

SHORT NOTE

A note on a rational difference equation

Lluís Alsedà^a* and Michał Misiurewicz^{b1}

^aDepartament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Barcelona, Spain; ^bDepartment of Mathematical Sciences, IUPUI, 402 North Blackford Street, Indianapolis, IN 46202-3216, USA

(Received 2 December 2009; final version received 26 January 2010)

We answer a question raised by G. Ladas at the *ICDEA 2009* conference, by showing that the non-autonomous difference equation $x_{n+1} = 1/(x_n + A_n)$ with $x_n, A_n > 0$ and $A_n \rightarrow 0$ with the ratios A_{n+1}/A_n bounded can have solutions whose set of accumulation points contain a non-degenerate interval.

Keywords: difference equation; rational; non-autonomous; solutions; non-convergence

AMS Subject Classification: Primary: 39A33; 39A20

1. Introduction

At the *ICDEA 2009* conference, G. Ladas raised the question whether the solutions of the non-autonomous difference equation

$$x_{n+1} = \frac{1}{x_n + A_n},\tag{1}$$

where

$$x_n, A_n > 0, \quad A_n \to 0,$$

with the ratios A_{n+1}/A_n bounded, have to converge to a period 2 or 1 cycle.

We will show that the answer to this question is negative. Namely, the following theorem holds.

THEOREM 1.1. Let t, s be real numbers such that $1 < s < t < \sqrt{2}$. Then, there exists a sequence (A_n) of positive numbers, with $A_n \rightarrow 0$ and the ratios A_{n+1}/A_n taking only values 1/2 and 2, such that the difference equation (1) has a positive solution (x_n) for which the set of accumulation points of the sequence (x_{2n}) is equal to the interval [s, t].

2. Proof of the theorem

We fix *s* and *t* as above, $x_0 \in [s,t]$, and $A_0 \in (0,1/9)$ such that $t(A_0 + t) < 2$. Then, for each *n*, we define A_{2n+1} and A_{2n+2} by induction, setting:

(a)
$$A_{2n+1} = A_{2n}/2$$
 and $A_{2n+2} = 2A_{2n+1}$, or

ISSN 1023-6198 print/ISSN 1563-5120 online © 2011 Taylor & Francis http://dx.doi.org/10.1080/10236191003657261 http://www.tandfonline.com

^{*}Corresponding author. Email: alseda@mat.uab.cat