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Abstract We analyze the families of central configurations of the spatial 5–body
problem with four masses equal to 1 when the fifth mass m varies from 0 to
+∞. In particular we continue numerically, taking m as a parameter, the central
configurations (which all are symmetric) of the restricted spatial (4 + 1)–body
problem with four equal masses and m = 0 to the spatial 5–body problem with
equal masses (i.e. m = 1), and viceversa we continue the symmetric central con-
figurations of the spatial 5–body problem with five equal masses to the restricted
(4 + 1)–body problem with four equal masses. Additionally we continue numeri-
cally the symmetric central configurations of the spatial 5–body problem with four
equal masses starting with m = 1 and ending in m = +∞, improving the results
of (Alvarez–Ramı́rez et al. 2008). We find four bifurcation values of m where the
number of central configuration changes. We note that the central configurations
of all continued families varying m from 0 to +∞ are symmetric.

Keywords Spatial central configurations · 5–body problem · Bifurcations

1 Introduction

A configuration of n bodies is central if the force due to acceleration on each body is
proportional to the position vector of the body with respect to the center of mass.
Central configurations are very important in the study of the n–body problem;
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for instance, they allow to compute all the homographic solutions, every motion
starting and ending in a total collision is asymptotic to a central configuration,
and every parabolic motion of the n bodies is asymptotic to a central configuration
(Saari and Hulkower 1981; Chenciner 1998). For the 3–body problem the set of
central configurations is completely known, but the problem of finding the central
configurations when n > 3 is far to be completely solved. We only know the entire
set of central configurations in some particular cases where some of the masses are
equal or the configurations satisfy some geometrical properties.

The objective of this paper is to study the central configurations of the spatial
5–body problem with four equal masses when the non equal mass varies from 0
to infinity. More precisely, we will continue numerically all the symmetric central
configurations of the spatial 5–body problem with the five masses equal to 1 to
the restricted spatial (4+1)–body problem with four masses equal to 1 and a fifth
infinitesimal mass, and vice versa; that is, we vary the non equal mass from 1 to 0,
and viceversa. This study completes the one presented in (Alvarez–Ramı́rez et al.
2008) where the authors continue numerically the symmetric central configurations
from the spatial 5–body problem with the five masses equal to 1 to the restricted
spatial (1 + 4)–body problem with four infinitesimal masses equal to m = 0 and
a fifth mass equal to 1. Note that the study in (Alvarez–Ramı́rez et al. 2008) is
equivalent to study the symmetric central configurations of the 5–body problem
with four masses equal to 1 varying the fifth mass 1/m from 1 to infinity. This
explains why the work of this paper completes the study of (Alvarez–Ramı́rez et
al. 2008). Thus the work done in (Alvarez–Ramı́rez et al. 2008) and the one in the
present paper provide a skeleton of the families of symmetric central configurations
of the spatial 5-body problem with four equal masses and their bifurcations. The
results that we have obtained are represented in Fig. 1. Each one of the families
of classes of central configurations which appear in Fig. 1 are described later on.

This paper is structured as follows, in Sect. 2 we provide the equations for the
central configurations of the spatial 5–body problem. In Sect. 3 we give a brief
summary of the known results on symmetric central configurations for the spatial
5-body problem with five equal masses, we provide all the symmetric classes of
central configurations of this problem and the positions of a representative of each
class. In Sect. 4 we give all the classes of central configurations of the spatial
restricted (4+ 1)-body problem with four equal masses and one infinitesimal, and
we also give a representative of each class. In Sect. 5 we continue numerically the
known families of central configurations from the spatial restricted (4 + 1)–body
problem with 4 equal masses to the spatial 5–body problem with equal masses,
and vice versa, taking one of the masses m as a parameter. The results that we
obtain are summarized in Sect. 6. In Sect. 7 we revisit and improve the work in
(Alvarez–Ramı́rez et al. 2008).

2 Equations of central configurations in the 5–body problem

The spatial 5–body problem is given by

mi q̈i = −
5∑

j=1

j 6=i

Gmi mj
qi − qj

r3ij
, i = 1, . . . , 5,



m = 0 m = 1 m = +∞

✉
mB = 1

mb
≈ 1.6771887

✉ mA = 1
ma

≈ 1.06246712✉ mc ≈ 0.26449596

✉
mf ≈ 0.66345045

Fig. 1 Connections between the families of classes of central configurations of the 5–body
problem with four equal masses when the non–equal mass goes from 0 to +∞. The four equal
masses are represented by a small black ball whereas the non–equal mass is represented by a
circle.



where qi ∈ R3 is the position vector of the body with mass mi in an inertial
coordinate system, rij = |qi − qj | is the distance between the masses mi and mj ,
and G is the gravitational constant which can be taken equal to one by scaling the
time.

In these coordinates the configuration space of the spatial 5–body problem is

P = {(q1, . . . ,q5) ∈ R3n : qi 6= qj , for i 6= j}.

It is known that given m1, . . . ,m5 the configuration (q1, . . . ,q5) ∈ P is central
if the acceleration vector of each body is a common scalar multiple of its position
vector (with respect to the center of mass). That is, if there exists a positive
constant λ such that

q̈i = −λ (qi − qm) , i = 1, . . . , 5,

where

qm =

∑5
i=1 miqi∑5
i=1 mi

is the position vector of the center of mass of the system. In other words, the
given configuration (q1, . . . ,q5) ∈ P of the 5–body problem with positive masses
m1, . . . ,m5 is central if there exists λ such that (λ,q1, . . . ,q5) is a solution of the
system

λ (qi − qm) =

5∑

j=1

j 6=i

mj
qi − qj

r3ij
, i = 1, . . . , 5. (1)

We say that two central configurations belong to the same class if they are
invariant under rotations, scaling and permutations of the particles with equal
masses.

We assume that the center of mass qm of the system is fixed at the origin of
coordinates. Then system (1) can be written as

fi = 0, i = 1, . . . , 5, (2)

where

fi =

5∑

j=1

j 6=i

mj
qi − qj

r3ij
− λqi.

Since the center of mass is at the origin the following linear combination of the
fi’s

m1f1 +m2f2 +m3f3 +m4f4 +m5f5 = 0,

is satisfied. So, if the mass mi 6= 0 then the vectorial function fi is a linear com-
bination of the other ones, and we can eliminate the equation fi = 0 from system
(2).

Without loss of generality we can assume that the mass m1 is fixed at q1 =
(0, 0, 1). We also can fix x3 = 0, this avoids the rotation of the configuration except
when the mass m3 is located on the z-axis. In this last case, to avoid rotations we
should fix a variable different from x3. Moreover if mi 6= 0 we can isolate (xi, yi, zi)



from the equation qm = 0. Thus, assuming that m2 6= 0, we can fix the variables
x2, y2 and z2 as follows

x2 = −m4x4 +m5x5

m2
, y2 = −m3y3 +m4y4 +m5y5

m2
,

z2 = −m1 +m3z3 +m4z4 +m5z5
m2

.

On the other hand, from the third component of the vectorial equation f1 = 0 we
get

λ = −
5∑

i=2

mi(zi − 1)

(x2
i + y2i + (zi − 1)2)

3/2
.

Therefore system (2) can be reduced to a set of eleven equations, denoted by ei
for i = 1, . . . 11, and eight unknowns, namely, the position variables y3, z3, x4, y4,
z4, x5, y5, z5. Clearly these eleven equations are not all independent.

We note that if m2 = 0, then we can proceed in the same way by taking a
mass mi 6= 0 instead of m2 and we would arrive to a similar set of equations but
with different unknowns.

In short the problem of finding the central configurations of the 5–body problem
is reduced to find the solutions of a system of eleven equations and eight unknowns.

3 Spatial central configurations in the 5-body problem with equal
masses

Faugère and Kotsireas (1999), and Kotsireas and Lazard (2002) by using linear
algebra and Gröbner bases studied the central configurations of the spatial 5-body
problem with equal masses. In (Faugère and Kotsireas 1999) the authors showed
that a convex central configuration of this problem has always a plane of symme-
try, see also the Habilitation Thesis of Albouy, section 3.4, first theorem, page 92.
In (Kotsireas and Lazard 2002) the authors classified the symmetric spatial central
configurations with axial symmetry in the 5-body problem with equal masses. In
particular, they found four classes of central configurations having an axis of sym-
metry, two convex and two concave (see Fig. 2), and they conjectured that these
are all the central configurations of the spatial 5–body problem with equal masses.
Alvarez–Ramı́rez et al. (2008) proved that if there are other central configurations
of the 5–body problem with equal masses they must be non–symmetric. Lee and
Santoprete (2009) used a computer algebra algorithm, which is devised to find all
the isolated solutions of a polynomial system, to find all the isolated central con-
figurations of the 5–body problem with equal masses. They did not find anything
more than the central configurations of Kotsireas and Lazard.

Next we describe these four classes of symmetric central configurations given
in (Kotsireas and Lazard 2002), and we also give the positions qi and the mutual
distances rij for a representative of each class in the variables that we are working,
see (Alvarez–Ramı́rez et al. 2008) for more details. Without loss of generality we
assume that m1 = m2 = m3 = m4 = m5 = 1.

K1: (5 cc) Four masses located at the vertices of a regular tetrahedron and one
mass located at the barycenter, see Fig. 2(a).



Positions: q1 = (0, 0, 1), q2 =
(
−
√

2
3 ,

√
2
3 ,−1

3

)
, q3 =

(
0,−2

√
2

3 ,−1
3

)
, q4 =

(√
2
3 ,

√
2
3 ,−1

3

)
, q5 = (0, 0, 0).

Mutual distances: r15 = r25 = r35 = r45 = 1, r12 = r13 = r14 = r23 = r24 =

r34 = 2
√

2
3 = 1.6329931 . . . .

K2: (15 cc) Five masses located at the vertices of a regular pyramid having a square
base, see Fig. 2(b).
Positions: q1 = (0, 0, 1), q2 =

(
− 5

α , 0,−1
4

)
, q3 =

(
0,− 5

α ,−1
4

)
, q4 =

(
5
α , 0,−1

4

)
,

q5 =
(
0, 5

α ,−1
4

)
, where

α =

√
64

(
2

7

)2/3
3

√
9− 4

√
2− 16.

Mutual distances: r12 = r13 = r14 = r15 = 1.5944855 . . . , r23 = r25 = r34 =
r45 = 1.3999173 . . . , r24 = r35 = 1.9797821 . . . .

K3: (20 cc) Four masses located at the vertices of a regular pyramid having a base
formed by an equilateral triangle and a fifth mass on its axis of symmetry and
in the interior of the pyramid, see Fig. 2(c).
Positions:

q1 = (0, 0, 1), q2 = (−0.71312666 . . . , 0.41172387 . . . ,−0.38049250 . . . ),
q3 = (0,−0.82344774 . . . ,−0.38049250 . . . ),

q4 = (0.71312666 . . . , 0.41172387 . . . ,−0.380492504 . . . ),
q5 = (0, 0, 0.14147751 . . . ).

Mutual distances: r12 = r13 = r14 = 1.6074283 . . . , r25 = r35 = r45 =
0.97494558 . . . , r15 = 0.85852248 . . . , r23 = r24 = r34 = 1.4262533 . . . .

K4: (10 cc) Three masses located at the vertices of an equilateral triangle and two
masses with symmetric positions on the axis orthogonal to the plane defined
by the triangle that passes through its barycenter, see Fig. 2(d).
Positions: q1 = (0, 0, 1), q2 = (−0.84812349 . . . , 0.48966432 . . . , 0), q3 =
(0,−0.97932865 . . . , 0), q4 = (0.84812349 . . . , 0.48966432 . . . , 0), q5 = (0, 0,−1).
Mutual distances: r12 = r13 = r14 = r25 = r35 = r45 = 1.3996730 . . . , r15 = 2,
r23 = r24 = r34 = 1.6962469 . . . .

4 Central configuration in the restricted spatial (4 + 1)–body problem
with four equal masses

The restricted (4 + 1)–body problem is a particular case of the 5–body problem
with 4 equal masses plus an infinitesimal mass, where the four particles with
positive masses are disposed in a central configuration. From now on, when we
say the spatial (4 + 1)–body problem we mean the restricted spatial (4+ 1)–body
problem.

It is known that the planar 4–body problem with equal masses has three dif-
ferent classes of central configurations. These consist of a square, an equilateral
triangle with one mass at its barycenter, and an isosceles triangle with another
mass on its axis of symmetry, see (Albouy 1995). However, there exists a unique
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Fig. 2 Central configurations of the spatial 5–body problem with equal masses.

class of spatial central configurations of the 4–body problem given by the regular
tetrahedron, see for instance (Lehmann-Filhés 1891).

In the following subsections we shall discuss the central configurations of the
spatial (4+ 1)–body problem for each class of central configurations of the planar
and spatial 4–body problem with equal masses.

4.1 Central configurations of the (4 + 1)–body problem with four masses at the
vertices of a regular tetrahedron

Santos (2004) proved that all central configurations of the (4 + 1)-body problem
with the four positive equal masses forming a regular tetrahedron have either two
planes of symmetry (planar type symmetry), or one axis of symmetry (axis type
symmetry). Using these symmetries he found the central configurations of the
problem, in particular, he proved that there are 25 central configurations of which
12 are non-convex. Later, Tsai (2012) found the same result using Gröebner bases.
These 25 central configurations provide 6 different classes of central configurations.
Leandro (2008) gives a different proof of the fact that the spatial central configu-
rations of the restricted (4 + 1)–body problem with equal masses are symmetric.

Next we describe these 6 classes and we give the positions qi and the mutual
distances rij for a representative of each class in the variables that we are working,
see (Santos 2004) for more details.



We will assume that m1 = · · · = m4 = 1 and that the positions of the vertices

of the tetrahedron are q1 = (0, 0, 1), q2 =
(
−
√

2
3 ,

√
2

3 ,−1
3

)
, q3 =

(
0,−2

√
2

3 ,−1
3

)
,

q4 =
(√

2
3 ,

√
2

3 ,−1
3

)
. Then we have the following mutual distances

r12 = r13 = r14 = r23 = r24 = r34 = 2

√
2

3
.

(Tb) Axis and planar type symmetry simultaneously: (1 cc) The infinites-
imal mass is located at the barycenter of the tetrahedron; that is, q5 = (0, 0, 0)
(see Fig. 3).
Mutual distances: r15 = r25 = r35 = r45 = 1.

(Ta) Axis type symmetry: (12 cc) The infinitesimal mass is located on the line
that passes through a vertex and the barycenter of the tetrahedron, see Fig. 3(a).

Ta,1: (4 cc) Position of m5: q5 = (0, 0, 1.889991 . . . )
Mutual distances: r15 = 0.88999157 . . . , r25 = r35 = r45 = 2.14149663 . . . .

Ta,2: (4 cc) Position of m5: q5 = (0, 0,−1.3981650 . . . )
Mutual distances: r15 = 2.3981650 . . . , r25 = r35 = r45 = 1.4222360 . . . .

Ta,3: (4 cc) Position of m5: q5 = (0, 0,−0.1529969 . . . )
Mutual distances: r15 = 1.1529969 . . . , r25 = r35 = r45 = 0.95990109 . . . .

(Tp) Planar type symmetry: (12 cc) The infinitesimal mass is located on an
edge bisector line passing through the barycenter of the tetrahedron, see Fig. 3(b).

Tp,1: (6 cc)
Position of m5: q5 = (0.29790401 . . . ,−0.17193722 . . . ,−0.24315596 . . . )
Mutual distances: r15 = r25 = 1.2898396 . . . , r35 = r45 = 0.83130171 . . . .

Tp,3: (6 cc)
Position of m5: q5 = (1.0542556 . . . ,−0.60867481 . . . ,−0.86079617 . . . )
Mutual distances: r15 = r25 = 2.2236237 . . . , r35 = r45 = 1.2252827 . . . .

We note that the central configurations Tp,2 and Tp,4 which appear in Fig. 3(b)
belong to the classes Tp,1 and Tp,3 respectively.

4.2 Central configurations of the spatial (4 + 1)–body problem with four masses
at the vertices of a planar central configuration of the 4–body problem

Here we provide the coordinates of the bodies for central configurations in the
spatial (4+1)–body problem with four coplanar equal masses in a central configu-
ration of the 4–body problem. Also, we show the uniqueness (up to rotations and
scalings) of this kind of central configurations.

4.2.1 Central configurations of the spatial (4 + 1)–body problem with the four
equal masses at the vertices of a square

Fayçal (1996) proved the following result for the pyramidal central configurations
of the 5–body problem with a square base. Recall that here a pyramidal central
configuration of the 5–body problem means a configuration with four coplanar
bodies and a fifth being off the plane.
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Fig. 3 Central configurations of the spatial (4 + 1)–body problem with four equal masses at
the vertices of a regular tetrahedron.

Theorem 1 (Theorem 4.1 in (Fayçal 1996)) There exists a unique pyramidal
central configuration with a square base, the one of mutual distances

r12 = r23 = r34 = r14 = 1, r13 = r24 =
√
2,

ri5 =
2

3
√

4 +
√
2
, i = 1, . . . , 4,

(3)

where the masses on the base m1, m2, m3 and m4 are equal, and the mass at the
top vertex m5 is arbitrary.

Since m5 is arbitrary, for m5 = 0 we have the following for the spatial (4+1)–
body problem.

Corollary 1 There exists a unique (up to rotations and scalings) central config-
uration of the spatial (4 + 1)–body problem with four equal masses m1 = m2 =
m3 = m4 = 1 in a square and the fifth mass, which is infinitesimal, being off the
plane formed by the first four, it is the one with the mutual distances given by (3);
or equivalently, the one with positions

q1 =
(
1
2 ,−1

2 , 0
)
, q2 =

(
1
2 ,

1
2 , 0
)
, q3 =

(
−1

2 ,
1
2 , 0
)
,

q4 =
(
−1

2 ,−1
2 , 0
)
, q5 =

(
0, 0,

√
2
(
2
7

)2/3 3
√
9− 4

√
2− 1

2

)
.



4.2.2 Central configurations of the spatial (4 + 1)–body problem with the coplanar
equal masses at the vertices of an equilateral triangle with one mass in its
barycenter

In a recent work Santos and Vidal (2007) proved for the central configurations of
the spatial (4+1)–body problem that when four equal masses are at the vertices of
an equilateral triangle with a mass at the barycenter, the infinitesimal mass must
be on a plane of symmetry. In particular, naming the masses in such a way that
m1, m2, and m3 are at the vertices of the triangle, m4 is at the barycenter and
m5 is the infinitesimal mass, they proved that the mutual distances should satisfy
either r15 = r25, or r25 = r35, or r15 = r35. However, they do not compute these
mutual distances and they do not prove the uniqueness of these classes of central
configurations. Since we cannot find in the literature these computations we have
calculated them in what follows.

From Theorem 2 in (Bang and Elmabsout 2003) we know that the gravitational
field generated at the point q by n equal masses at the vertices of and n–gon is
directed towards the centre of the n–gon if and only if q belongs to an axis of
symmetry of the n–gon, or to the axis orthogonal to the plane defined by the
n–gon that passes through its center. Clearly if there is a mass in the center of
the n–gon the result remains valid. This means that the infinitesimal mass of the
spatial (4 + 1)–body problem, when three of the four equal masses are at the
vertices of an equilateral triangle and the fourth one is at its barycenter, should
be placed on the straight line orthogonal to the plane defined by the triangle that
passes through its barycenter.

To compute those central configurations, the most convenient equations are
the Dziobek-Laura-Andoyer equations (see for instance (Hampton and Santoprete
2007) and the references therein)

fijh =
∑

k 6=i,j,h

mk(Rik −Rjk)∆ijhk = 0. (4)

Here Rij = 1/r3ij and ∆ijhk = (qi−qj)∧(qj−qh)·(qh−qk) is six times the signed
volume of the tetrahedron formed by mi, mj , mh and mk. Clearly Rij = Rji.
Moreover if P (i, j, h, k) is a permutation of the indices i, j, h, k, then ∆P (i,j,h,k) =
sign(P )∆ijhk where sign(P ) is the sign of the permutation. In particular fijh =
fjih. Note that in these equations ∆1234 = 0 because m1,m2,m3,m4 are assumed
to be coplanar.

We assume that the masses are m1 = m2 = m3 = m4 = 1, m5 = 0 and that

their vector positions are q1 = (1, 0, 0), q2 = (−1
2 ,

√
3
2 , 0), q3 = (−1

2 ,−
√

3
2 , 0),

q4 = (0, 0, 0) and q5 = (0, 0, z). It is easy to check that the following relations are
satisfied

r12 = r23 = r13 =
√
3, r14 = r24 = r34 = 1, r15 = r25 = r35.

Moreover using the symmetry given by the Bang-Elmabsout result and the fact
that the volume of a pyramid is the product of the area of the base by the height
divided by three, we have the following relations

∆1245 = −∆1345 = ∆2345.



By substituting these values into system (4), it becomes equivalent to the equation

f152 = ∆1235

(
R15 − 1

3
√
3

)
+∆2345(R45 − 1) = 0.

Therefore

R15 = −∆2345

∆1235
(R45 − 1) +

1

3
√
3
. (5)

On the other hand it is easy to check that r15 =
√

1 + z25 and r45 = z5.
Moreover ∆1235 = −3

√
3 z5/2 and ∆2345 = −

√
3 z5/2. Then from the relation (5)

we get the equation

h =
1

9

(
3

z35
+

9

(z25 + 1)
3/2

−
√
3− 3

)
= 0. (6)

Here we have assumed that z5 > 0, but this is not restrictive. It is easy to check
that

dh

d z5
= − 1

z45
− 3z5

(z25 + 1)
5/2

< 0,

for all z5 > 0. Moreover h is continuous for z5 ∈ (0,+∞), lim
z5→0+

h = +∞ and

lim
z5→+∞

h = (−
√
3− 3)/9. Therefore equation (6) has a unique real solution with

z5 > 0, which can be found numerically and it is given by

z5 = 1.1264766 . . .

In short we have the following result.

Theorem 2 There exists a unique class of central configurations of the spatial
(4 + 1)–body problem with four coplanar equal masses, three at the vertices of an
equilateral triangle and the fourth at its barycenter. A representative of this class
is

q1 = (1, 0, 0), q2 = (−1

2
,

√
3

2
, 0), q3 = (−1

2
,−

√
3

2
, 0), q4 = (0, 0, 0),

q5 = (0, 0, 1.1264766 . . . ) .

4.2.3 Central configurations of the spatial (4 + 1)–body problem with the coplanar
equal masses at the vertices of an isosceles triangle with one mass on the axis of
symmetry

The configuration of the 4–body problem with three equal masses at the vertices
of an isosceles triangle with another equal mass on its axis of symmetry is well
known, see (Albouy 1995; Llibre 1976). From (Llibre 1976) we know that if the
base of the nonequal side of the triangle is 2, then the height of the triangle is
1.81723939472383 . . . and the fourth mass is at a distance from the base equal to
0.6503784729520659 . . . .

Assume that m1 = m2 = m3 = m4 = 1 and that the positions of the masses
are q1 = (−1/2,−a, 0), q2 = (1/2,−a, 0), q3 = (0, c, 0) and q4 = (0, b, 0). Since



the center of mass is fixed at the origin of coordinates b = 2a − c. Then from
(Llibre 1976) we have that

(a, c) = (a∗, c∗) = (0.3084522 . . . , 0.6001674 . . . ).

Now we find the central configurations of the spatial (4+1)–body problem with 4
masses equal to 1 at q1 = (−1/2,−a∗, 0), q2 = (1/2,−a∗, 0), q3 = (0, c∗, 0) and
q4 = (0, 2a∗ − c∗, 0) and an infinitesimal mass at q5 = (x5, y5, z5). Clearly,

r12 = 1, r13 = r23, r14 = r24,

and ∆1234 = 0. By using the symmetry of the isosceles triangle of the base of the
pyramid and the fact that the volume of a pyramid is the product of the area of
the base by the height divided by three, we get ∆1345 = −∆2345. Then

f354 = ∆2345(R15 −R25) = 0,

so R15 = R25 because ∆2345 6= 0. Substituting these conditions to (4) we get the
system

f1 = ∆1235(1−R23)−∆2345(R34 −R24) = 0,
f2 = ∆1245(1−R24)−∆2345(R23 −R34) = 0,
f3 = ∆1235(R23 − R35) +∆1245(R24 −R45) = 0,
f4 = ∆1235(R15 − 1)−∆2345(R24 −R45) = 0,
f5 = ∆1245(R15 − 1)−∆2345(R35 −R23) = 0.

(7)

It is easy to check, by substituting the values of qi, that the first two equations of
(7) are always satisfied.

From condition R25 = R15 we get x5 = 0. After some computations we get

∆1235 = −(a∗ + c∗)z5, ∆1245 = (−3a∗ + c∗)z5, ∆2345 = (a∗ − c∗)z5,

R23 =
1

((a∗ + c∗)2 + 1/4)3/2
, R24 =

1
(
(c∗ − 3a∗)2 + 1

4

)3/2 ,

R34 =
1

(2(c∗ − a∗))3
, R15 =

1

r315
=

1

((a∗ + y5)2 + z25 + 1/4)3/2
,

R35 =
1

r335
=

1

((c∗ − y5)2 + z25)
3/2

, R45 =
1

r345
=

1

((2a∗ − c∗ − y5)2 + z25)
3/2

.

Since we are not interested in the solutions of (7) with z5 = 0, we can consider
the system of equations f3 = f3/z5 = 0, and f4 = f4/z5 = 0, where

f3(y5, z5) = −(a∗ + c∗)R23 − (3a∗ − c∗)R24 +
a∗ + c∗

r335
+

3a∗ − c∗

r345
,

f4(y5, z5) = a∗ + c∗ − (a∗ − c∗)R24 − a∗ + c∗

r315
+

a∗ − c∗

r345
= 0.

We note that a∗ + c∗ > 0, a∗ − c∗ < 0 and 3a∗ − c∗ > 0.
Next we analyze the functions f3 and f4. Notice that r15 is always different

from zero r35 = 0 when (y5, z5) = (c∗, 0) and r45 = 0 when (y5, z5) = (2a∗−c∗, 0).
It is easy to check that the analytic function f4 is defined in D4 = R2 \{(2a∗−

c∗, 0)}, that it has no critical points, and that lim(y5,z5)→(2a−c,0) f4(y5, z5) = −∞.
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Fig. 4 The level curves f3(y5, z5) = 0 (continuous line) and f4(y5, z5) = 0 (dashed line).

Therefore all the level curves of f4 consist of a unique single closed curve. Since
a∗+ c∗ > 0 and a∗− c∗ < 0, f4(y5, z5) < a∗+ c∗− (a∗− c∗)R24 = 2.283438 . . . for
all (y5, z5) ∈ D, then we can assure that the level curve f4(y5, z5) = 0 is a single
closed curve surrounding the point (2a∗ − c∗, 0).

The function f3 is analytic in D3 = R2 \ {(2a∗− c∗, 0)∪ (c∗, 0)} and it satisfies
that f3(y5, z5) > −(a∗+c∗)R23−(3a∗−c∗)R24 = −2.3471168 . . . for all (y5, z5) ∈
D3. Moreover lim(y5,z5)→(2a∗−c∗,0) f3(y5, z5) = +∞ and lim(y5,z5)→(c∗,0) f3(y5, z5)

= +∞. Then the level curves f3(y5, z5) = K for K sufficiently large consist of
two closed curves, one surrounding the point (2a∗ − c∗, 0) and the other one sur-
rounding the point (c∗, 0), because the function f3 has a unique critical point
α = (0.27118903 . . . , 0) which is a saddle with f3

∣∣
(y5,z5)=α

= β = 42.911529 . . . .

More precisely, the curves f3(y5, z5) = K for K > β consist of two closed curves
that join in a single curve with two loops when K = β, and became a single closed
curve when K < β. Since f3(y5, z5) > −2.3471168 . . . for all (y5, z5) ∈ D3 we can
assure that the level curve f3(y5, z5) = 0 is a single closed curve surrounding the
points (2a∗ − c∗, 0) and (c∗, 0).

In short, we have proved that each of the level curves f3(y5, z5) = 0 and
f4(y5, z5) = 0 consist of a single closed curve. We plot these two closed curves
with the help of Mathematica in Fig. 4. We see that they intersect at two points
which are symmetric with respect to the y5 axis. We compute them numerically
and we get

(y5, z5) = (−0.0030046492 . . . ,±0.66658830 . . . ).

These solutions satisfy the remaining equation f5 = 0 so they provide spatial
central configurations of the (4+ 1)–body problem with four equal masses. Notice
that, due to the symmetry, these solutions belong to the same class.

This provides proof of the following numerical result.

Result 1 We have a unique class of spatial central configurations of the (4 + 1)–
body problem with the four equal masses in a central configuration of the 4–body
problem with three masses m1, m2, m3 at the vertices of an isosceles triangle



and one mass m4 on its axis of symmetry. A representative of this class is the
configuration given q1 = (−1/2,−a∗, 0), q2 = (1/2,−a∗, 0), q3 = (0, c∗, 0) and
q4 = (0, 2a∗ − c∗, 0) and q5 = (0,−0.0030046492 . . . , 0.66658830 . . . ).

4.2.4 Summary of results

Next we give the positions qi and the mutual distances rij for a representative of
each class of central configurations of the spatial (4 + 1)–body problem with four
equal masses in a coplanar central configurations satisfying the assumptions on qi

made in Sect. 2. We also assume that m1 = · · · = m4 = 1.

Ps: (6 cc) The four equal masses are located at the vertices of a square and the
infinitesimal mass at the straight line passing through the barycenter of the square
and perpendicular to it, see Fig. 5 (a).
Positions: q1 = (0, 0, 1), q2 = (1, 0, 0), q3 = (0, 0,−1), q4 = (−1, 0, 0), q5 =

(0,

√
−1 + 4

(
2
7

)2/3 3
√

9− 4
√
2, 0).

Mutual distances: r12 = r14 = r23 = r34 =
√
2 = 1.4142135 . . . , r13 = r24 = 2,

r15 = r25 = r35 = r45 = 2 3

√
2
7

(
2
√
2− 1

)
= 1.6107687 . . . .

Recall that in all configurations we have assumed that q1 = (0, 0, 1) and that
x3 = 0 (see Sect. 2). For this particular configuration, these conditions are satisfied
only when the mass m3 is located on the z–axis. So in this case to avoid rotations
of the configuration we should fix for instance y4 = 0 instead of x3 = 0.

Pet: (24 cc) Three masses are located at the vertices of an equilateral triangle with
one mass at its barycenter and the infinitesimal mass at the straight line passing
through the barycenter of the triangle and perpendicular to it, see Fig. 5(b).

Positions: q1 = (0, 0, 1), q2 = (0,−
√
3
2 ,−1

2 ), q3 = (0,
√
3

2 ,−1
2), q4 = (0, 0, 0),

q5 = (1.1264766 . . . , 0, 0).
Mutual distances: r12 = r13 = r23 =

√
3 = 1.7320508 . . . , r14 = r24 = r34 = 1,

r15 = r25 = r35 = 1.5063032, r45 = 1.1264766 . . . .

Pit: (24 cc) Three masses located at the vertices of an isosceles triangle with one
mass on its axis of symmetry and the infinitesimal mass on the plane perpendic-
ular to the plane of the triangle that contains its axis of symmetry, see Fig. 5(c).
Positions: q1 = (0, 0, 1), q2 = (0,−0.89369458 . . . ,−0.44867581 . . . ), q3 =
(0, 0.024246491 . . . ,−0.014957768 . . . ), q4 = (0, 0.86944809 . . . ,−0.53636641 . . . ),
q5 = (−1.1346405 . . . ,−0.0043527627 . . . , 0.0026852387 . . . ).
Mutual distances: r12 = 1.7021608 . . . , r13 = r23 = 1.0152473 . . . , r14 = r24 =
1.7653219 . . . , r34 = 0.99309250 . . . , r15 = r25 = 1.5106504 . . . , r35 = 1.1351380 . . . ,
r45 = 1.5302005 . . . .

5 Analytic continuation of the central configurations

In this section we continue numerically the families of central configurations from
the spatial (4+1)–body problem with 4 equal masses to the spatial 5–body problem
with equal masses, and vice versa considering one of the masses m as a parameter.
In Sect. 2, assuming that m2 6= 0, we have reduced the equations of central config-
urations to a set of eleven equations ei = 0 with i = 1, . . . , 11 and eight unknowns,
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Fig. 5 Central configurations of the spatial (4 + 1)–body problem with four equal masses at
the vertices of a planar central configuration.

namely y3, z3, x4, y4, z4, x5, y5, z5. So we should find numerically the solutions
of that set of eleven equations as m varies from 0 to 1 or vice versa.

Let

M =
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We say that a central configuration given by z0 = (y03, z
0
3 , x

0
4, y

0
4 , z

0
4 , x

0
5, y

0
5, z

0
5) for

a fixed value of m = m0 is degenerate if the rank of the matrix M is not maximal
at m0 and z0. From the Implicit Function Theorem every non–degenerate central
configuration can be continued to a unique family of central configurations as
the parameter m varies. As a consequence of the Implicit Function Theorem, the
number of central configurations can only change if the degeneracy condition is
fulfilled.

In order to continue the central configurations from the (4+1)–body problem to
the 5–body problem or vice versa, we have used the following methodology. First,
for each representative of the classes of central configurations given in Sect. 3 and 4,
we choose a subset of eight equations esi = 0 with si ∈ {1, . . . , 11} for i = 1, . . . , 8
such that the associated minor of order 8 of the matrix M , denoted by |Mesi |,
evaluated on that representative does not vanish (see Table 1). This can be done
for all the classes except Ps because the matrix M evaluated at the representative
of the class Ps has rank 7. This is due to the fact that the representative of the
class Ps satisfying conditions q1 = (0, 0, 1) and x3 = 0 has the mass m3 on the z–
axis. Thus any rotation of this configuration satisfies also conditions q1 = (0, 0, 1)
and x3 = 0 and consequently it provides a solution of system esi = 0 making the
configuration degenerate. In this case, we will avoid this degeneracy by working
with the new system of equations ẽi = 0 instead of ei = 0, where the new equations
ẽi are computed as in Sect. 2 but fixing the variable y4 = 0 instead of x3 = 0.
The new Jacobian Matrix M̃ evaluated at the representative of the class Ps has



Configuration |Mesi
| Equations esi

K1 −3.8792768 . . .

e1, e2, e3, e4, e5, e6, e8, e11

K2 −0.22353716 . . .
K3 106.13353 . . .
K4 0.38988999 . . .
Tb 0.18040672 . . .
Ta,1 0.41952832 . . .
Ta,2 0.099424864 . . .
Ta,3 −0.59862385 . . .
Tp,1 5.27579804 . . .
Tp,3 −0.13695605 . . .
Pet −0.080517418 . . .

e1, e4, e5, e6, e7, e8, e9, e11Pit −0.01076149028 . . .

Table 1 For each representative of the classes of central configurations given in Sect. 3 and 4,
except for the class Ps, we provide the values of the minors of order 8 different from zero, and
the equations that we have used for computing these minors.

rank 8. In particular, the subset of equations ẽ1, ẽ3, ẽ4, ẽ5, ẽ8, ẽ9, ẽ10, ẽ11 has an
associated determinant |Mẽsi

| equal to 0.13603300 · · · 6= 0.

Once chosen the appropriate subset of equations esi = 0 we continue numeri-
cally the solution of the system esi = 0 from m = 0 (respectively m = 1), either
to m = 1 (respectively m = 0), or to a value m∗ such that the determinant |Mesi

|
evaluated at the corresponding solution becomes 0. The continuation method is
based in the Newton’s algorithm for finding zeros of a vectorial function. We must
take some care for finding the values m∗ according to the parity of the multiplicity
of the zeros of |Mesi

|. Later on we will specify this parity for the different zeros of
the determinant at m∗.

Finally we check that the solutions of the system esi = 0 that we have obtained
satisfy the remaining three equations ei. In the following we describe the results
obtained.

5.1 Continuation from the (4 + 1)–body problem to the 5–body problem

Tb: The representative of the class Tb can be continued up to m = mc with

mc = 10368+1701
√
6

54952 = 0.26449596 . . . through the family of central config-

urations with q1(m) = qc
1 = (0, 0, 1), q2(m) = qc

2 =
(
−
√

2
3 ,

√
2
3 ,−1

3

)
,

q3(m) = qc
3 =

(
0,−2

√
2

3 ,−1
3

)
, q4(m) = qc

4 =
(√

2
3 ,

√
2

3 ,−1
3

)
, and q5(m) =

qc
5 = (0, 0, 0) which consists of a regular tetrahedron with four masses equal

to 1 and the variable mass at its barycenter. The value mc corresponds to the
degenerate central configuration found by Schmidt (1988) and Santos (2004).
The parity of mc as a zero of |Mesi

| is odd.
From now on we will denote by qc the degenerate configuration with (q1,q2,q3,
q4,q5) = (qc

1,q
c
2,q

c
3,q

c
4,q

c
5) and m = mc.



Ta,1: The representative of the class Ta,1 can be continued to a family that ends
when m = 1 at a central configuration of mutual distances

r12 = r13 = r14 = α(0.97494558 . . . ), r23 = r24 = r34 = α(1.4262533 . . . ),
r25 = r35 = r45 = α(1.6074283 . . . ), r15 = α(0.85852248 . . . ),

where α = 7.0682611 . . . . This configuration corresponds to the representative
of class K3 scaled by a factor α and with the positions of the masses m1 and
m5 interchanged. All the configurations of this family satisfy the symmetry
r12 = r13 = r14, r23 = r24 = r34, r25 = r35 = r45.

Ta,2: The representative of the class Ta,2 can be continued to a family that ends
when m = 1 at a central configuration of mutual distances

r12 = r13 = r14 = r25 = r35 = r45 = 1.3999673 . . . , r15 = 2,
r23 = r24 = r34 = 1.6962469 . . . .

This configuration corresponds to the representative of class K4. All the config-
urations of this family satisfy the symmetry r12 = r13 = r14, r23 = r24 = r34,
r25 = r35 = r45.

Ta,3: The representative of the class Ta,3 can be continued to a family that ends
at the degenerate configuration qc. Here the parity of mc as zero of |Mesi

| is
even. All the configurations of this family satisfy the symmetry r12 = r13 = r14,
r23 = r24 = r34, r25 = r35 = r45.

Tp,1: The representative of the class Tp,1 can be continued to a family that ends at
the degenerate configuration qc. The parity of mc as zero of |Mesi

| is odd. All
the configurations of this family satisfy the symmetry r13 = r14 = r23 = r24,
r15 = r25, r35 = r45.

Tp,3: The representative of the class Tp,3 can be continued to a family that ends at
a degenerate configuration with m = mf = 0.66345045 . . . and with position
vectors

q1 = qf
1 = (0, 0, 1),

q2 = qf
2 = (−0.89217754 . . . , 0.12568104 . . . ,−0.43384732 . . . ),

q3 = qf
3 = (0,−0.99969077 . . . ,−0.087625913 . . . ),

q4 = qf
4 = (0.27617240 . . . , 0.96078637 . . . ,−0.087625913 . . . ),

q5 = qf
5 = (0.92848703 . . . ,−0.13079596 . . . ,−0.58919373 . . . ),

see Fig. 6. The corresponding mutual distances are

r13 = r14 = r23 = r24 = 1.47726496 . . . , r15 = r25 = 1.84519172 . . . ,
r35 = r45 = 1.36698085 . . . , r12 = 1.69342689 . . . ,
r34 = 1.97983379 . . . .

The parity of mf as zero of |Mesi
| is odd. All the configurations of this family

satisfy the symmetry r13 = r14 = r23 = r24, r15 = r25, r35 = r45.
From now on we will denote by qf the class of degenerate central configurations

with representative (q1,q2,q3, q4,q5) = (qf
1 ,q

f
2 ,q

f
3 ,q

f
4 ,q

f
5 ) and m = mf .
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Fig. 6 Configuration qf corresponding to m = mf .

Notice that the bifurcation point mf shows a bifurcation inside the set of
convex spatial central configurations, while it is conjectured that in the planar
4–body problem there is no bifurcation inside the set of convex planar central
configurations, see for instance (Albouy and Fu 2007).

Ps: The representative of the class Ps can be continued to a family ending at m = 1
with the configuration of mutual distances

r12 = r14 = r23 = r34 = α(1.39991735 . . . ), r13 = r24 = α(1.97978210 . . . ),
r15 = r25 = r35 = r45 = α(1.59448559 . . . ),

with α = 0.97945856 . . . . This configuration corresponds to the representative
of the class K2 scaled by the factor α and with the masses m1 and m5 in-
terchanged. We note that the central configurations of this family for all the
values of m between 0 and 1 correspond to the pyramidal configuration pro-
vided by Fayçal (see Theorem 1). The changes in the size of the configuration
as m varies are due to the fact that the position of m1 is fixed at (0, 0, 1) and
also to the fact that the center of mass of the configuration is fixed at the
origin.

Pet: The representative of the class Pet can be continued to a family ending at
m = 1 with the configuration of mutual distances

r12 = r13 = r15 = r23 = r25 = r35 = 1.63299316 . . . ,
r14 = r24 = r34 = r45 = 1.

This configuration corresponds to the representative of the class K1 with the
masses m4 and m5 interchanged. All the configurations of this family satisfy
the symmetry r12 = r13 = r23, r14 = r24 = r34, r15 = r25 = r35.

Pit: The representative of the class Pit can be continued to a family ending at
m = 1 with the configuration of mutual distances

r12 = r15 = r25 = α(1.42625333 . . . ), r13 = r23 = r35 = α(0.97494558 . . . ),
r14 = r24 = r45 = α(1.60742830 . . . ), r34 = α(0.85852248 . . . ),



with α = 1.10240737 . . . . This configuration corresponds to the representative
of the class K3 by interchanging the masses m1 and m4 and the masses m3

and m5. All the configurations of this family satisfy the symmetry r13 = r23,
r14 = r24, r15 = r25.

5.2 Continuation from the 5–body problem to the (4 + 1)–body problem

We only analyze the continuation of the representatives of the classes of central
configurations Ki that can provide different classes of central configurations of the
5–body problem with 4 equal masses. Since all the central configurations Ki are
non–degenerate, from the Implicit Function Theorem, each central configuration
can be continued to a unique family of central configurations. So the families that
have already been obtained in Section 5.1 from continuation of central configura-
tions of the (4 + 1)–body problem are not described here.

5.2.1 Continuation from the class K1

Due to the symmetry of the configuration it is sufficient to analyze the families
with m5 → 0 and m1 → 0.

– (m5 → 0) The representative of the class K1 can be continued to a family that
ends at the degenerate configuration qc. The parity of mc as zero of |Mesi

| is
odd. All the configurations of this family consists of a regular tetrahedron with
four masses equal to 1 and the variable mass at its barycenter.

– (m1 → 0) The representative of the class K1 can be continued to a family
ending at m1 = 0 with a representative of the class Pet (see Section 5.1).

5.2.2 Continuation from the class K2

Due to the symmetry of the configuration it is sufficient to analyze the families
with m5 → 0 and m1 → 0.

– (m5 → 0) The representative of the class K2 can be continued to a family
that ends at a representative of the degenerate class qf . The parity of mf as
zero of |Mesi

| is odd. All the configurations of this family satisfy the symmetry
r12 = r14, r23 = r34 = r25 = r45.

– (m1 → 0) The representative of the class K2 can be continued to a family
ending at m1 = 0 with a representative of the class Ps (see Section 5.1).

5.2.3 Continuation from the class K3

In this case we should analyze the families with m5 → 0, m1 → 0 and m3 → 0.

– (m5 → 0) The representative of the class K3 can be continued to a family
that ends at the degenerate configuration qc. Here the parity of mc as zero
of |Mesi

| is even. All the configurations of this family satisfy the symmetry
r12 = r13 = r14, r23 = r24 = r34, r25 = r35 = r45.



– (m1 → 0) The representative of the class K3 can be continued to a family
ending at m1 = 0 with a representative of the class Ta,1 (see Section 5.1).

– (m3 → 0) The representative of the class K3 can be continued to a family
ending at m3 = 0 with a representative of the class Pit (see Section 5.1).

5.2.4 Continuation form the class K4

Due to the symmetry of the configuration it is sufficient to analyze the families
with m5 → 0 and m3 → 0.

– (m5 → 0) The representative of the class K4 can be continued to a family
ending at m5 = 0 with a representative of the class Ta,2 (see Section 5.1).

– (m3 → 0) The representative of the class K4 can be continued to a family
that ends at a representative of the degenerate class qf . The parity of mf as
zero of |Mesi

| is odd. All the configurations of this family satisfy the symmetry
r12 = r14 = r25 = r45, r13 = r35, r23 = r34.

6 Summary of the main results

We have proved in Sect. 5 that all the central configurations of the spatial (4+1)–
body problem with 4 equal masses and all the symmetric central configurations
of the spatial 5–body problem with equal masses are non-degenerate. Applying
the Implicit Function Theorem we can guarantee that there is a unique family
of central configurations parameterized by the nonequal mass m emanating from
each non-degenerate configuration. In short we have the following result.

Theorem 3 The following statements hold.

(a) Let q0 be a central configuration of the spatial (4 + 1)–body problem with four
equal masses in a central configuration of the 4–body problem. Then, for m > 0
sufficiently small, the central configuration q0 can be analytically continued to a
unique family of central configurations of the 5–body problem with four masses
equal to one and the fifth mass equal to m.

(b) Let q1 be a symmetric central configuration of the spatial 5–body problem with
five masses equal to one. Then, for ε sufficiently small, and for each choice
of the mass mi, the central configuration q1 can be analytically continued to
a unique family qm of central configurations of the 5–body problem with four
masses equal to 1 and the fifth mass mi = 1− ε.

We emphasize that to complete the description of the spatial central configu-
rations of the 5–body problem with four masses equal to one and the fifth mass
varying in [0, 1] that come from central configurations of the spatial (4 + 1)–body
problem with four equal masses it is sufficient to consider the families of central
configurations that are different up to rotations and scalings. In Sect. 5 we have
continued numerically a representative of each class of the families of central con-
figurations provided by Theorem 3 either from m = 0 to m = 1 (or vice versa)
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Fig. 7 Connections between the classes of central configurations of the (4+ 1)–body problem
with 4 equal masses and the ones of the spatial 5–body problem with equal masses. Each line
corresponds to a different family of central configurations of the 5–body problem with 4 equal
masses. The black dots represent mass values where degenerate central configurations occur.

or from m = 0 (or m = 1) to a value of m giving a degenerate central configu-
ration. The results that we have obtained are summarized in Fig. 7. Since there
does not exist spatial central configurations at the boundary between convex and
non–convex central configurations (see Proposition 12 in (Albouy 2003)), the re-
sults can be divided into two disconnected diagrams, one for convex and one for
concave central configurations, see Fig. 7. Notice that all the families of central
configurations that we have obtained are symmetric.

In particular, we have proved the following numerical result.

Result 2 The following statements hold for the 5–body problem with four equal
masses when the non–equal mass takes values in the interval [0, 1].

(a) There exist two (up to rotations and scalings) degenerate central configurations,

the one corresponding to the nonequal mass values m = mc = 10368+1701
√
6

54952 =
0.26449596 . . . and m = mf = 0.66345045 . . . .

(b) From the degenerate central configuration with m = mc bifurcate 5 different
(up to rotations and scalings) families of central configurations (see Fig. 7).

(c) From the degenerate central configuration with m = mf bifurcate 3 different
(up to rotations and scalings) families of central configurations (see Fig. 7).



The bifurcation at m = mc has been first studied by Schmidt (1988). He found
four families of central configurations bifurcating from the regular tetrahedron with
one mass at its barycenter, each one symmetric with respect to one of the four
axis of symmetry of the regular tetrahedron. Later on Santos (2004) completes the
study of Schmidt (1988). In particular, after a complete analysis of the symmetries
of the problem and using the equivariant branching lemma, he found seven sym-
metric families of central configurations bifurcating from the regular tetrahedron
with one mass at its barycenter, four presenting a so–called axis–type symmetry
(they are symmetric with respect to the straight line passing through a vertex and
the barycenter of the tetrahedron) which correspond to the four families found
by Schmidt (1988); and three presenting a so–called planar–type symmetry (they
have two planes of symmetry and the intersection of these two planes is a straight
line passing through the middle points of two opposite edges of the tetrahedron
formed by the four equal masses).

Remarks 1) The branch connecting the configurations Tb with K1 through the
bifurcation mc corresponds to the central configuration formed by the vertices of a
regular tetrahedron and its barycenter.

2) All the central configurations of the branch connecting the configurations Ta,3

with K3 through the bifurcation mc have the same symmetry satisfying r12 = r13 =
r14, r23 = r24 = r34 and r25 = r35 = r45, which corresponds to a symmetry with
respect to an axis passing through a vertex and the barycenter of the tetrahedron.
This branch correspond to the one found by Schmidt (1988) given by the solution
a25 = a35 = a45 = α of page 72. This branch corresponds also to one of the four
axis–type symmetric branches given by Theorem 4.22 in (Santos 2004), the one
with ∆2 = ∆3 = ∆4. The other three solutions of Schmidt (1988), a25 = −a35/3 =
a45 = α, −a25/3 = a35 = a45 = α and a25 = a35 = −a45/3 = α correspond to the
other three axis–type symmetric branches in (Santos 2004), namely the branches
with ∆1 = ∆2 = ∆4, ∆1 = ∆3 = ∆4 and ∆1 = ∆2 = ∆3 respectively. The
four branches are the same after renaming conveniently the masses. So they are
represented only once in Fig. 7.

3) All the central configurations of the branch connecting the configurations Tp,1

with the bifurcation mc have the same symmetry satisfying r13 = r14 = r23 = r24,
r35 = r45 and r15 = r25, which corresponds to a symmetry with respect to a
straight line passing through the middle points of two opposite edges of the tetrahe-
dron formed by the four equal masses. This branch corresponds to one of the three
families given by Theorem 4.22 in (Santos 2004) presenting a planar–type symme-
try. More precisely, it corresponds to the branch in (Santos 2004) with ∆1 = ∆2

and ∆3 = ∆4. The other two branches (the one with ∆1 = ∆3 and ∆2 = ∆4 and
the one with ∆1 = ∆4 and ∆2 = ∆3) are the same after renaming conveniently
the masses. In Fig. 7 we only present one of these branches.

We conjecture that all the symmetric classes of central configurations of the
5–body problem with four equal masses to one and the non–equal mass varying in
[0, 1] are represented in Fig. 7. If there are any other additional symmetric classes,
these should neither start nor end in the central configurations of the spatial 5–
body problem with equal masses or in the ones of the spatial (4+1)–body problem
with four equal masses and one infinitesimal. They must start or or end in either
the bifurcations mc, mf or in some bifurcation value m = m∗ 6= mc,mf .



In fact, analyzing the degenerate configuration with m = mf we see that there
are no other classes of central configurations bifurcating from m = mf . Indeed,
the configuration (qf ,mf ) corresponds to a simple branch point (see for instance
Section 4.1 in (Beyn et al. 2001); that is, there are exactly two distinct solution
branches passing through (qf ,mf ), the branch connecting Tp,3 with K4 and an
additional branch connecting two different representatives of the class K2.

7 Continuation from the (5)–body problem to the (1 + 4)–body
problem

The restricted (1 + 4)–body problem is a limiting case of the 5–body problem
having one unit mass and four infinitesimal masses. Albouy and Llibre (2002)
studied the restricted (1 + 4)–body problem when the four infinitesimal masses
are equal. They found the five classes of central configurations detailed bellow.

R1: (2 cc) The four infinitesimal masses are at the vertices of a regular tetrahedron
and the larger mass is at its barycenter.

R2: (6 cc) The masses are at the vertices of a regular pyramid with a square base,
the infinitesimal masses are at the vertices of the square.

R3: (8 cc) The four infinitesimal masses are at the vertices of a regular pyramid
with an equilateral triangle base, the larger mass lies in the interior of the
pyramid and on its axis of symmetry.

R4: (8 cc) Three infinitesimal masses form an equilateral triangle. The other two
masses are on the axis orthogonal to the plane defined by the triangle passing
through its barycenter, one above the plane and the other one below.

R5: (24 cc) Three infinitesimal masses form an isosceles triangle. The other two
masses are on the axis orthogonal to the plane defined by the triangle passing
through the barycenter of the triangle, one above the plane and the other one
below.

In (Alvarez–Ramı́rez et al. 2008) the authors continue numerically the symmet-
ric central configurations of the spatial 5–body problem to the restricted spatial
(1 + 4)–body problem with four infinitesimal masses. Here we have repeated the
computations and the results made in (Alvarez–Ramı́rez et al. 2008) and we have
corrected some mistakes. Thus here we present the improved results of (Alvarez–
Ramı́rez et al. 2008), which are detailed below and they are represented in Fig. 8.
We also have analyzed the symmetries of the continued families.

K1: When we fix m5 = 1, the representative of the class K1 can be continued to a
family that ends at a representative of the class R1. All the configurations of
this family consists of a regular tetrahedron with four masses equal to 1 and
the variable mass at its barycenter.

When we fix m2 = 1, the representative of the class K1 can be continued to a
family that ends at a degenerate configuration qa (see Fig. 9) with m = ma =
0.94120559 . . . and with mutual distances

r12 = r23 = r24 = 1.69174590 . . . , r13 = r14 = r34 = 1.59766522 . . . ,
r15 = r35 = r45 = 1.025631876 . . . , r25 = 0.969738526 . . .

All the configurations of this family satisfy the symmetry r13 = r14 = r34,
r15 = r35 = r45, r12 = r23 = r24.
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Fig. 8 Connections between the classes of central configurations of the (5)–body problem
with equal masses and the ones of the spatial (1 + 4)–body problem with equal infinitesimal
masses. Each line corresponds to a different family of central configurations of the 5–body
problem with 4 equal masses. The black dots represent mass values where degenerate central
configurations occur.
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Fig. 9 The degenerate central configuration qa.

K2: When we fix m2 = 1, the representative of the class K2 can be continued to a
family that ends at a representative of the class R5. All the configurations of
this family satisfy the symmetry r13 = r15, r23 = r25, r34 = r45.

When we fix m1 = 1, the representative of the class K2 can be continued to a
family that ends at a representative of the class R2 by passing trough a degen-
erate configuration qb with m = mb = 0.59623579 . . . . All the configurations of
this family consists of a pyramid with square base, with the four equal masses
on the square. The mutual distances corresponding to the configuration with



m = mb are

r12 = r13 = r14 = r15 = 1.81043914 . . . , r24 = r35 = 2.24791936 . . . ,
r23 = r25 = r34 = r45 = 1.58951902 . . . .

K3: When we fix m1 = 1, the representative of the class K3 can be continued to a
family that ends at a representative of the degenerate central configuration with
m = ma. All the configurations of this family satisfy the symmetry r13 = r14,
r23 = r24, r35 = r45.

When we fix m5 = 1, the representative of the class K3 can be continued to
a family that ends at a representative of the class R3. All the configurations
of this family satisfies the symmetry r12 = r13 = r14, r23 = r24 = r34, r25 =
r35 = r45.

When we fix m2 = 1, the representative of the class K3 can be continued to a
family that ends at a coalescent central configuration with the larger mass and
two infinitesimal masses located at three different vertices of a tetrahedron and
two infinitesimal masses coalescing at the remaining vertex the tetrahedron.
This class of coalescent central configurations is denoted by Rc. Notice that
the configurations in Rc are in the boundary between convex and nonconvex.

K4: When we fix m2 = 1, the representative of the class K4 can be continued to a
family that ends at a representative of the degenerate central configuration with
m = mb. All the configurations of this family satisfy the symmetry r12 = r25,
r13 = r14, r23 = r24, r35 = r45.

When we fix m5 = 1, the representative of the class K4 can be continued to a
family that ends at a representative of the class R4. All the configurations of
this family satisfy the symmetry r12 = r13 = r14, r23 = r24 = r34, r25 = r35 =
r45.

Notice that all this families of central configurations are symmetric.
Analyzing the degenerate configurations qa and qb, we have that the config-

uration qa with m = ma is a simple fold (see Section 3.2 in (Beyn et al. 2001);
that is, there is a unique solution branch passing through (qa,ma) the branch con-
necting a representative of the class K1 with a representative of the class K3. The
configuration qb with m = mb is a simple branch point (see again Section 4.1 in
(Beyn et al. 2001); that is, there are exactly two distinct solution branches passing
through (qb,mb), the branch connecting a representative of the class K2 with a
representative of the class R2 and an additional branch connecting two different
representatives of the class K4.

We conjecture that all the symmetric classes of central configurations of the
5–body problem with four masses equal to m and the non–equal mass equal to 1
when m varies in [1, 0] are represented in Fig. 8. If there are any other additional
symmetric classes, these should neither start nor end in the central configurations
of the spatial 5–body problem with equal masses or in the ones of the spatial
(1 + 4)–body problem with four infinitesimal equal masses.
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