ON THE ROTATION SETS FOR NON-CONTINUOUS CIRCLE MAPS

L. ALSEDÀ AND J. M. MORENO

ABSTRACT. We give some examples of non-continuous circle maps whose rotation sets lack the good properties they have in the case of continuous maps.

1. INTRODUCTION

Let $e: \mathbf{R} \longrightarrow \mathbf{S}^1$ be the natural projection defined by $e(x) = \exp(2\pi i x)$. A map $F: \mathbf{R} \longrightarrow \mathbf{R}$ is called a **lifting** of a map $f: \mathbf{S}^1 \longrightarrow \mathbf{S}^1$ if $e \circ F = f \circ e$ and there is a $d \in \mathbf{Z}$ such that F(x+1) = F(x) + d for all $x \in \mathbf{R}$. This *d* is called the **degree** of the lifting *F*. Note that since we do not impose continuity for *F*, every *f* has liftings of all degrees.

We shall only consider maps (liftings) of degree one. Following [4], a map $F: \mathbf{R} \longrightarrow \mathbf{R}$ is called an **old** map (old is a mnemonic for 'degree one lifting') if F(x+1) = F(x) + 1 for all $x \in \mathbf{R}$. Clearly, F is an old map if and only if there exists $f: \mathbf{S}^1 \longrightarrow \mathbf{S}^1$ such that F is a lifting of f of degree one. It is easy to see that in this case F(x+k) = F(x) + k for all $x \in \mathbf{R}$ and $k \in \mathbf{Z}$, and that iterates of an old map are also old maps.

A point $x \in \mathbf{R}$ is called **periodic** mod 1 of **period** $q \in \mathbf{N}$ and **rotation number** p/q for an old map F if $F^q(x) - x = p \in \mathbf{Z}$ and $F^i(x) - x \notin \mathbf{Z}$ for $i = 1, 2, \ldots, q-1$. Similarly, for any $x \in \mathbf{R}$ we can define its **orbit** mod 1 under Fas the set $e^{-1}(\operatorname{Orb}_f(e(x))) = \operatorname{Orb}_F(x) + \mathbf{Z} = \bigcup_{n \geq 0} (F^n(x) + \mathbf{Z})$. The orbit mod 1 of a periodic mod 1 point is also called a **lifted cycle** of F.

For an old map F and a point $x \in \mathbf{R}$ we define $\overline{\rho}_F(x)$ and $\underline{\rho}_F(x)$ (or $\overline{\rho}(x)$ and $\rho(x)$ if no confusion seems possible) as

$$\overline{\rho}_F(x) = \limsup_{m \to \infty} \frac{F^m(x) - x}{m}$$
 and $\underline{\rho}_F(x) = \liminf_{m \to \infty} \frac{F^m(x) - x}{m}$.

When $\overline{\rho}_F(x) = \underline{\rho}_F(x)$ we write $\rho_F(x)$ or $\rho(x)$ to denote both $\overline{\rho}_F(x)$ and $\underline{\rho}_F(x)$. The number $\rho_F(x)$ (if it exists) is called the **rotation number of** x with respect

Received July 27, 1998.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 34C35, 58F03; Secondary 26A18, 58F08, 54H20.

Key words and phrases. Periodic point, old map, rotation number, rotation set.

The first author has been partially supported by the DGICYT grant number PB96–1153.