation
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We answer a question raised by G. Ladas at the /ICDEA 2009 conference, by showing
that the non-autonomous difference equation x,+; = 1/(x, + A,) with x,, A, > 0 and
A,, — 0 with the ratios A,,; ;/A,, bounded can have solutions whose set of accumulation
points contain a non-degenerate interval.
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1. Introduction
At the ICDEA 2009 conference, G. Ladas raised the question whether the solutions of the
non-autonomous difference equation
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Xn+1 =

where
Xn,Ap >0, A, —0,

with the ratios A, /A, bounded, have to converge to a period 2 or 1 cycle.
We will show that the answer to this question is negative. Namely, the following
theorem holds.

THEOREM 1.1. Let t, s be real numbers such that 1 < s <t < /2. Then, there exists a
sequence (A,) of positive numbers, with A,, — 0 and the ratios A, 11 /A, taking only values
172 and 2, such that the difference equation (1) has a positive solution (x,,) for which the set
of accumulation points of the sequence (x,,) is equal to the interval [s, t].

2. Proof of the theorem
We fix s and t as above, xy € [s,¢], and Ay € (0,1/9) such that #(Ay + 1) < 2. Then, for
each n, we define A,,,; and A,,,, by induction, setting:

() Azpy1 = Az, /2 and Apyin = 240,41, OF
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