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Abstract. In this paper we study the global phase portrait of complex
polynomial differential equations of degree n of the form ż = f(z), hav-
ing all their critical points of center type. We give the exact number of
topologically different phase portraits on the Poincaré disk when n ≤ 6
and, in the remaining cases, an upper bound for this number which only
depends on n.

1. Introduction and main result

In this work we deal with the equation

ż :=
dz

dt
= f(z), t ∈ IR, z ∈ C, (1.1)

where f is a complex polynomial of degree n ≥ 1.
Many characteristics of equation (1.1) are well-known. It presents only

three type of finite simple critical points (focus, center and node) all of
index +1, and the centers are always isochronous. Moreover, this type of
equations can not have limit cycles, see for instance [5, 11, 15, 16]. Regarding
the points at infinity in the Poincaré compactification, it is proved that they
have exactly n − 1 couples of saddle points (see [1, 11]) .

In the previous paper [1] the authors explored the relationship between
the geometric distribution of the critical points and their type, paying special
attention to the case in which the critical points were centers.

In this paper we are going to assume that all the critical points are centers
and we will be concerned with the global phase portrait of equation (1.1)
on the Poincaré disk. By the results of [21] (that we recall in Theorem 2.3),
it turns out that this problem is equivalent to a separatrix configurations
problem. In our context, the only separatrices will be the ones of the saddle
points at infinity. The problem of studying the number of different phase
portraits of equation (1.1), without the assumption of having all the critical
points of center type, is also considered in the recent papers [4, 9].

The objective of the present work is to give an upper bound, depending
only on n, for the number of topologically different global phase portraits
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that equation (1.1) can have, when all its critical points are centers. More-
over, for low degrees, we give a sharp upper bound, in the sense that all
possible topological configurations are realizable. We prove:

Theorem A. Consider equation (1.1) and assume that all its n critical
points are centers. Let N(n) be the number of topologically different phase
portraits on the Poincaré disk of this equation satisfying this condition. Then

N(1) = N(2) = N(3) = 1, N(4) = 2, N(5) = 3, N(6) = 6.

Proposition B. Let N(n) be defined as in Theorem A. Then N(7) ≤ 12,
N(8) ≤ 26 and for n ≥ 9,

N(n) ≤ M(n) :=

[

G(n) − 24

7

]

+ 5, (1.2)

where [x] denotes the integer part of x and the function G is defined by the
following recursion formula

G(m) =

m−1
∑

k=1

G(m − k)G(k),

with G(1) = 1.

Remark 1.1. For small n the upper bounds given in the above proposition
are

M(9) = 205, M(10) = 696, M(11) = 2401, . . .

A case by case study could be used to improve them. See also Remark 3.1.

We end this introduction by explaining our motivations to study the prob-
lem considered in this paper.

The Hilbert’s 16th Problem asks about the existence and determination of
the maximum number of limit cycles, H(n), that planar real polynomial dif-
ferential equations of degree n can have, see [18, 20]. One of the approaches
to get lower bounds of H(n) consists in perturbing planar systems having
several continua of periodic orbits and then study how many of them remain
as limit cycles of the perturbed system. The first step in this direction, which
is called weak, tangential or infinitesimal Hilbert’s 16th Problem, consists in
taking the unperturbed systems to be a polynomial Hamiltonian system and
then studying the first order perturbations, through the so called Abelian
integrals, see [7, 18, 20]. Another natural problem in this context is:

Perturbation of holomorphic systems problem: Consider the real pla-
nar polynomial equations of the form

ż = f(z) + εh(z, z̄), (1.3)

where f and h are complex polynomials of degree n, ε is a small real param-
eter and ż = f(z) has at least one critical point of center type. Then study,
in terms of n, how many many limit cycles bifurcate from the periodic orbits
of the unperturbed equation.

Some partial results for n = 2, 3 are done in [6, 12, 13, 19].
It is clear that the systems ż = f(z) studied in this paper are the nat-

ural candidates in (1.3) to give the maximum number of limit cycles after
perturbation.
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Of course, another interesting problem consists in studying the same ques-
tion when the degrees of f and h are different. The easiest unperturbed case
n = 1, ż = iz, which is precisely the only intersection between the Hamil-
tonian and the holomorphic centers is considered in [17]. For some results
for the cases n = 2, 3, see again [12, 19].

The systems considered in our paper are also useful as starting points for
studying the number of complex isolated periodic orbits of non-autonomous
complex differential equations of Abel type, see [8].

2. Preliminary and related results

In this section we recall several results concerning equation (1.1). We also
explain the relationship between the problem we are studying and planar
graphs.

The first result classifies the behavior of the solutions of the differential
equation ż = f(z) near its finite and infinite critical points, see for instance
[5, 11, 15, 16]. We point out that, to represent the infinity of the complex
plane we use the Poincaré compactification , see for instance [10, Chap. 5]
or [22, Chap. 3.10]. It involves identifying the plane with one of the two
hemispheres of the sphere by a central projection and consequently the in-
finity is represented by the equator. By projecting, for instance, the north
hemisphere into a disk, we can represent the flow of the plane in a disk,
called the Poincaré disk, where now the infinity is its boundary, S

1. Observe
that if p ∈ S

1 is an infinite critical point then −p also it is.

Theorem 2.1. Consider a polynomial differential equation ż = f(z) of
degree n. Let z = z0 be one of its finite critical points.

(a) If z = z0 is a simple zero of f then:
(I) It is an isochronous center when f ′(z0) ∈ iIR,

(II) It is a node when f ′(z0) ∈ IR,
(III) It is a focus when Re(f ′(z0)) Im(f ′(z0)) 6= 0.

(b) If z = z0 is a zero of multiplicity m of f then it is the union of
2(m − 1) elliptic sectors.

(c) At infinity it has exactly n− 1 couples of critical points, all of them
being hyperbolic saddles. Moreover they are uniformly distributed in
the boundary of the disk, being π/(n− 1) the angle between each two
consecutive saddles.

Remark 2.2. Observe that z0 is a center of the equation ż = f(z) if and only
if z0 is a node of equation ż = if(z). Hence, if an equation ẋ = f(z) has all
its critical points of center type, then the corresponding equation ż = if(z)
has all its critical points of nodal type.

We recall that a separatrix of equation (1.1) is an orbit which is either
a critical point or a trajectory which separates two hyperbolic sectors. In
[21] it was proved that the set formed by all separatrices of a differential
equation is closed. For a given equation, its separatrix configuration is
the union of all separatrices together with a representative orbit from each
canonical region (in our case, one closed orbit surrounding each center). Two
separatrix configurations are said to be topologically equivalent if there is
an orientation preserving homeomorphism which maps the trajectories in
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the first one into the trajectories in the second. In [21], it was also proved
that the global phase portrait of an equation is univocally determined by its
separatrix configuration. Here we state the result.

Theorem 2.3 ([21]). Suppose φ1 and φ2 are continuous flows on a 2-
manifold M, with isolated critical points. Then they are equivalent if and
only if their separatrix configurations are equivalent.

We want to bound the number of topologically different phase portraits
of equation (1.1), with all the critical points being of center type. Observe
that inside each region defined by the heteroclinic connections of the infinite
saddles there has to be exactly one center. Hence, when we refer to the
separatrix configuration we will only pay attention to the infinite saddle
connections.

According to the results in [21], in order to count the number of different
phase portraits of equation (1.1) we have to count the number of different
possible combinations for saddle connections between the 2n − 2 critical
points on the boundary of the Poincaré disk. Hence our problem turns out
to be a combinatorial problem. We can consider the infinite saddle points
as vertices of a planar graph (planar because separatrices can not intersect)
and their separatrices as edges. In this context, each vertex has degree 3,
but two edges of each point are fixed (the two infinite separatrices), see some
examples in Figure 1.

The problem of counting the number of planar graphs with a fixed number
of vertices and separatrices is not a trivial one. There is a lot of literature
on the subject and in [14] it was proved an asymptotic formula. However,
this formula does not fit our case because it does not consider all our restric-
tions. Moreover, as we are only concerned with the topologically different
phase portraits, we would be much more interested in counting the so-called
unlabeled planar graphs, which are the ones for which the vertices are indis-
tinguishable. Then, we have to count the number of isomorphism classes of
the graphs with a fixed number of vertices and edges. This problem turns
out to be more difficult than the one distinguishing vertices, because of the
symmetries that the graph can present.

In [3] there is proved an asymptotic formula for the number of unlabeled
planar graphs with m vertices. This result affirms that there are at most
2αm graphs, with α ≈ 4.9098, for m big enough.

This result does not take into account the fact that the infinite critical
points are located on a circumference and all the separatrices lie inside it.
The graphs with these restrictions are called (unlabeled, if we do not distin-
guish vertices) outerplanar graphs and have also been extensively studied.

Recently, it has been proved in [2] an asymptotic formula for the number

of unlabeled outerplanar graphs, gm, with m vertices, gm ∼ g m−5/2ρ−m

where ρ−1 ≈ 7.50360 and g ≈ 0.00909941.
Both formulas are asymptotic (so not useful for small number of vertices)

and not adapted to our concrete problem. So in next section we count the
number of topologically different phase portraits for small degrees of f and
we develop a general upper bound for any degree which takes into account
all the restrictions of our problem.
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3. Proof of the main results

3.1. Proof of Theorem A. By using Theorem 2.3 it is easy to see that for
n ≤ 6 the values of N(n) given in the statement of the theorem are upper
bounds for their actual values. To end the proof it only remains to show that
all these topological possibilities are realizable. So, for each one of them we
will give a differential equation of the form (1.1) having the corresponding
topological configuration as its phase portrait.

For n = 1, there is only one finite center and there are no saddles at
infinity. Hence, there is only one topological possibility, which is realized by
ż = iz, for instance. Then, N(1) = 1.

For n = 2 (respectively, n = 3) there is again only one possibility of
configuration of separatrices joining the infinite critical points. Hence, any
equation (1.1) of degree 2 (respectively 3), having all the critical points of
center type, has this topological configuration as its phase portrait. For
instance we can take ż = iz(z − 1) (respectively, ż = iz(z − 1)(z − 2)).

For n = 4, there are two topological possibilities, as it can be seen in
Figure 1.

(a) (b)

Figure 1. Infinite saddle connexions of the two different
phase portraits of equation (1.1) when n = 4.

Next, we give differential equations having these graphs as their phase
portraits. Concerning Figure 1(a), consider equation

ż = iz(z − 1)(z − 2)(z − 4).

It is invariant under the change of variables (z, t) → (z̄,−t) and, con-
sequently, its phase portrait presents a symmetry with respect the axis
Im(z) = 0. Due to this symmetry, the only way of joining the six infinite
critical points is the one plotted in Figure 1(a).

Concerning Figure 1(b), consider equation

ż = z
(

z3 − i/3
)

.

It has three of its critical points located on the vertices of an equilateral
triangle and the fourth one on its orthocenter, all of them being centers.
Moreover, it is invariant under a rotation of π/3 radians and all them are
centers. Because of that, its phase portrait is the one depicted in Figure 1(b).

For n = 5, there are three topological possibilities to join the eight infinite
critical points. See Figure 2.
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(a) (b) (c)

Figure 2. The three topologically different phase portraits
for n = 5.

Using symmetry arguments, as before, we can conclude that each one
corresponds with one of the following equations,

ż = iz(z − 1)(z − 2)(z − 4)(z − 7), (3.1)

ż = z
(

z4 − i/4
)

, (3.2)

ż = iz(z − 1)(z − 2)(z − 3 + i)(z − 3 − i), (3.3)

in the following order: Figure 2(a) is fulfilled by equation (3.1), Figure 2(b)
by equation (3.2) and Figure 2(c) by equation (3.3).

For n = 6, there are six possible topological configuration of separatrices.
See Figure 3. Using analogous symmetry arguments, as before, and Theo-

(a) (b) (c)

(d) (e) (f)

Figure 3. The six topological different phase portraits for
n = 6.

rem 2.1, we get that three equations that fulfill the phase portraits plotted
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in Figure 3, (a), (b) and (c) are,

ż = iz(z − 1)(z − 2)(z − 4)(z + 4)(z − 8), (3.4)

ż = z
(

z5 − i/5
)

, (3.5)

ż = i(z −
√

6)(z +
√

6)(z − z3)(z − z̄3)(z + z3)(z + z̄3), (3.6)

with z3 = 3 + i, respectively.
Observe that equations (3.4) and (3.6) are invariant under the change of

variables (z, t) → (z̄,−t) and then their phase portraits are symmetric with
respect to the axis Im(z) = 0. Moreover, equation (3.6) is also invariant
under (z, t) → (−z̄,−t). Because of that, together with the location of the
critical points, we can conclude that they fulfill the corresponding phase
portraits (a), (b) and (c).

To prove that the configurations appearing in Figure 3(d) and 3(e) are
realizable, consider next equation:

ż = f(z) = iz(z − 1)(z − 2)(z − 3)(z − u + i)(z − u − i). (3.7)

By using again Theorem 2.1 we get that this equation has 4 centers located
at z = 0, 1, 2, 3, for all values of the parameter u and it has two more centers

at z = u ± i if u ∈ {(3 ±
√

17 ± 4
√

14)/2, (3 ±
√

17 ∓ 4
√

14)/2}. Moreover,
it is invariant under the change of variables (z, t) → (z̄,−t) and, because of
the distribution of the critical points, the phase portraits that this equation
can have are either (d) or (e) of Figure 3.

Let us prove that when u = (3−
√

17 + 4
√

14)/2, the corresponding phase
portrait for equation (3.7) is Figure 3(d). To do this, we compute the contact
points of the flow of the equation (3.7) with the segment {u+iy, −1 ≤ y ≤ 1}
joining the two non-real centers. These contact points are given by the roots
for y ∈ (−1, 1) of the equation

Re(f(u + iy)) = 2

√

17 + 4
√

14(y2 − 3 −
√

14)y(y − 1)(y + 1) = 0.

We note that there is only one contact point on this line between the two
critical points (which is y = 0). If the phase portrait was the one given in
Figure 3(e), then there should be at least three contact points. See Figure 4.

(d) (e)

Figure 4. Contact points of the flow of equation (3.7), over
the segment joining the two non-real centers, on Re(z) = u.

Hence, it turns out that the phase portrait must be the one plotted in
Figure 3(d).
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In order to prove that configuration (e) in Figure 3 is also realizable we

consider again equation (3.7), but now with u = (3 −
√

17 − 4
√

14)/2.
In this case we compute the contact points of flow of the vector field with

the segment that joins the centers z = u + i and z = 1, {x + (x − 1)i/(u −
1), u ≤ x ≤ 1}. These are given by the real roots of

Re(f(x +
x − 1

u − 1
i)) + (1 − u) Im(f(x +

x − 1

u − 1
i)) = (x − 1)(x − u)P4(x) = 0,

where P4(x) is a polynomial without real roots in the interval (u, 1). Hence,
there is no contact point of the flow with this segment. We note that, if the
phase portrait of equation (3.7) was the one plotted on Figure 3(d), then
there should be at least one contact point. See Figure 5.

(d) (e)

Figure 5. Contact points of the flow of equation (3.7),
over the segment joining z = u + i and z = 1.

Consequently, the phase portrait associated to equation (3.7) is the one
in Figure 3(e).

Finally we prove that configuration (f) in Figure 3 is also realizable. Con-
sider equation,

ż = f(z) = i(z − a)(z − b)(z − z3)(z − z̄3)(z − z4)(z − z̄4), (3.8)

with z3 = 1 + tan (2π/5) i, z4 = 10z3 and a, b ∈ IR, a 6= b. We note that,
we have that Re(f ′(a)) = Re(f ′(b)) = 0 and hence these critical points are
centers.

It is not difficult to see that if f ′(z3), f
′(z4) ∈ iIR, then the same holds for

z̄3 and z̄4. Hence we only need to impose two conditions on a and b to get six
centers in equation (3.8). Here we want to point out that this situation can
also be interpreted in the light of [1, Prop. 2.7]. In that result a differential
equation of the form (1.1) having s centers (or nodes) on a straight line and
the other n − s critical points, symmetric two by two with respect to this
line, is studied.

In our case the center conditions are:

Re(f ′(z3)) = −18(α(9 + 11α2)ab + α(−9 − 13α2)a + α(−9 − 13α2)b +

α(9 + 6α2 − 11α4)) = 0,

Re(f ′(z4)) = 180(α(−9 + 11α2)ab + α(90 − 310α2)a + α(90 − 310α2)b +

α(−900 + 6000α2 − 1100α4)) = 0,
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where α = tan(2π/5). By doing the resultant of these two polynomials on
two variables with respect to b one gets a polynomial of degree 4 only de-
pending on a. Hence, it is possible to solve analytically the above system. For
instance one of its solutions is a = a∗ ≈ 0.612777 and b = b∗ ≈ −15.962837.

Now, we are going to prove that the phase portrait of equation (3.8)
when a = a∗ and b = b∗ is the one in Figure 3(f). First of all, we observe
that the equation is invariant under the change of variables (z, t) → (z̄,−t)
and consequently the phase portrait is symmetric with respect to the line
Im(z) = 0, but it is not with respect to Re(z) = 0. This fact, together with
the location of the finite critical points, implies that the phase portrait of
the equation can not be the ones depicted in Figure 3(a), (c), (d) or (e).
Then, it can only be the phase portrait in (b) or in (f).

To decide which phase portrait is the right one, we use the same technique
that in the previous cases. Here we prove that there are no contact points
between the flow of the differential equation and the segment of the straight
line y = tan(2π

5
)x, between the two critical points located on it. Hence its

phase portrait can not be the one in Figure 3(b) and it must be the one
shown in Figure 3(f), as we wanted to see.

3.2. Proof of Proposition B. The proof that when n = 7 (respectively
n = 8) there are at most 12 (respectively 26) topologically different phase
portraits on the Poincaré disk is straightforward by using Theorem 2.3 and
a tedious case by case study.

To get a general upper bound for N(n) when n ≥ 9, we want to count how
many different topological possibilities are there to join up 2n − 2 points,
located on a circumference, two by two and without intersections between
the edges and taking into account the alternating stabilities of separatrices
of the infinite saddles.

To do this, we proceed in two steps. First, we label the infinite saddle
points from p1 to p2n−2 and, then, we count how many possibilities are. Let
G(n) be this number. Next, we will deduct those phase portraits that have
been counted multiple times. These deductions will only take into account
repetitions because of rotations.

Let us start the first step. If we join p1 to pk then we have reduced the
problem of joining 2n − 2 points to two simpler problems: one with k − 2
points and the other with 2n−2−k points. Each one of these problems can
be reduced to two simpler ones and we can solve the original problem in a
recursive way.

Observe that we can only join the point pi, i odd, to pj, j even, because
of the alternating stabilities of the separatrices of consecutive saddles.

As we can join p1 to any pk, k even, then we have to sum all the possi-
bilities:

G(n) =
n−1
∑

k=1

G(n − k)G(k).

Moreover, the base case is obviously G(1) = 1 because if there are no critical
points at infinity, then there is only one possibility for the graph. It is also
clear that G(2) = 1.
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Let us now start the second step of refining the formula, by taking into
account that in this process there are topologically equal phase portraits
that have been counted multiple times. If we have constructed a phase
portrait, we can rotate it by an angle β = π/(n−1) radians, (recall, that by
Theorem 2.1, β is the angle between two infinite critical points) and with
this rotation, if the point pi is joined to the point pj now the point pi+1 will
be joined to pj+1, where we take the subindexes modulus 2n− 2. With this
operation we will always obtain a different separatrix configuration. But in
our formula we have counted them as different phase portraits while they
are topologically equivalent. Then, each phase portrait is counted, at least,
twice (see Figure 6).

p1 p1

p2p2

p3p3

p4 p4

p5
p5

p6
p6

Figure 6. Rotating a phase portrait an angle β = π/(n−1)
gives rise to another that is topologically equivalent to the
original one. In the figure n = 4.

We can do the same reasoning and make another rotation of β radians,
i.e., if the point pi is originally joined to the point pj now the point pi+2 will
be joined to pj+2. But now we have to take into account that it is possible
that we get exactly the original phase portrait. It would be the case in
which every point pi is joined to pi+1, (the one depicted in Figure 7(a)) that
is counted exactly twice.

By doing this reasoning we can deduct some phase portrait that are
counted several times. We claim that, for any n ≥ 7, among all the G(n)
phase portraits obtained by the above procedure, all except at most five of
them, are repeated at least seven times. The five phase portraits that are
counted less than seven times appear when n − 1 = 6̇ . In Figure 7 we give
them when n = 13. The obvious generalization of the ones given in (b) of
the figure appear when n− 1 = 2̇ while the corresponding to the ones given
in (c)-(d) and (e) appear when n − 1 = 3̇.

Let us prove now the claim. Suppose there exists one phase portrait that
is counted exactly three times. Suppose also that in this phase portrait p1 is
joined to pk and p2n−4 is joined to pj. As it is counted exactly three times,
when rotating it by an angle of 3β radians we will recover the same phase
portrait. After this rotation, the point p4 will be joined to pk+3 and p2n−1 =
p1 will be joined to pj+3. But as the rotated phase portrait has to be exactly
the original one then j + 3 = k mod (2n − 2). We can conclude that k < 4
because otherwise the separatrix joining p1 to pj+3 = pk will intersect the one
connecting p4 to pk+3 (see Figure 8) and this is not possible by the uniqueness
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(a) (b) (c)

(d) (e)

Figure 7. The only 5 phase portraits repeated less than
seven times with our procedure. In the figure, n = 13.

p1p1

pkpk

pj

p2n−4

p4

pk+3

3β

y

Figure 8. It is impossible that a phase portrait is repeated
exactly three times.

of solutions of the differential equation. Consequently, p1 is joined to p2 or
p3. We know that it can not be joined with p3 because of the stability of
the separatrices. If p1 is joined to p2, repeating the same arguments for the
rest of the infinite critical points we get that pm is connected to pm+1 for
all m odd and, hence, the phase portrait is counted twice. See Figure 7(a).
Consequently, no phase portrait is repeated exactly three times.

Suppose now that there exists a phase portrait counted exactly four times.
We will prove that it has to be a natural extension of the one depicted in
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Figure 7(b). Arguing as above we can conclude that the point p1 has to
be joined to pk with k < 5. We already know that if it is joined to p2 we
recover that phase portrait counted only twice and that with p3 can not be
connected. Thus, it has to be joined to p4 and consequently p2 has to be
connected to p3. If we repeat the same arguments for the rest of the points,
then we get the result.

By using analogous arguments as above, we will get that no phase por-
trait is repeated exactly five times, while there are three type of phase
portraits counted exactly six times (the natural extensions of the ones in
Figure 7(c),(d) and (e)).

After previous refinement, we can prove formula (1.2). Given equation
(1.1) and following the procedure described at the beginning of the proof,
we get that there are G(n) ways of connecting the 2n − 2 infinite critical
points. Several of these resultant graphs give rise to phase portraits that
are topologically equivalent. As we have proved before, all but at most 5
of them are repeated at least seven times. These five phase portraits are
repeated, altogether, 24 times (one is repeated twice, one is repeated four
times and three are repeated six times, what sums 24). Consequently, we
get

N(n) ≤ M(n) :=

[

G(n) − 24

7

]

+ 5,

as we wanted to prove. Notice that when n−1 6= 6̇ we could improve a little
bit the above upper bound. For instance when n−1 6= 6̇ and n−1 = 2̇ then
the upper bound would be [(G(n) − 6)/7] + 2, which is a little smaller than
M(n). Similarly, when n − 1 6= 3̇ and n − 1 6= 2̇ the upper bound would be
[(G(n) − 2)/7] + 1.

Remark 3.1. Given any k ∈ N and arguing similarly as in the proof of
Proposition B it is possible to improve the upper bound given in that result
for n ≥ k. The new upper bounds are of the form

Mk(n) :=

[

G(n) − Ik

k

]

+ Jk,

where Ik and Jk are integer numbers, being Jk the number of phase portraits
repeated less than k times by rotations and Ik the total number of repetions
of these Jk phase portraits. They satisfy Jk > Ik/k. For instance taking
k = 9 we get that there are eleven repeated phase portraits: one repeated
twice, one repeated four times, three repeated six times and six repeated
eight times. Hence, J9 = 11 and I9 = 1 × 2 + 1 × 4 + 3 × 6 + 6 × 8 = 72.
Consequently,

N(n) ≤ M9(n) :=

[

G(n) − 72

9

]

+ 11,

because there are five different phase portraits which are invariant after eight
rotations of angle β that appear when n − 1 = 8̇. Notice for instance that
M9(9) = 161 < M(9) = 205 and M9(10) = 543.
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