
CONFIGURATIONS OF CRITICAL POINTS IN COMPLEX

POLYNOMIAL DIFFERENTIAL EQUATIONS

M.J. ÁLVAREZ, A. GASULL, AND R. PROHENS

Abstract. In this work we focus on the configuration (location and stability) of
simple critical points of polynomial differential equations of the form ż = f(z), z ∈ C.
The case where all the critical points are of center type is studied in more detail
finding several new center configurations. One of the main tools in our approach is
the 1-dimensional Euler-Jacobi formula.

1. Introduction and main results

Consider the first order differential equation

ż :=
dz

dt
= f(z), t ∈ IR, z ∈ C, (1.1)

where f is a complex polynomial of degree n. It is well-known that this type of equa-
tion presents only three kind of simple critical points, all of them of index +1: foci,
centers and nodes (see Theorem 2.1). Furthermore, the centers of this equation are all
isochronous and equations of the form (1.1) can not have limit cycles (see [3, 5, 12,
15, 16, 19, 21]). Indeed this result is even true for differential equations defined by
meromorphic functions f, see again [12, 15, 16].

Our interest is to show some connections between the geometrical distribution in C

of the critical points of equation (1.1) and their type. Our main motivations are the
Berlinskĭı’s Theorem, see [2, 10] and some results of [5].

Recall that Berlinskĭı’s Theorem classifies the critical points of real quadratic systems
depending on their distribution in the plane. It turns out that not all configurations
are possible. For instance, if a quadratic system has four critical points located at the
vertices of a convex quadrilateral, then a couple of opposite critical points are saddles
(index -1) while the other two are anti-saddles (index +1). Afterwards, this type of
results was extended to cubic systems in [8] and [23].

In [5, 6] similar properties are studied but for holomorphic vector fields. We point
out that there is an essential difference between the complex and the planar (real) case
because, as we have already said, all the simple critical points in holomorphic differential
equations have index +1. In this work we continue studying some connections between
the distribution and the class of the critical points of equation (1.1).

Our main results are the following:

Theorem 1.1. Consider equation ż = f(z), with f a complex polynomial and assume
that all their critical points are simple. Then:

(1) If all the critical points are foci, then any geometrical distribution in C can be
achieved.

(2) Not all the critical points have the same stability.
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(3) If all the critical points are collinear, then all of them are of the same type.
(4) If all the critical points are collinear and they are not centers, then they have

alternated stability.

In Section 4, we give more detailed results that the ones stated in previous theorem
when the degree of f is three or four. Next theorem deals with the case of ż = f(z)
having all its critical points of center type.

Theorem 1.2. Consider equation ż = f(z), with f a complex polynomial of degree
n and assume that all its critical points are centers. Then, for any n, the following
configurations exist (see also Figure 1):

(1) n aligned critical points.
(2) n−2 aligned critical points and the other two symmetric with respect to this line.

Moreover, the convex hull defined by all the critical points is either:
(i) a triangle (n ≥ 4), or
(ii) a quadrilateral (n ≥ 5)

(3) All the critical points, except one, located at the vertices of a regular polygon and
the last one at its center (n ≥ 4).

Moreover, for n ≥ 6 there are many different configurations to the ones listed above.

Collinear Triangle Quadrilateral Regular polygon

Figure 1. Some of the center configurations existing for any n ≥ 5. In
the figure, n = 6.

It is already known that when n ≤ 3 the unique center configuration is the one given
in item (1) and when n = 4, apart from the aligned one, only the triangular configuration
given in item (2i) exists1, see [5] and [6]. Moreover, in this last case the point inside the
triangle is its orthocenter, as it is also proved in [6]. Configurations stated in items (1)
and (3) are already known to exist for any n. The above theorem shows that for n ≥ 5
the situation is much more complicated. As we will see along its proof, the method that
we use to give new configurations for n = 6, 7, 8, 9 can be easily extended for bigger
values of n.

We remark that the knowledge of different center configurations is useful to study
different configurations of limit cycles obtained by studying perturbations of (1.1) of
the form ż = f(z) + εg(z, z̄, t), see for instance [9, 13].

It is easy to see that Theorem 1.2 also holds when instead of assuming that all the
critical points are of center type we assume that all them are nodes, see Remark 2.2.
Moreover in this case, the stability of the critical points can also be taken into account
when we study the possible configurations. From these facts, we obtain the following
result.

Corollary 1.3. Consider equation ż = f(z), with f a complex polynomial of degree
n and assume that all its critical points are nodes. Then, for any n, the following
configurations exist:

1Notice that when n = 4 the configuration given in item (3) is a particular case of the one given in
item (2i).
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(1) n aligned critical points alternating stability.
(2) n−2 aligned critical points alternating stability and the other two symmetric with

respect to this line and sharing stability. Moreover, the convex hull defined by
all the critical points can be either a triangle (n ≥ 4) or a quadrilateral (n ≥ 5).

(3) All the critical points, except one, located at the vertices of a regular polygon
and with the same stability and the last one at its center with opposite stability
(n ≥ 4).

Moreover, for n ≥ 6 there are many different configurations to the ones listed above.

In the proof of the above result there are more details about the stabilities of the
nodes for all the configurations given in it.

The paper is organized as follows: In Section 2 we give several general results on equa-
tion (1.1). In particular, Theorem 1.1.(1) is proved in Proposition 2.3, Theorem 1.1.(2)
is proved in Proposition 2.6(d) and Theorem 1.1.(3) and (4) in Proposition 2.7. The re-
sults about center and node configurations are presented in Section 3 (proofs of Theorem
1.2 and Corollary 1.3). In Section 4 we study in more detail the concrete cases n = 3
and n = 4. Finally, in Section 5 we give some examples of phase portraits of this type of
equations on the Poincaré disc, specially regarding to the critical points configuration.

2. Preliminary results and proof of Theorem 1.1

Recall that given a holomorphic function f in a point z = z0, the behavior of the
solutions of the differential equation ż = f(z) near this point is well-known, see for
instance [4, 11, 15, 16]. In next theorem we recall this result.

Theorem 2.1. Let f be a holomorphic map at z = z0 and assume that f(z0) = 0. Then
the critical point z0 of the differential equation ż = f(z) is:

(a) A center if and only if 0 6= f ′(z0) ∈ iIR. Moreover in this case the center is
isochronous and its period is 2π/|f ′(z0)|.

(b) A stable (resp. unstable) node if and only if f ′(z0) < 0 (resp. f ′(z0) > 0).
(c) A stable (resp. unstable) focus if and only if Re(f ′(z0)) Im(f ′(z0)) 6= 0 and

Re(f ′(z0)) < 0 (resp. Re(f ′(z0)) > 0).
(d) The union of 2(m − 1) elliptic sectors if and only if f(z) = (z − z0)

mg(z) for
some m ∈ IN, m > 1 and g(z0) 6= 0.

Remark 2.2. Observe that z0 is a center of the equation ż = f(z) if and only if z0 is a
node of equation ż = if(z). This fact is useful to reduce some proofs of the properties
concerning nodes to the analogous but for centers.

In next result we prove that any distribution of critical points of focus type exists.
Regarding their possible stabilities the problem has a different answer. As we will see
in Propositions 2.7 and 4.1, not all the situations are possible.

Proposition 2.3. Given n arbitrary different complex points: z1, . . . , zn there exists an
equation of the form (1.1) having all them as critical points of focus type.

Proof. Consider the equation

ż = fα(z) := (α + i)

n
∏

j=1

(z − zj).

We only need to prove that there exists α ∈ R such that all the critical points are of
focus type.

Observe that, for any k = 1, . . . , n,

f ′
α(zk) = (α + i)

n
∏

j=1,
j 6=k

(zk − zj) =: (α + i)Ak,
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with 0 6= Ak ∈ C. By Theorem 2.1.(c) it suffices to check for any k = 1, . . . , n,
Re(f ′

α(zk)) Im(f ′
α(zk)) 6= 0. Note that

f ′
α(zk) = (α + i)Ak = α Re(Ak) − Im(Ak) + i(α Im(Ak) + Re(Ak)).

Consider the polynomial

Q(α) :=

n
∏

k=1

(α Re(Ak) − Im(Ak))(α Im(Ak) + Re(Ak)) 6≡ 0.

By taking a value α∗ ∈ R such that Q(α∗) 6= 0 the result follows. �

In the proof of Berlinskĭı’s Theorem given in [8], as well as in the paper [14], one of the
key ingredients to relate the configuration of the critical points with their types is the 2-
dimensional version of the well-known Euler-Jacobi formula. Its classical m-dimensional
version goes to [17] and more modern formulations appear in [1, 18, 22]. Although in our
paper we only will use the 1-dimensional version, for the sake of completeness, we state
below an m-dimensional version and a 1-dimensional version, in a suitable notation for
our purposes. Again by completeness we include a sketch of a proof of the easiest case
m = 1.

Theorem 2.4. (Euler-Jacobi Formula) Let f = (f1, . . . , fm) be a polynomial map
from C

m to C
m and assume the set V (f) := {f1 = . . . = fm = 0} ⊂ C

m has
cardinal deg(f1) · · ·deg(fm). Then for any complex polynomial g such that deg(g) <
deg(det(Df(w))) =

∑m
j=1 deg(fj) − m,

∑

w∈V (f)

g(w)

det(Df(w))
= 0,

where Df stands for the differential of the map f.

Theorem 2.5. (1-dimensional Euler-Jacobi Formula) Let f be a polynomial map from
C to C and assume the set V (f) := {f = 0} ⊂ C has cardinal n := deg(f). Then for
any complex polynomial g such that deg(g) < deg(f ′) = deg(f) − 1,

∑

w∈V (f)

g(w)

f ′(w)
=

n
∑

k=1

g(wk)

f ′(wk)
= 0,

where V (f) = {w1, w2, . . . , wn}.

Sketch of the proof of Theorem 2.5. Consider the meromorphic map h(z) = g(z)
f(z) and let

Γr be a circumference of radius r surrounding all the zeroes of f. Because of the Residues
Theorem,

∫

Γr

h(z) dz = 2πi

n
∑

k=1

Res(h(z), wk) = 2πi

n
∑

k=1

g(wk)

f ′(wk)
.

On the other hand,
∣

∣

∣

∫

|z|=r

g(z)

f(z)
dz

∣

∣

∣
=

∣

∣

∣

∫ 2π

0

g(reiθ)

f(reiθ)
rieiθdθ

∣

∣

∣
≤

∫ 2π

0

|g(reiθ)r|
|f(reiθ)| dθ.

If we let r tend to infinity, since deg(g) + 1 < deg(f), the above expression goes to zero
and the result follows. �

By using the 1-dimensional Euler-Jacobi formula we obtain next result. Indeed items
(a) and (c) are already proved in [5]. Recall that if z = zk is a center of equation (1.1)
then it is isochronous and its period is Tk = 2π/|f ′(zk)|. We define its signed period as
the real number τk := 2πi/f ′(zk). Notice that Tk = |τk|.
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Proposition 2.6. Consider equation (1.1) and assume that all its critical points, zk for
k = 1, . . . , n, are simple. Then:

(a) If z1, . . . , zn−1 are centers, then zn is also a center.
(b) If each of the critical points z = zk is a center and its corresponding signed period

is τk, then
∑n

k=1 τk = 0.
(c) If z1, . . . , zn−1 are nodes, then zn is also a node.
(d) If not all the critical points are centers, then there exist at least two of them that

have different stability.

Proof. (a-b) As we are assuming that the critical points z1, . . . , zn−1 are centers, we
know that f ′(zk) = ibk, with 0 6= bk ∈ IR for k = 1, . . . , n − 1. Then, we apply the
Euler-Jacobi formula (see Theorem 2.5) with g(z) ≡ 1 and, for some β ∈ IR, we get

n
∑

k=1

1

f ′(zk)
=

n−1
∑

k=1

1

ibk

+
1

f ′(zn)
= iβ +

1

f ′(zn)
= 0 ⇒ f ′(zn) ∈ iIR.

Hence, by Theorem 2.1.(a), zn is a center and (a) follows. The above formula also implies
that

∑n
k=1 τk = 0 and therefore proves item (b).

(c) The proof reduces to the previous one by using Remark 2.2.
(d) We apply again the Euler-Jacobi formula with g(z) ≡ 1. If, for k = 1, . . . , n, we

denote f ′(zk) = αk + iβk, then it turns out that

n
∑

k=1

g(zk)

f ′(zk)
=

n
∑

k=1

αk − iβk

α2
k + β2

k

= 0.

Taking the real part in former equality, we get

n
∑

k=1

αk

α2
k + β2

k

= 0.

As we are assuming that not all of the critical points are centers, then not all the non-zero
αk have the same sign and by Theorem 2.1.(b) and (c) the result follows. �

In next two results we study the type of critical points that equation (1.1) can have
when some of them are aligned.

Proposition 2.7. Consider equation (1.1) with n simple critical points and assume that
for some k ≥ 0 it has n−2k of them located on a straight line L and the other 2k points
symmetric with respect to this line. Then

(a) All the points on L are of the same type and if they are not centers, then they
have alternated stability.

(b) If all the points on L are of center type then each pair of symmetric points with
respect to L is formed by two points of the same type and if they are not centers
then they have opposite stabilities.

(c) If all the points on L are of node type then each pair of symmetric points with
respect to L is formed by two points of the same type and if they are not centers
then they have the same stability.

Proof. (a) Without loss of generality, we can assume that all the critical points zj = aj

for j = 1, . . . , n− 2k are real and the other 2k appear in couples of complex conjugated
numbers, wj and wj , j = 1, . . . , k . Then, equation (1.1) can be written in the following
way:

ż = (α + iβ)
n−2k
∏

j=1

(z − aj)
k

∏

j=1

(z − wj)(z − wj),
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with aj < aj+1, for all j = 1, . . . , n − 2k − 1, all the wj are different and Im(wj) 6= 0,
j = 1, . . . k.

We define

g(z) =
n−2k
∏

j=3

(z − aj)
k

∏

j=1

(z − wj)(z − wj),

and apply the Euler-Jacobi formula with this function g(z), see Theorem 2.5. It turns
out that

n
∑

j=1

g(zj)

f ′(zj)
=

g(a1)

f ′(a1)
+

g(a2)

f ′(a2)
= 0. (2.1)

As g(aj) ∈ IR, for j = 1, 2, then

• f ′(a1) ∈ IR if and only if f ′(a2) ∈ IR, and then a1 is a node if and only if a2 is
also a node.

• f ′(a1) ∈ iIR if and only if f ′(a2) ∈ iIR, and then a1 is a center if and only if a2

is also a center.
• a1 is a focus if and only if a2 is also a focus.

If we repeat an analogous reasoning but changing a2 by either a3, . . . , an−2k, then we
get that all the critical points on L are of the same type.

To prove the second assertion of this item, we assume that all the critical points
are either of node or focus type. As sgn(g(a1)) = sgn(g(a2)), taking real part in the
expression (2.1), we get that sgn(Re(f ′(a1))) 6= sgn(Re(f ′(a2))) and, consequently, by
Theorem 2.1.(b) and (c), the points a1 and a2 have opposite stability.

An analogous reasoning can be done with any pair of consecutive critical points on L
and, as a consequence, we get item (a).

(b-c) Fix some j, 1 ≤ j ≤ k. Then it is easy to check that

f ′(wj) =
α + iβ

α − iβ
f ′(wj). (2.2)

If we assume that all the points on L are of center type we obtain that α = 0 and thus
equation (2.2) tells us that f ′(wj) = −f ′(wj). From this equality and Theorem 2.1 we
get statement (b). The proof of item (c) follows the same steps, but in this case β = 0
and then f ′(wj) = f ′(wj) for each j = 1, . . . , k. �

Remark 2.8. Notice that when all the points on L are of focus type, a similar statement
to (b) or (c) does not hold as we can see in next example. Consider equation

ż = (1 + i)z(z − 1)(z − 2)(z − (x + i))(z − (x − i)),

being x any of the solutions of −2x3 + 14x − 8 = 0. We note that this equation has 3
aligned focus, a node and a center as its critical points.

Proposition 2.9. Consider equation (1.1). Assume that it has n simple critical points,
n ≥ 3, and n − 1 of them are collinear. Then the following statements hold:

(a) If 2 or more of the collinear critical points are centers, then the rest of the critical
points are as well centers and aligned.

(b) If 2 or more of the collinear critical points are nodes, then the rest of the critical
points are as well nodes and aligned.

Proof. Without loss of generality, equation (1.1) can be written as

ż = (α + iβ)(z − zn)
n−1
∏

k=1

(z − ak), ak ∈ IR. (2.3)
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Assume that two of the aligned critical points are centers, say a1 and a2, and define the
following function

g(z) = (z − zn)
n−1
∏

k=3

(z − ak).

By applying the Euler-Jacobi formula with the above function g we get

n
∑

k=1

g(zk)

f ′(zk)
=

n−1
∏

k=3

(a1 − ak)

iβ1
(a1 − zn) +

n−1
∏

k=3

(a2 − ak)

iβ2
(a2 − zn) =

=: iA1(a1 − zn) + iA2(a2 − zn) = 0,

where A1, A2 ∈ IR. The only way for this quantity to be equal zero is when (a1−zn) and
(a2 − zn) are proportional. Hence, zn must be aligned with a1 and a2. Consequently,
zn ∈ IR.

Applying now Proposition 2.7 with k = 0, since the n critical points are collinear and
two of them are centers, all the other ones are also centers.

The proof of the second statement can be reduced to the former one by using Re-
mark 2.2. �

As we will see in the example given in equation (3.1) of next section, Proposition 2.9
can not be generalized when it is assumed that less than n−1 critical points are aligned,
even in the case when all the critical points are of the same type.

3. Center and node configurations

In order to study the relationship between location and stability of the centers in the
complex plane, we introduce the definition of center configuration for equation (1.1).

Definition 3.1. Consider equation (1.1) with n critical points of center type, C1 :=
{z1, z2, ...zn}. We will say that it has the center configuration 〈k1, k2, . . . , km〉 if the
following holds: the boundary of the convex hull of the n points contains exactly k1

centers. After removing these points we obtain another set C2 containing n−k1 centers.
Then k2 is the number of centers that belong to the boundary of the convex hull of C2. By
continuing this procedure we obtain k3, k4, . . . Clearly, we stop when k1+k2+· · ·+km = n.
See Figure 2 for some examples when n = 9. Moreover when the last km points are
aligned we write this number in boldface font.

Observe that when km ≤ 2 these points are always aligned, nevertheless for aesthetical
reasons we will not use the boldface font for them.

In the above notation, items (1), (2) and (3) of Theorem 1.2, proved below, imply
that the following center configurations always exist: 〈n〉 and 〈n − 1, 1〉 for any n ≥ 2,
〈3,n − 3〉 for n ≥ 4 and 〈4,n − 4〉 for n ≥ 5.

Proof of Theorem 1.2. (1) An example realizing the aligned configuration is,

ż = i(z − a1)(z − a2) · · · (z − an),

where ak ∈ IR, for all k = 1, . . . , n.
(2) Fix a1 < a2 < . . . < an−2. Consider equation

ż = f(z) := i(z − a1)(z − a2) · · · (z − an−2)(z − zn)(z − zn), (3.1)

where zn = x + i ∈ C and x ∈ IR. We want to find conditions on x to ensure that all
the critical points are centers. Recall that, by Theorem 2.1.(a), it suffices to show that
f ′ at them takes pure imaginary values. It is easy to check that f ′(ak) ∈ iIR, for all
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n=6 n=7 n=8 n=9
〈6〉 〈7〉 〈8〉 〈9〉
〈5, 1〉 〈6, 1〉 〈7, 1〉 〈8, 1〉
〈4, 2〉 〈5, 2〉 〈6, 2〉 〈7, 2〉
〈3, 3〉 〈4, 3〉 〈5, 3〉 〈6, 3〉
〈3,3〉 〈4,3〉 〈5,3〉 〈6,3〉

〈3,4〉 〈4,4〉 〈5,4〉
〈5, 4〉

〈3,5〉 〈4,5〉
〈4, 3, 1〉 〈5, 3, 1〉
〈3, 4, 1〉 〈4, 3, 2〉
〈3, 3, 2〉 〈3, 5, 1〉

Table 1. Center configurations found for 6 ≤ n ≤ 9.

k = 1, . . . , n − 2. To compute f ′(x ± i), let us write x ± i − ak = rk(x)e±iθk(x). With
this notation, the conditions f ′(x ± i) ∈ iIR are equivalent to the set of equations

n−2
∑

k=1

θk(x) = (2ℓ + 1)
π

2
, ℓ ∈ Z. (3.2)

Since h(x) :=
∑n−2

k=1 θk(x) is a monotonous function that varies between 0 and (n− 2)π,
it is not difficult to see that there are exactly n − 2 values of ℓ, ℓ = 0, 1, . . . , n − 3
for which the corresponding equation (3.2) has a unique solution, say x0, x1, . . . , xn−3,
respectively. Moreover, it is easy to see that for n ≥ 5 we can choose a1, . . . , an−2

in such a way that the solutions x0, xk and xn−3, for some k, 0 < k < n − 3, satisfy
xn−3 ∈ (−∞, a1], xk ∈ (a1, an−2) and x0 ∈ [an−2, +∞). Notice that the first and last
solutions give rise to a triangular configuration and prove (2i), while the middle one
exhibits a quadrilateral configuration, proving (2ii). For instance, by taking n = 5 and
the system

ż = iz(z − 1)(z − 2)(z − (x − i))(z − (x + i)),

these center configurations appear when x ∈ {−1, 1, 3}.
(3) The configuration corresponding to this item is given by equation

ż = z

(

zn−1 − i

n − 1

)

. (3.3)

To end the proof we list in Table 1 the center configurations for n = 6, 7, 8 and 9
that we have obtained. In this table we use the notation introduced at the beginning
of this section. To get it we follow similar ideas to the ones used to prove item (2). As
example, we give the computations for some of them.

Configurations 〈5, 1〉 and 〈4, 2〉 for n = 6 : Consider

ż = iz(z − 1)(z − (x − i))(z − (x + i))(z − (y − i))(z − (y + i)),

with x and y arbitrary real numbers. It is clear that for all values of x and y the
differential equation has a center at the points z = 0 and z = 1. By imposing that the
other points are four different centers we obtain that x and y, with x 6= y, have to be
the real solutions of the system of equations

{

x3 − x2y − x2 + xy − 5x + y + 2 = 0,

xy2 − y3 + y2 − xy + 5y − x − 2 = 0.
(3.4)
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Figure 2. Different center configurations for family (3.5). From left to
right, the configurations are: 〈3, 5, 1〉, 〈7, 2〉, 〈4, 3, 2〉 and 〈5, 3, 1〉.

Their solutions are (x, y) ∈ {(0,−2), (−2, 0), (1, 3), (3, 1), ((1+
√

13)/2, (1−
√

13)/2), (1−√
13)/2, (1 +

√
13)/2)}, and their corresponding configurations are 〈5, 1〉 and 〈4, 2〉.

Configurations 〈3, 5, 1〉, 〈7, 2〉, 〈4, 3, 2〉 and 〈5, 3, 1〉 for n = 9 : Consider

ż = iz(z−1)(z−2)(z−(x−i))(z−(x+i))(z−(y−2i))(z−(y+2i))(z−(t−3i))(z−(t+3i)),
(3.5)

with (x, y, t) taking the values

{(−0.329..,−3.897..,−4.905..), (1.417.., 0.123..,−2.694..),

(2.830.., 8.943..,−9.996..), (1.324..,−3.231..,−4.232..)}.
These numbers have been found by solving (numerically) a system of 3 equations with
3 unknowns, similar to (3.4). Their corresponding configurations are: 〈3, 5, 1〉, 〈7, 2〉,
〈4, 3, 2〉 and 〈5, 3, 1〉, see Figure 2. �

In order to simplify the last part of the proof of Corollary 1.3, we introduce the
notion of signed node configuration. Essentially this definition is the same that the one
of center configuration, but, in each level of critical points, instead of only counting the
number of points we write a plus (resp. minus) for each repulsive (resp. attractive)
node, following the counterclockwise orientation. When the points of the last level
are aligned we follow the usual order and we type the signs in boldface font. For
instance the configurations 〈5, 3〉 and 〈3, 4, 1〉 showed in Figure 3 correspond to the
signed configurations 〈(−,−,−, +, +), (+,−,−)〉 and 〈(−, +, +), (−,−,−,−), +〉.

Proof of Corollary 1.3. By Remark 2.2, it is clear that all the configurations existing for
equation ż = f(z) with all the critical points of center type also exist for some equation
of the form (1.1) but with all the points of node type. Indeed the corresponding equation
is ż = if(z). Notice also that the stability of the nodes of this new equation is given
by the orientation of the centers of ż = f(z). More concretely, if z = z0 is a center of
ż = f(z) for which the orbits turn counterclockwise (resp. clockwise) then the same
point is an attracting (resp. a repelling) node for ż = if(z). Thus our results on the
stability of the node configurations can also be interpreted as refinements of the center
configurations where the direction of rotation of the periodic orbits surrounding the
centers is also taken into account.

The results about the stability of the node configurations obtained from the center
ones and stated in items (1) and (2) are a direct consequence of Proposition 2.7. The
proof of statement (3) is a consequence of Theorem 2.1. Note that this configuration is
given by

ż = f(z) := iz

(

zn−1 − i

n − 1

)

,
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see equation (3.3). Since f ′(0) = 1/(n − 1) and for each (n − 1)-root of i/(n − 1), w, it
holds that f ′(w) = −1, we have that the origin is a repelling node, while the points at
the vertices of the regular polygon are attracting ones, as we wanted to see.

The proof of the last part of the corollary uses the equation

ż = −(z − a1)(z − a2) · · · (z − an−2)(z − zn)(z − zn),

where zn = x+ i ∈ C and x ∈ IR, see also equation (3.1). Its node configurations are like
the center configurations 〈3,n − 3〉 for n ≥ 4 and 〈4,n − 4〉 for n ≥ 5. It is not difficult
to check that their corresponding signed node configurations are:

• 〈(+, +, +), (--,+, --, . . . ,+, --) when n ≥ 4 is even,
• 〈(+, +,−), (--,+, --, . . . , --,+) when n ≥ 5 is odd,
• 〈(+, +, +,−), (+, --,+, . . . ,+, --) when n ≥ 6 is even,
• 〈(−,−,−,−), (+, --,+, . . . , --,+) when n ≥ 5 is odd,
• 〈(−, +,−, +), (+, --,+, . . . , --,+) when n ≥ 7 is odd,

Moreover all the configurations interchanging the minus signs by the plus signs and
viceversa, are also clearly realizable.

Notice also that the signed configuration corresponding to the configuration 〈n−1, 1〉
of item (3) of Corollary 1.3 is 〈(−,−, . . . ,−,−), +〉.

Clearly the above description improves the statement of Corollary 1.3.
Similarly we could obtain all the signed configurations corresponding to the ones given

in Table 1. Instead of this, we have preferred to give only a couple of examples. We
present them in Figure 3. �

Figure 3. Examples of the signed node configurations 〈5, 3〉 and
〈3, 4, 1〉 existing for n = 8. In this figure each of the plus or minus signs
represents a repelling or attracting node, respectively.

Remark 3.2. Notice that perturbing the signed node configurations we can obtain many
different configurations with all the critical points of focus type and for which we know
as well their stabilities, because these stabilities are inherited for the foci from the nodes.

4. Case of f having degree 3 or 4

In this section we study in more detail the cases in which the polynomial f in equation
(1.1) has degree 3 or 4 and all the singularities are simple.

In the case of f having degree 3 it is not difficult to study which configurations of
critical points are possible. For instance, from Proposition 2.9, if the three singularities
are centers (or nodes) they have to be aligned. On the other hand if they are at the
vertices of a triangle, by Proposition 2.6, not all of them have the same stability.

From Theorem 1.2 we know which distributions can adopt three or four critical points
when they are centers (or nodes). Also, as we have previously proved in Proposition 2.3,
when the critical points are foci, any location can be achieved. But, concerning stabilities
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not any configuration is allowed. For instance, as we have proved in Proposition 2.7 with
k = 0, if the foci are collinear then they must have alternated stabilities.

In the following, we introduce some names for the geometrical distributions of four
points and study which ones are possible when f has degree 4 and all the critical points
of equation (1.1) are of focus type. Notice that because there are only 4 critical points,
the description given below is more precise that the one used in Section 3.

Clearly, four points in the plane can take four different geometrical distributions (see
Figure 4), defined as:

• Collinear: all of them are aligned,
• Triangle: three on the vertices of a triangle and the other one inside,
• Border: three aligned and the other one not,
• Quadrilateral: on the vertices of a quadrilateral.

Collinear Triangle Border Quadrilateral

Figure 4. The four possible geometrical distributions of critical points
for equation (1.1) when n = 4.

In order to do that with a simple notation, if a critical point of focus type is stable,
then we will denote its stability by the “−” sign while if it is unstable, then we will
use “+” sign. To denote the stability of all the critical points jointly, we will follow the
following notation. First, we will use a letter to denote which of the four configurations
are we dealing with: c for collinear, q for quadrilateral, t for triangle and b for border;
followed by a colon. After that, we will put four signs (plus or minus) indicating the
stability of each one of the four foci. More concretely, if z1, . . . , z4 are the four simple
critical points of equation (1.1) with n = 4 and, we define

si =

{

+ if Re(f ′(zi))) > 0,

− if Re(f ′(zi))) < 0,

when i = 1, . . . , 4, then we will denote the stability configuration by:

• (c : s1, s2, s3, s4) in the collinear case. Here the points are ordered.
• (q : s1, s2, s3, s4) in the quadrilateral case. Here the points are ordered counter-

clockwise.
• (t : s1, s2, s3; s4) in the triangle case. Here, z4 is the point inside the triangle

and the other points are also ordered counterclockwise.
• (b : s1, s2, s3; s4) in the border case. Here, z4 stands for the non-aligned point

and the other points are ordered.

We will also assume, by changing the sign of the time if necessary, that the number
of plus signs is greater or equal than the number of minus signs.

With this notation we have next result where we prove which configurations are
allowed and which ones are not, for equation (1.1) when n = 4 and all its critical points
of focus type.

Proposition 4.1. Consider equation (1.1) with n = 4 and assume that it has four
simple critical points, all of them of focus type. Then, the only impossible stability
configurations are:

(b : +, +, +; ∗), (c : +, +, ∗, ∗) and (x; +, +, +, +),
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where x ∈ {c, q, t} and ∗ denotes either + or −.

Proof. First we are going to prove that the stability configurations stated in the propo-
sition are impossible. After that we will prove that all the rest configurations can be
realized.

From Proposition 2.6(d), at least two different stabilities must exist. Hence, the third
item is not possible. By Proposition 2.7, the aligned critical points must have alternated
stability. Hence, the second stability configuration is also impossible.

To prove that the first configuration does not exist, suppose that there is an equation
(1.1) with a border configuration having three aligned unstable foci plus another one,
which is non-aligned. Hence, equation (1.1) can be written as

ż = (α + iβ)z(z − 1)(z − a2)(z − (a3 + ib3)),

where 1 < a2 ∈ IR and b3 6= 0. To study the stabilities of the three real critical points
we compute:

Re(f ′(0)) = a2(b3β − a3α) =: a2α0,
Re(f ′(1)) = (a2 − 1)(α(a3 − 1) − b3β) = (a2 − 1)(−α0 − α),
Re(f ′(a2)) = a2(a2 − 1)(α(a2 − a3) + b3β) = a2(a2 − 1)(αa2 + α0).

As we are assuming that z = 0 is unstable, then α0 > 0. As we are assuming that z = 1
is unstable too, then α < −α0 < 0. Finally, the stability of a2, is given by the sign of
αa2 + α0; that is,

αa2 + α0 ≤ −α0a2 + α0 = α0(1 − a2) < 0.

Consequently, it is impossible to have three aligned foci with the same stability.
Now we have to prove that all the other eleven stability configurations exist. More

concretely, we are going to give examples of three stability configurations and prove the
existence of the rest by perturbing these three ones.

(I) Case (c : +,−, +,−): ż = (−1 + i)z(z − 1)(z − 2)(z − 3),
(II) Case (b : +,−, +; +): ż = (−2 + 3i)z(z − 1)(z − 2)(z − (1 + 3i)),

(III) Case (b : +, +,−; +): ż = (−2 − 3i)z(z − 1)(z − 2)(z − (2 + i)).

The remaining stability configurations are:

(q : +,−, +,−), (q : +, +,−,−), (q : +, +, +,−),
(t : +, +,−;−), (t : +,−, +; +), (t : +, +, +;−),
(b : +, +,−;−), (b : +,−, +;−).

Note that the foci are structurally stable and hence, small perturbations in the coeffi-
cients of the differential equation do not change neither the type of the critical point
nor its stability.

As an example we will get the case (t : +, +,−;−) from the equation fulfilling case
(I). Consider

ż = (−1 + i)z(z − (1 + εi))(z − 2)(z − (3 + 4εi)), (4.1)

with ε > 0 and small enough. By plotting the critical points and using the continuity
with respect to ε is easy to see that its stability configuration is the desired one. �

5. Global phase portraits

In this section, to better understand the global dynamics of equation (1.1), we study
its dynamics at infinity in the Poincaré compactification, see for instance [7, chap. 5] or
[20, chap. 3.10]. This behavior at infinity, even for meromorphic rational functions f is
already known, see for instance [12], but in order to be self-contained, in this section
we present a new and simple proof in the case of f being a polynomial of degree n, see
Theorem 5.1.
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Also, in this section, we plot on the Poincaré disc an example of each possible config-
uration of equation (1.1) with deg(f) = 4. Concretely, we draw examples of collinear,
triangular and border configurations and an evolution of a family having the quadrilat-
eral configuration. See Figure 5.

Theorem 5.1. Consider equation (1.1) with deg(f) = n. Then, it has exactly n − 1
critical points at infinity, all of them of saddle type.

Proof. Recall that the critical points at infinity of the Poincaré compactification of a
polynomial planar vector field of degree n, ẋ = P (x, y), ẏ = Q(x, y), are given by the
directions where the homogeneous polynomial of degree n + 1, R(x, y) := xQn(x, y) −
yPn(x, y) vanishes, being Pn and Qn the homogeneous parts of degree n of P and Q,
respectively. In our case we have that

R(x, y) = x Im(γn(x + iy)n) − y Re(γn(x + iy)n)

= Im((x − iy)γn(x + iy)n) = (x2 + y2) Im(γn(x + iy)n−1),

where f(z) = γ0+γ1z+· · ·+γnzn, γj ∈ C, j = 0, . . . , n. Clearly the equation R(x, y) = 0
has exactly n − 1 simple directions, which correspond with the n − 1 critical points
at infinity of the Poincaré compactification of ż = f(z). Moreover the fact that the
characteristic directions are simple implies that at least one of the eigenvalues associated
to the critical points at infinity is not zero, i.e. that all the critical points are either
hyperbolic or semi-hyperbolic. Hence these points have either index 1, 0 (saddle-nodes)
or −1 (saddles), see for instance [7].

On the other hand, as a corollary of Theorem 2.1, it is clear that if we denote by
ΣF the sum of the indices of all the (finite) singularities of equation ż = f(z) then
ΣF = deg(f) = n because the index of a singularity coincides with its multiplicity as a
zero of f.

Recall also how looks a planar vector field when it is transported to the sphere through
the Poincaré compactification: the north and the south hemispheres of S

2 contain two
exact copies of the planar vector field and the infinity is represented by its equator.
Moreover each singularity appears twice in the equator at the two points associated with
each of the vanishing directions of R, and for this reason points diametrally opposite are
usually identified. By projecting one of the hemispheres into a disc, we can represent
the flow of the plane in a disc, called the Poincaré disc, where now the infinity is its
boundary, S

1.
Finally we will need the well-known Poincaré-Hopf Theorem. It implies that the sum

of the indices of all the singularities of a vector field defined on a sphere is equal to its
Euler’s characteristic, 2. Hence by the above considerations we know that 2 = 2ΣF +Σ∞,
where Σ∞ denotes the sum of the indices of all the singularities in the equator of the
sphere. Moreover Σ∞ is equal to two times the sum of all indices of the n−1 singularities
at infinity. Since ΣF = n we get that Σ∞ = 2(1−n). By using that the only possibilities
for the indices of the singularities at infinity are {1, 0,−1} we obtain that all them have
index -1. Hence we have proved that all the infinity singularities are of saddle type, as
we wanted to see.

We think that an advantage of our proof is that it has very few calculations. On
the other hand it does not clarify whether the saddle points are hyperbolic or not.
It turns out that all them are hyperbolic, as can be easily checked by passing through
computations that need the use of local coordinates for the compactified vector field. �

To end the paper we plot some phase portraits of several examples depicting all the
possible geometric configurations of equation (1.1) with deg(f) = 4 and four foci. We
draw examples of the collinear, triangular and border configurations and an evolution
of a family exhibiting a quadrilateral configuration. See Figure 5.
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(a) Collinear (b) Triangle (c) Border

(d) Quadrilateral,
a . a+

(e) Quadrilateral,
a = a+

(f) Quadrilateral,
a & a+

Figure 5. Some phase portraits on the Poincaré disc of equation (1.1),
when deg(f) = 4.

The examples are:

(1) collinear configuration, see Figure 5(a), with stability (c : +,−, +,−), given by

ż = (−1 + 3i)z(z − 1)(z − 4)(z − 8).

(2) triangular configuration, see Figure 5(b), with stability (t : +, +, +;−), given by

ż = (−1 + 3i)z(z − (1 + 3i))(z − 2)(z − (3 + 12i)).

(3) border configuration, see Figure 5(c), with stability (b : −, +,−;−), given by

ż = (−1 + i)z(z − 1)(z − 2)(z − (3 + 4i)).

(4) quadrilateral configuration, see last row of Figure 5. We show the one-parameter
family

ż = (−1 + 2i)z(z − 3)(z − 2i)(z − (a + 2i)),

for some values of the parameter a. Set a± = (−5 ±
√

89)/2. We point out that
when a = a± the point z = a+2i is a center, when a ∈ (a−, a+) it is an unstable
focus and otherwise a stable focus. In Figure 5(d), 5(e) and 5(f), we plot the
phase portraits for the values of the parameter: a = 2, a = a+ ≃ 2.2 and a = 3,
respectively.
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systems, Ann. Differ. Equations 4 (1988), 503–509.
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