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han enseñado mucho y con ellos he aprendido a trabajar de muchas maneras

distintas.

Evidentemente también quiero darle las gracias a todo el grupo de sis-
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Introduction

The theory of ordinary differential equations (ODE) began in the 17th cen-

tury with I. Newton and G. W. Liebnitz. Despite the efforts and advances of

a big number of excellent mathematicians in the course of more than three

centuries, the fact is that the number of ODE’s that can be solved by means

of quadratures is very small. Because of that, one of the biggest achieve-

ments in the field was the appearance of the qualitative theory of differential

equations. This took place during the last quarter of the 19th century and it

was mainly developed by H. Poincaré and A. M. Lyapunov. This approach

consists in knowing the behavior of the solutions of an ODE (or of a system

of ODE’s) without computing them explicitly. This knowledge comes only

from the properties of the vector fields that define the ODE.

In this work we are going to use the qualitative theory of ordinary differ-

ential equations to deal with planar systems of the form
{
ẋ = P (x, y),

ẏ = Q(x, y),
(0.1)

where P (x, y) and Q(x, y) are analytic functions. We say that (x0, y0) is a

critical point of (0.1) if P (x0, y0) = Q(x0, y0) = 0. We also say that γ(t) is a

periodic orbit of (0.1) if it is a non-constant solution and there exists a real

number T > 0 such that γ(0) = γ(T ); an isolated periodic orbit is called

limit cycle.

By the Poincaré-Bendixson Theorem, see [11, 62], we know that the global

topological structure of the previous system is completely determined by the

configuration of its singular solutions, that is, critical points, periodic orbits

and polycycles (sets of solutions formed by critical points and orbits joining

them).

Concerning the critical points, we can classify them into hyperbolic, that

are the ones for which the determinant of their linear part does not vanish,
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Introduction

nilpotent, the ones for which their linear part is not identically zero but the

determinant vanishes, and degenerate (or linearly zero), for which their linear

part identically vanishes. One of the main problems about critical points

is the center-focus problem. It consists in distinguishing when the orbits

arriving to a critical point spiral toward or backward it (i.e. the origin is a

focus) and when there exists a punctured neighborhood of the point where

all the orbits are periodic (i.e. the origin is a center). For the hyperbolic

critical points the previous problem was solved by Poincaré, see [62] and

Lyapunov, see [52], by means of the so-called Lyapunov constants, and for

the nilpotent ones was solved by Moussu, see [58]. Nevertheless, although for

these two kind of critical points the problem is theoretically solved, in the

practice it is still very difficult to distinguish between a center and a focus.

Moreover, there are still some open problems related to the previous one for

hyperbolic and nilpotent singularities, for instance, fixed a class of planar

systems, to know how many Lyapunov constants are necessary to solve the

center-focus problem. For the degenerate critical points very few is known

about the center-focus problem; in fact, even the monodromy problem (the

one consisting in distinguishing if there is any orbit tending to the critical

point with a concrete slope or if all the orbits turn around it) is very difficult,

see for instance [57].

Except for the center-focus problem, the Hartman Theorem completely

classifies the hyperbolic critical points. Avoiding this problem, the nilpotent

ones have also been classified (see [5]), but the degenerate ones are far from

being well-known. This is another one of the challenging problems about

critical points and a big number of contributions has been published in the

last years, see for instance [10, 34, 37, 54].

Concerning the periodic orbits, the main problem of the subject is the

second part of the Hilbert’s 16th problem, one of the only two non-solved

problems of its famous list, see [42]. It asks for an uniform upper bound,

H(n), for the number of limit cycles of all polynomial vector fields of a given

degree n. Moreover, the problem also asks for the configuration of these limit

cycles. The history of this problem has been very complicated along all the

20th century and although it has been shown that it is very difficult to attack

directly, a very large number of partial contributions has been published. The

main result in this sense is the Finiteness Theorem, first stated by Dulac (see

[26]) with a gap in his proof and finally proved by Il’yashenko and Ecalle in

an independent way, see [28, 44]. This theorem proves that for any analytic

vector field on the real plane, its number of limit cycles is finite. But it is
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still not known if the asked uniform upper bound exists or not, even in the

simplest case n = 2.

In order to estimate H(n), some lower bounds have been given. For in-

stance, it is known that H(2) ≥ 4, H(3) ≥ 12 and H(n) ≥ 1
2
(n+1)2(log2(n+

1) − 3) + 3n, see [20, 47, 49]. The techniques for getting these bounds are

mainly two: bifurcations (especially of Hopf type) from a weak focus, and

perturbations of integrable systems (problem that involves Abelian integrals).

The previous mentioned two techniques leads us to two important open

problems that join critical points and periodic orbits. The first one is de-

termining the number of limit cycles that can bifurcate from a weak focus

(called the cyclicity problem) and the second problem is determining how

many limit cycles can bifurcate from a continuous of periodic orbits (usually

associated with a center).

This present work deals with these two types of special solutions, the

critical points and the periodic orbits, and some of the problems stated above.

The first part of this Thesis, consisting of three chapters, is devoted to the

study of the degenerate critical points, focusing on the nilpotent ones. The

second part, consisting of four chapters, is devoted to the study of periodic

orbits.

Concerning the structure of the work, each chapter has been written

independently of the others, with all the necessary concepts introduced along

each one. Because of that, the order of the chapters in the Thesis is not the

unique that can be followed, although we think it is the natural one.

In the following we describe the two parts of the Thesis and each one of

the chapters, stating the most important result of each one of them. For a

more detailed presentation, see the corresponding introductions.

In the first part we review the topological classification of the critical

points of a planar system, focusing our attention on the nilpotent ones. In the

first two chapters we also deal with the center-focus and cyclicity problems

for this kind of points. We summarize each chapter of this first part in the

following.

In Chapter 1 we give a new and short proof of the characterization of

monodromic nilpotent critical points, first proved by Andreev in [5]. We

also introduce for this kind of points the generalized Lyapunov constants

as, essentially, the coefficients of the Taylor expansion at the point of the

Poincaré map in a suitable coordinates system. We calculate the first one

of these coefficients for a monodromic nilpotent critical point in order to

determine its stability. Our main theorem of this chapter in the next one. We
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remark that any planar vector field having a monodromic nilpotent critical

point can be easily written in the form (0.2).

Theorem. Consider next system
{
ẋ = y(−1 +X1(x, y)),

ẏ = f(x) + φ(x)y + Y0(x, y)y
2,

(0.2)

with the origin being monodromic, and introduce the following notation

X1(x, y) =
∑

i+j≥1

dijx
iyj, f(x) = x2n−1 +

∑

i≥0

aix
2n+i,

φ(x) = bxβ +
∑

i≥1

bix
β+i, Y0(x, y) =

∑

i+j≥0

eijx
iyj.

Then the origin is a stable (resp. unstable) monodromic critical point when

∆ < 0 (resp. ∆ > 0), where:

(a) ∆ = b, if

(i) either β ∈ {n− 1, n} and n is even,

(ii) or β = n+ 1 and n is odd;

(b) ∆ = (2n+ 1)b1 +
(
− 3e00 + (n− 1)d10 − (n+ 2)a0

)
b,

if β = n and n is odd;

(c) ∆ = (2n+ 1)b1 +
(
− 5e00 + (n− 2)d10 − (n+ 3)a0

)
b+

5
(
d11 + 3e01 + d01d10 + 2d01e00

)
X{n=2},

if β = n+ 1 and n is even.

It is ought to say that one case has resisted this approach (the case when

β = n − 1, b2 − 4n < 0 and n odd). Nevertheless, we can apply the results

of this chapter to several families of planar systems, obtaining necessary and

sufficient conditions for having a center at the origin. Using our method and

standard tools for studying degenerate Hopf bifurcations, we also study how

many limit cycles bifurcate from the origin in these families. The results of

this chapter have appeared in [1].

In Chapter 2 we apply the normal form theory to compute the first gener-

alized Lyapunov constant for monodromic nilpotent singularities in all cases

(even the one that has resisted in Chapter 1), and hence to determine the

stability of this kind of singularities. We state the main result in the fol-

lowing. We remark that the existence of the analytic change of coordinates

given in next result is proved in [68].
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Theorem. Consider an analytic planar system having a monodromic nilpo-

tent critical point. Then there exists an analytic change of variables such

that it writes as {
ẋ = −y,
ẏ = x2n−1 + yb(x),

being b(x) ≡ 0 or b(x) =
∑

j≥β bjx
j, with bβ 6= 0, and satisfying one of the

following conditions:

(a) β > n− 1,

(b) β = n− 1, and bβ
2 − 4n < 0.

Furthermore:

(i) If b(x) = bo(x) + x2` (b2` +O(x)) , with b2` 6= 0, being bo(x) := (b(x) −
b(−x))/2, then its first significant generalized Lyapunov constant is

(I) V2−n+2` = Kb2` when either β > n − 1, or β = n − 1 and β is

odd. Here K = K(n, `, bn−1) is a positive constant given in the

proof.

(II) V1 = exp

(
2bβπ

n
√

4n−b2β

)
when β = 2` = n− 1.

(ii) The origin is a center if and only if be(x) := b(x) − bo(x) ≡ 0.

We apply our results to several families of planar systems obtaining nec-

essary and sufficient conditions for having a center at the origin. In this

chapter we see how the normal form theory can also be applied to generate

limit cycles from nilpotent singularities. The results of this chapter have

appeared in [2].

In Chapter 3, the last one of the first part, we deal with the called

weighted blow up or k−blow up technique , see for instance [13]. The usual

blow up method used to study the degenerate singularities consists in ex-

ploding them to a line (or to a circle) in order to better understand the

orbits (if there are any) tending to them, in forward or backward time. The

number of blow up’s needed to completely desingularize the point depends

on its degeneracy. The k–blow up technique consists in doing a bunch of

usual blow up’s at once. In this chapter we give an algorithmic approach to

the study of degenerate singularities by using the k–blow up technique. As

an application we prove the Nilpotent Theorem due to Andreev in [5]. The

results of this chapter have been done in collaboration with Xavier Jarque.
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In the second part of this work we focus our attention on the number of

periodic orbits of some families of differential equations on the cylinder of

the form {
dr
dt

= α(θ) r + β(θ) rk+1 + γ(θ) r2k+1,
dθ
dt

= b(θ) + c(θ) rk,
(0.3)

where t is real, k ∈ Z
+ and all the above functions are real, smooth and

2π−periodic. Note that this family includes the famous Abel equations,

dr

dt
= A(t)r3 +B(t)r2 + C(t)r, (0.4)

as well as the polar expression of several types of planar polynomial systems

given by the sum of three homogeneous vector fields. Recall also that it is

proved in [18] that some planar systems can be transformed, after an ade-

quate change of variables, into Abel equations. Moreover, by the mentioned

change of variables, the limit cycles of the planar system are transformed

into 2π−periodic orbits of (0.4). Because of that, all the results obtained

for the differential equations (0.3) or (0.4) can be applied to some planar

systems and thus can be useful to advance in the knowledge of the Hilbert’s

16th problem. As we have said at the beginning of the introduction, this huge

problem is far from being solved, see [67] and because of that, some simplified

versions of it, including the study of the Abel equations, have been proposed

in the literature. In the following we summarize the last four chapters and

state the most important result of each one of them.

In Chapter 4 we study the Abel equation ẋ = A(t)x3 +B(t)x2 where A(t)

and B(t) are trigonometric polynomials. Many authors have worked in the

question of finding bounds for the number of isolated periodic orbits of the

previous equation, depending only on the degrees of the functions A(t) and

B(t), see [45]. Even more, it is not known if this bound exists. In this chapter

we study this problem for two special cases: the one in which B(t) has degree

one and the one in which is A(t) that has degree one. For both cases, we

give a lower bound for the number of isolated periodic orbits. These lower

bounds are obtained by studying the perturbations of some Abel equations

having a continuum of periodic orbits. We state the main theorem of this

chapter in the following.

Theorem. SetH(n,m) for the number of isolated periodic orbits of the Abel

equation ẋ = A(t)x3 + B(t)x2, where A(t) and B(t) are two trigonometric

polynomials of degrees n and m respectively. Then

(a) H(n, 0) = H(0,m) = 2,
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(b) H(n, 1) ≥ n+ 2,

(c) H(1,m) ≥ 2m+ 1.

We have also studied two concrete Hilbert numbers, H(3, 1) and H(2, 2),

by the method of computing several Lyapunov constants associated with the

solution x = 0. We can summarize our results in the Table 0.1.

deg(A(t)) 0 1 2 3 4 · · · n

deg(B(t))

0 2 2 2 2 2 · · · 2

1 2 ≥ 3 ≥ 4 ≥ 7 ≥6 · · · ≥ n+ 2

2 2 ≥ 5 ≥ 7

3 2 ≥ 7

...
...

...

m 2 ≥ 2m+ 1

Table 0.1: Values of H(n,m) got on Chapter 4. Note that the value of

H(3, 1) given in the table is bigger than the general bound of H(n, 1).

The results of this chapter have been done in collaboration with Armengol

Gasull and Jiang Yu.

Motivated for the problem of determining H(1, 1), in Chapter 5 we give

a new criterion of uniqueness of non-zero periodic orbits of Abel equations

of the form ẋ = A(t)x3 +B(t)x2. We prove,

Theorem. Consider the Abel equation ẋ = A(t)x3 + B(t)x2. Assume that

there exist two real numbers a and b such that aA(t)+ bB(t) does not vanish

identically and does not change sign. Then it has at most one non-zero

periodic orbit. Furthermore, when this periodic orbit exists, it is hyperbolic.
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This result extends the known criteria about the Abel equation that only

refer to the cases where either A(t) or B(t) does not change sign, see [61] and

[33]. We apply this new criterion to study the number of periodic solutions

of two simple cases of Abel equations: the one where the functions A(t) and

B(t) are trigonometric polynomials of degree one and the case where these

two functions are polynomials with three monomials. Finally, we give an

upper bound for the number of isolated periodic orbits of the general Abel

equation (0.4) when A(t), B(t) and C(t) satisfy adequate conditions.

The results of this chapter have been done in collaboration with Armengol

Gasull and Héctor Giacomini.

In Chapter 6 we give two criteria for bounding the number of non-

contractible limit cycles of the family of differential equations (0.3). We

consider the functions

A(θ) = k(c(θ)2α(θ) + b(θ)2γ(θ) − b(θ)β(θ)c(θ)),

B(θ) = −2kc(θ)α(θ) + kb(θ)β(θ) + c(θ)b′(θ) − b(θ)c′(θ).

The main theorem of this chapter is the following. The case where b(θ)

does not vanish is also treated in this chapter.

Theorem. Consider system (0.3) on the cylinder and suppose that the

function b(θ) vanishes. Define the functions A(θ) and B(θ) as above. Then

(a) If one of the functions A(θ) or B(θ) does not change sign then the

system has at most 2 non-contractible limit cycles if k is odd, or 4

non-contractible limit cycles if k is even. Furthermore both bounds are

sharp.

(b) If one of the functions b(θ)A(θ) or b(θ)B(θ) does not change sign then

the system has at most 3 non-contractible limit cycles if k is odd, or 6

non-contractible limit cycles if k is even.

Finally, in Chapter 7 we study the number of limit cycles of a classical

problem of the qualitative theory of planar differential equations: the cubic

systems with a symmetry of order 4, see [9, 19]. These systems are invariant

under a rotation of 2π/4 radians and can be written as ż = εz + p z2z̄ − z̄3,

where z is complex, the time is real and ε = ε1 + iε2, p = p1 + ip2 are complex

parameters. When they have some critical points at infinity, i.e. |p2| ≤ 1, it

is well-known that they can have at most one (hyperbolic) limit cycle which

surrounds the origin. On the other hand when they have no critical points
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at infinity, i.e. |p2| > 1, there are examples exhibiting at least two limit

cycles surrounding nine critical points. In this chapter we give two criteria

for proving in some cases the uniqueness and hyperbolicity of the limit cycle

that surrounds the origin. Our results apply to systems having a limit cycle

which surrounds either 1, 5 or 9 critical points, being the origin one of these

points. The key point of our approach is the use of Abel equations. We state

our main result in the following.

Theorem. (a) Consider equation ż = εz + p z2z̄ − z̄3, with ε2 6= 0, p2 > 1

and define the following four numbers:

Σ−
A =

ε2p1p2 −
√
ε2
2(p

2
1 + p2

2 − 1)

p2
2 − 1

, Σ+
A =

ε2p1p2 +
√
ε2
2(p

2
1 + p2

2 − 1)

p2
2 − 1

,

Σ−
B =

ε2p1p2 −
√
ε2
2(p

2
1 + 9p2

2 − 9)

2(p2
2 − 1)

, Σ+
B =

ε2p1p2 +
√
ε2
2(p

2
1 + 9p2

2 − 9)

2(p2
2 − 1)

.

If one of the conditions

(i) ε1 6∈ (Σ−
A,Σ

+
A), (ii) ε1 6∈ (Σ−

B,Σ
+
B),

is satisfied then it has at most one limit cycle surrounding the origin. Fur-

thermore, when it exists it is hyperbolic.

(b) There are equations ż = εz + p z2z̄ − z̄3, under condition (i) having

exactly one hyperbolic limit cycle surrounding either 1 or 5 critical points

and equations under condition (ii) having exactly one limit cycle surrounding

either 1, 5 or 9 critical points.

The results of these last two chapters have been done in collaboration

with Armengol Gasull and Rafel Prohens.
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