ON THE ROTATION SETS FOR NON-CONTINUOUS CIRCLE MAPS

L. ALSEDÀ and J. M. MORENO

Abstract

We give some examples of non-continuous circle maps whose rotation sets lack the good properties they have in the case of continuous maps.

1. Introduction

Let $e: \mathbf{R} \longrightarrow \mathbf{S}^{1}$ be the natural projection defined by $e(x)=\exp (2 \pi i x)$. A map $F: \mathbf{R} \longrightarrow \mathbf{R}$ is called a lifting of a map $f: \mathbf{S}^{1} \longrightarrow \mathbf{S}^{1}$ if $e \circ F=f \circ e$ and there is a $d \in \mathbf{Z}$ such that $F(x+1)=F(x)+d$ for all $x \in \mathbf{R}$. This d is called the degree of the lifting F. Note that since we do not impose continuity for F, every f has liftings of all degrees.

We shall only consider maps (liftings) of degree one. Following 4, a map $F: \mathbf{R} \longrightarrow \mathbf{R}$ is called an old map (old is a mnemonic for 'degree one lifting') if $F(x+1)=F(x)+1$ for all $x \in \mathbf{R}$. Clearly, F is an old map if and only if there exists $f: \mathbf{S}^{1} \longrightarrow \mathbf{S}^{1}$ such that F is a lifting of f of degree one. It is easy to see that in this case $F(x+k)=F(x)+k$ for all $x \in \mathbf{R}$ and $k \in \mathbf{Z}$, and that iterates of an old map are also old maps.

A point $x \in \mathbf{R}$ is called periodic $\bmod 1$ of period $q \in \mathbf{N}$ and rotation number p / q for an old map F if $F^{q}(x)-x=p \in \mathbf{Z}$ and $F^{i}(x)-x \notin \mathbf{Z}$ for $i=1,2, \ldots, q-1$. Similarly, for any $x \in \mathbf{R}$ we can define its orbit mod 1 under F as the set $e^{-1}\left(\operatorname{Orb}_{f}(e(x))\right)=\operatorname{Orb}_{F}(x)+\mathbf{Z}=\cup_{n \geq 0}\left(F^{n}(x)+\mathbf{Z}\right)$. The orbit mod 1 of a periodic mod 1 point is also called a lifted cycle of F.

For an old map F and a point $x \in \mathbf{R}$ we define $\bar{\rho}_{F}(x)$ and $\underline{\rho}_{F}(x)$ (or $\bar{\rho}(x)$ and $\underline{\rho}(x)$ if no confusion seems possible) as

$$
\bar{\rho}_{F}(x)=\limsup _{m \rightarrow \infty} \frac{F^{m}(x)-x}{m} \quad \text { and } \quad \underline{\rho}_{F}(x)=\liminf _{m \rightarrow \infty} \frac{F^{m}(x)-x}{m}
$$

When $\bar{\rho}_{F}(x)=\underline{\rho}_{F}(x)$ we write $\rho_{F}(x)$ or $\rho(x)$ to denote both $\bar{\rho}_{F}(x)$ and $\underline{\rho}_{F}(x)$. The number $\rho_{F}(x)$ (if it exists) is called the rotation number of x with respect

[^0]
[^0]: Received July 27, 1998.
 1980 Mathematics Subject Classification (1991 Revision). Primary 34C35, 58F03; Secondary 26A18, $58 \mathrm{~F} 08,54 \mathrm{H} 20$.

 Key words and phrases. Periodic point, old map, rotation number, rotation set.
 The first author has been partially supported by the DGICYT grant number PB96-1153.

