ON THE SPATIAL CENTRAL CONFIGURATIONS OF THE 5-BODY PROBLEM AND THEIR BIFURCATIONS

Martha Alvarez
Departamento de Matemáticas, UAM-Iztapalapa. Av. San Rafael Atlixco 186, Col. Vicentina México, D.F. 09340
Joaquin Delgado
Departamento de Matemáticas, UAM-Iztapalapa. Av. San Rafael Atlixco 186, Col. Vicentina México, D.F. 09340
Jaume Llibre
Departament de Matemàtiques, Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Spain

Abstract

Central configurations provide special solutions of the general $n-$ body problem. Using the mutual distances between the n bodies as coordinates we study the bifurcations of the spatial central configurations of the 5 -body problem going from the problem with equals masses to the $1+4$ - body problem which has one large mass and four infinitesimal equal masses. This study is made by giving a computer-aided proof.

1. Introduction and statement of results. Central configurations are important in the n-body problem because they allow to obtain the homographic solutions, those solutions of the n-body problem that can be described explicitly [22]. They play a main role in the topological changes of the integral manifolds [20], and they are the limiting configurations either for colliding particles [10] or for parabolic total escape [18].

We consider n particles of positive masses $m_{i}, i=1, \ldots, n$ moving in \mathbb{R}^{3} under their mutual Newtonian gravitational attraction. Let \mathbf{q}_{i} be the position vector of the i th particle relative to the center of mass, by Newton's law, the equations of motion are

$$
m_{i} \ddot{\mathbf{q}}_{i}=\frac{\partial U}{\partial \mathbf{q}_{i}}
$$

where the potential is

$$
U=\sum_{1 \leq i<j \leq n} \frac{G m_{i} m_{j}}{\left\|\mathbf{q}_{j}-\mathbf{q}_{i}\right\|}
$$

[^0]
[^0]: 2000 Mathematics Subject Classification. Primary: 70F15, 70F10; Secondary: 37M20.
 Key words and phrases. Central configurations, 5-body problem, bifurcation.
 The first and second authors are supported by SEP-CONACYT grant SEP-2004-C-01-47768, the third author is partially supported by a MEC/FEDER grant number MTM2005-06098-C02-01 and by a CICYT grant number 2005SGR 00550.

