LOWER BOUNDS OF THE TOPOLOGICAL ENTROPY OF MAPS OF Y1 ## BY LLUÍS ALSEDÀ^{2,3} AND JOSÉ MIGUEL MORENO² ²Departament de Matemàtiques. Facultat de Ciències. ³Departament d'Economía i Història Econòmica. Facultat de Ciències Econòmiques. Universitat Autònoma de Barcelona. 08193 BELLATERRA (Barcelona). SPAIN. Abstract. We give the best lower bound of the topological entropy of a continuous map f of the space $Y = \{z \in C \mid z^3 \in [0,1]\}$ into itself, with f(0) = 0, as a function of its set of periods. Let y be the family of continuous maps of the space $\mathbf{Y} = \{z \in \mathbf{C} \mid z^3 \in [0,1]\}$ into itself with 0 as a fixed point. A characterization of the set of periods of periodic orbits of $f \in \mathcal{Y}$ based upon the knowledge of the behaviour of certain periodic orbits was given in [ALM]. Having the characterization of the behaviour of those periodic orbits, we can apply the standard techniques of [BGMY] to calculate the best lower bounds of topological entropy for $f \in \mathcal{Y}$, depending on the set of periods of f. Thus our work goes in the fifth of the six directions suggested in [ALM]. As usual $x \in Y$ is a periodic point for $f \in \mathcal{Y}$ if there is some $n \in \mathbb{N}$ such that $f^n(x) = x$. Then the set $\{x, f(x), \dots, f^{n-1}(x)\}$ is a periodic orbit of f, and its period is the smallest $m \in \mathbb{N}$ such that $f^m(x) = x$. We denote by Per(f) the set of periods of all periodic orbits of f. We define several orderings of some subsets of N. In the whole paper the symbol \equiv will denote congruence mod 3. . The Šarkovskii ordering of N is: $$3, 5, 7, 9, \ldots, 2 \cdot 3, 2 \cdot 5, 2 \cdot 7, 2 \cdot 9, \ldots, 2^2 \cdot 3, 2^2 \cdot 5, 2^2 \cdot 7, 2^2 \cdot 9, \ldots, 2^3, 2^2, 2, 1$$ If k appears to the right of n in the above ordering, we shall write k > n. If $k = 2^p \cdot k'$ and $n = 2^q \cdot n'$, where k' and n' are odd, then we have k > n if and only if one of the following cases occurs: - (i) k' > 1, n' > 1, p > q. - (ii) k' > 1, n' > 1, p = q, k' > n'. - (iii) k' = 1, n' > 1. - (iv) k' = 1, n' = 1, p < q. ¹ This is a summary of [AM]