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Abstract. The study of limit cycles of planar differential systems is one of
the main and difficult problems for understanding their dynamics. Thus the
objective of this paper is to study the limit cycles of continuous piecewise
differential systems in the plane separated by a non-regular line Σ. More
precisely, we show that a class of continuous piecewise differential systems

formed by an arbitrary quadratic center, an arbitrary linear center and the
linear center ẋ = −y, ẏ = x have at most two crossing limit cycles and we
find examples of such systems with one crossing limit cycle. So we have solved
the extension of the 16th Hilbert problem to this class of piecewise differential
systems providing an upper bound for its maximum number of limit cycles.

1. Introduction and statement of the main results

The study of the existence of the so-called limit cycles of a planar differential
system, i.e. existence of periodic orbits isolated in the set of all periodic orbits of
that system is one of the main difficulties for completely understanding (at least
qualitatively) its dynamics. In particular to find a limit cycle of a given class of
differential systems is very difficult and to provide an upper bound on the maximum
number of them is even harder. When such an upper bound exists, additional
difficulties arise when trying to prove that such upper bound is achieved.

In this paper we shall study the limit cycles of a class of piecewise differential
systems. These systems have been studied intensively these last decades due to
their applications, see for instance the books [1, 4, 19] and the papers [18, 20].

For planar piecewise differential systems with separation curve Σ = {h−1(0)}
where h : R2 → R (being bivaluated on the separation curve for the vector fields
X and Y ) a point p = (x, y) in Σ is a crossing point if Xh(p) · Y h(p) > 0, where ·
denotes the inner product of two vectors, for more details see Filippov [5]. If there
exist a periodic orbit of that piecewise differential system such that all the points
of the orbit on Σ are crossing points, then we call it a crossing periodic orbit. A
crossing limit cycle is an isolated periodic orbit in the set all crossing periodic orbits
of the differential system.
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The crossing limit cycles of different classes of piecewise differential systems have
been studied by many authors during these last years, see for instance [2, 3, 6, 7, 9,
11–17].

In this paper we study the maximum number of crossing limit cycles of the class
of planar continuous piecewise differential systems separated by the non-regular
line

Σ = {(x, y) ∈ R
2 : (y = 0) ∨ (x = 0 ∧ y ≥ 0)}.

The three components of R2 \ Σ are the positive or first quadrant

R1 = {(x, y) ∈ R
2 : x ≥ 0 ∧ y ≥ 0},

the second quadrant

R2 = {(x, y) ∈ R
2 : x ≤ 0 ∧ y ≥ 0},

and the half-plane

R3 = {(x, y) ∈ R
2 : y ≤ 0}.

More precisely, in the region R1 we consider an arbitrary quadratic differential
system

ẋ = c0 + c1x+ c2y + c3x
2 + c4xy + c5y

2,

ẏ = d0 + d1x+ d2y + d3x
2 + d4xy + d5y

2,
(1)

with ci, di ∈ R for i = 0, . . . , 5. In the region R2 we consider an arbitrary linear
center

ẋ = a0 + a1x+ a2y,

ẏ = b0 + b1x+ b2y,
(2)

with ai, bi ∈ R for i = 0, 1, 2, and in the region R3 we consider the linear center

ẋ = −y,

ẏ = x.
(3)

Our main result is the following.

Theorem 1. Any continuous piecewise differential system in the plane formed

by systems (1) in R1, systems (2) in R2 and systems (3) in R3 separated by the

non-regular line Σ has at most two crossing limit cycles. Moreover we provide an

example of such a system with one crossing limit cycle.

The proof of Theorem 1 is given in Section 2. Note that Theorem 1 provides
a positive answer to the extension of the 16th Hilbert problem [8] for the class
of continuous piecewise differential systems separated by a non-regular line Σ and
formed by the above differential systems. Note that although two is the maximum
number of crossing limit cycles that the above mentioned system can have, we are
only able to find examples of these piecewise differential systems with one crossing
limit cycle. So it remains open if the upper bound of two is reached or not.
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2. Proof of Theorem 1

Before proving Theorem 1 we recall that a set of functions {f0, f1, . . . , fn} is an
extended complete Chebyshev system on R

+ if and only if the Wronskians
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∣
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6= 0,

on R
+ for k = 0, 1, . . . , n. Moreover for an extended complete Chebyshev system

in R
+ we have the following well-known result, for a proof see for instance [10].

Theorem 2. Assume that the functions f0, f1, . . . , fn form an extended complete

Chebyshev system in R
+. Then the maximum number of zeros of the function

(4) a0f0(x) + a1f1(x) + . . .+ anfn(x) = 0

in R
+ is n. Moreover if the coefficients a0, a1, . . . , an are independent there are

functions of the form in (4) having exactly n zeros in R
+.

We separate the proof of Theorem 1 in two parts: the part concerning the upper
bound and the part providing an example with one crossing limit cycle.

First note that in Theorem 1 we are assuming that the piecewise differential
system must be continuous, and so systems (1) and (2) must coincide on {x =
0, y ≥ 0}, systems (2) and (3) must coincide on {x ≤ 0, y = 0}, and systems (3)
and (1) must coincide on {x ≥ 0, y = 0}. Imposing these three conditions we obtain
that

a0 = a1 = b0 = c0 = c1 = c3 = c5 = d0 = d3 = d5 = 0, b1 = d1 = 1, a2 = c2, b2 = d2.

and the continuous piecewise differential system to study is the one formed by the
following three differential systems

ẋ = c2y + c4xy, ẏ = x+ d2y + d4xy, in R1 with c24 + d24 6= 0.

ẋ = c2y, ẏ = x+ d2y, in R2 with c2 6= 0,

ẋ = −y, ẏ = x, in R3.

(5)

Note that c24 + d24 6= 0, otherwise the first system in (5) will not be a quadratic
system. Moreover, if c2 = 0 then in the second system in (5) we have ẋ = 0, so its
solutions live on the straight lines x =constant and then the piecewise differential
system cannot have crossing periodic orbits. Hence we have that c2(c

2
4 + d24) 6= 0.

The upper bound. We start imposing that the quadratic system in (1) has a
center. The equilibrium points of such a quadratic system are

E0 = (0, 0) and E1 =

(

−
c2
c4
,

c2
c4d2 − c2d4

)

.

Since c2(c
2
4 + d24) 6= 0 we have c24 + (c4d2 − c2d4)

2 6= 0. We consider different cases:

Case 1: c4(c4d2 − c2d4) 6= 0. In this case we define

T = d4x+ c4y + d2, D = −c4x+ (c4d2 − c2d4)y − c2,
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and

∆ = c24y
2 +(2c4d2 − 4(c4d2 − c2d4))y+ d24x

2 +(4c4 +2d2d4)x+2c4d4xy+ d22 +4c2,

where T , D and ∆ are, respectively, the trace, the determinant and the discriminant
associated to the linear part of the quadratic system in (5). Then at the equilibrium
point E0 we obtain

T0 = d2, D0 = −c2, ∆0 = 4c2 + d22,

and at the equilibrium point E1 we have

T1 =
c2c

2
4 + c24d

2
2 + c22d

2
4 − 2c2c4d2d4

c4(c4d2 − c2d4)
, D1 = c2,

and

∆1 =

(

−c2c
2
4 + c22d

2
4 + c24d

2
2 − 2c2c4d2d4

c4(c4d2 − c2d4)

)2

.

Observe that E1 cannot be a center because ∆1 ≥ 0. On the other hand E0 is
either a weak focus or a center if and only if D0 > 0, ∆0 < 0 and T0 = 0. Thus,
c2 < 0 (that we can write as c2 = −c2 with c > 0), d2 = 0 and c4d4 6= 0.

Hence the quadratic system in the region R1 is

(6) ẋ = −c2y + c4xy, ẏ = x+ d4xy,

and the arbitrary linear system in the region R2 is

(7) ẋ = −c2y, ẏ = x.

Note that in system (6) we can assume without loss of generality that c4 < 0 and
d4 > 0. Indeed, if originally c4 > 0 then doing the change of variables (x, y, t) →
(−x, y,−t), c4 becomes negative, and if originally d4 < 0 then doing the change of
variables (x, y, t) → (x,−y,−t), d4 becomes positive.

The first integrals for systems (6), (7) and (3) are

H1(x, y) = e−d4(d4x+c4y)(1 + d4y)
−c4

(

c2 − c4x
)−

c2d2
4

c4 in R1,

H2(x, y) = x2 + c2y2 in R2,

H3(x, y) = x2 + y2 in R3,

as it is easy to check. The existence of the first integral H1(x, y) defined in the
point (0, 0) forces that the equilibrium (0, 0) of the quadratic system (6) is a center.

Now we study the limit cycles of these continuous piecewise differential systems
which intersect the non-regular line of discontinuity Σ in the points (x1, 0), (0, y1)
and (x2, 0) with x1 > 0, y1 > 0 and x2 < 0. These points must satisfy

e1 = H1(x1, 0)−H1(0, y1) = 0,

e2 = H2(x2, 0)−H2(0, y1) = 0,

e3 = H3(x2, 0)−H3(x1, 0) = 0,

(8)
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or equivalently

e1 = e−d2

4
x1

(

1−
c4
c2

x1

)

−
c2d2

4

c4
− ec4d4y1(1 + d4y1)

−c4 = 0,

e2 = x2
2 − c2y21 = 0,

e3 = x2
2 − x2

1 = 0.

Solving e2 = 0 and e3 = 0 we obtain

x2 = −x1, y1 =
x1

c
.

Substituting y1 into e1 = 0 we get

e−d2

4
x1

(

1−
c4
c2

x1

)

−
c2d2

4

c4
− e

c4d4
c

x1

(

d4
c
x1 + 1

)

−c4

= 0,

which can be written as

(9) e
d4x1

(

d4
c4

−
1

c

)

(

1−
c4
c2

x1

)

c2d2
4

c2
4 −

d4
c
x1 − 1 = 0.

We note that this last equation in the particular case c = 1 and c4 = −d4,
assumes the form

(d4x1 + 1)(e−2d4x1 − 1) = 0.

Which does not vanish in R
+ = (0,∞) because x1 = −1/d4 < 0 with d4 > 0 and

the other is x1 = 0. So there is not limit cycle for the system (8) when c = 1 and
c4 = −d4.

We write the equation in (9) as

(10) a0f0(x1) + a1f1(x1) + a2f2(x1) = 0,

where

f0(x1) = 1, f1(x1) = x1, f2(x1) = e
d4x1

(

d4
c4

−
1

c

)

(

1−
c4
c2

x1

)

c2d2
4

c2
4 ,

and
a0 = −1, a1 = −d4/c, a2 = 1.

The functions f0, f1 and f2 form an extended Chebyshev system on R
+ because

the Wronskians of these functions are

W (f0)(x1) = 1, W (f0, f1)(x1) = 1,

and

W (f0, f1, f2)(x1) =
d24(cd4 − c4)x1

(

1− c4
c2 x1

)

c2d2
4

c2
4

(

2c2 + (cd4 − c4)x1

)

e
d4x1

(

d4
c4

−
1

c

)

c6
(

1− c4
c2 x1

)2 .

which does not vanish in R
+ = (0,∞) because from the three zeros of this last

Wronskian two are negative (namely c2/c4 and − 2c2

cd4−c4
) and the other is the 0. In

view of Theorem 2 the function (10) has at most two zeros and so the piecewise
differential system has at most two limit cycles in this case. The upper bound
provided by the theorem is proved in this case.

Note that from Theorem 2 we cannot say that that the equation (9) has values
of the parameters c, c4 and d4 for which it has exactly two zeros, because the
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coefficients a0, a1 and a2 are not independent. Moreover we also do not know if
the possible zeros of the equation (9) are positive.

Case 2: c4 6= 0 and c4d2 − c2d4 = 0. We write this condition as c4 6= 0 and
d2 = c2d4/c4. In this case, system (5) becomes

ẋ = c2y + c4xy, ẏ =
c2d4
c4

y + d4xy + x, in R1,

ẋ = c2y, ẏ = x+
c2d4
c4

y, in R2,

ẋ = −y, ẏ = x, in R3.

(11)

Taking into account that c2 6= 0, the quadratic system in (11) has a unique equilib-
rium E0 = (0, 0). So, the trace and the determinant associated to the linear part of
the quadratic system in (11) at E0 are c2d4/c4 and −c2, respectively. In order that
E0 can be a weak focus or a center, we must have that d4 = 0 and c2 = −c2 < 0
with c > 0. Now system (11) is written as

ẋ = −c2y + c4xy, ẏ = x, in R1,

ẋ = −c2y, ẏ = x, in R2,

ẋ = −y, ẏ = x, in R3,

with first integrals

H1(x, y) =
(

c2 − c4x
)−

c2

c2
4 e

y2

2
−

x
c4 in R1,

H2(x, y) = x2 + c2y2 in R2,

H3(x, y) = x2 + y2 in R3.

(12)

The existence of the first integral H1(x, y) defined in the point (0, 0) forces that the
equilibrium (0, 0) of the quadratic system in (11) is a center.

Assume that this continuous piecewise differential system has some crossing limit
cycle with the points intersecting Σ being (x1, 0), (0, y1) and (x2, 0) with x1 > 0,
y1 > 0, x2 < 0. Then the first integrals given in (12) must satisfy system (8), or
equivalently,

e1 = e
−

x1

c4

(

1−
c4
c2

x1

)

−
c2

c2
4 − e

y2
1

2 = 0,

e2 = x2
2 − c2y21 = 0,

e3 = x2
2 − x2

1 = 0.

From equations e2 = 0 and e3 = 0, we get x2 = −x1 and y1 =
x1

c
. Introducing x2

and y1 in e1 = 0 we obtain

e−
x1

c4

(

1−
c4
c2

x1

)

−
c2

c2
4 − e

x2
1

2c2 = 0.

which can be written as

(13) e−
c4

c2
(c4x1+1)x1 +

c4
c2
x1 − 1 = 0.

Note that equation (13) can be written as (10), where

f0(x1) = 1, f1(x1) = x1, f2(x1) = e−
c4

c2
(c4x1+1)x1 ,
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and

a0 = −1, a1 = c4/c
2, a2 = 1.

The functions f0, f1 and f2 form an extended Chebyshev system on R
+ because

the Wronskians of these functions are

W (f0)(x1) = 1, W (f0, f1)(x1) = 1,

and

W (f0, f1, f2)(x1) =
c34x1

(

c4x1 + 2c2
)

e−
c4

c2
(c4x1+1)x1

c8
,

which does not vanish in R
+ because its two zeros are one negative (namely − 2c2

c4
)

and the other is the 0. In view of Theorem 2 the function (13) has at most two
zeros. So the piecewise differential system has at most two limit cycles in this case.
Hence the upper bound provided by the theorem is proved in this case.

Case 3: c4 = 0 and −c2d4 6= 0. System (5) becomes

ẋ = c2y, ẏ = x+ d2y + d4xy, in R1,

ẋ = c2y, ẏ = x+ d2y, in R2,

ẋ = −y, ẏ = x, in R3.

(14)

The quadratic system in (14) has a unique equilibrium point E0 = (0, 0). The trace
and the determinant associated to the linear part of the quadratic system in (14)
are d2 and −c2, respectively. The point E0 is either a weak focus or a center if and
only if d2 = 0 and c2 = −c2 with c > 0. So taking taking d2 = 0 and c2 = −c2,
system (14) is equivalently to

ẋ = −c2y, ẏ = x+ d4xy in R1,

ẋ = −c2y, ẏ = x in R2,

ẋ = −y, ẏ = x in R3,

(15)

with first integrals

H1(x, y) = (d4y + 1)
−

1

d2
4 e

y

d4
+ x2

2c2 in R1,

H2(x, y) = x2 + c2y2 in R2,

H3(x, y) = x2 + y2 in R3.

The existence of the first integral H1(x, y) defined in the point (0, 0) forces that the
equilibrium (0, 0) of the quadratic system in (14) is a center.

Now repeating the same steps as the ones in the proof of Case 2, we get

(16) e1 = e
d4
c
x1(1−

d4
2c

x1) −
d4
c
x1 − 1 = 0,

where

f0(x1) = 1, f2(x1) = x1, f3(x1) = e
d4
c
x1(1−

d4
2c

x1),

and

a0 = −1, a1 = −d4/c, a2 = 1.

The Wronskians of these functions are

W (f0)(x1) = 1, W (f0, f1)(x1) = 1
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and

W (f0, f1, f2)(x1) =
d34x1(d4x1 − 2c)e

d4
c
(1−

d4x1

2c
)x1

c4
.

which does not vanish in R
+ because has two solutions, namely 2c

d4

and 0. So, by

Theorem 2 the function (16) has at most two zeros and we conclude that (15) has
at most two limit cycles which proves the upper bound in the theorem in this case.

The example. The planar continuous piecewise differential system separated by
Σ and formed by the quadratic center and the two linear centers

ẋ = −36y + 2xy, ẏ = x+
12

100
xy, in R1

ẋ = −36y, ẏ = x, in R2

ẋ = −y, ẏ = x, in R3

(17)

with the first integrals

H1 =
e

3

25 (2y−
3

25
x)

(36− 2x)162/625
(

3
25y + 1

)2 in R1

H2 = x2 + 36y2 in R2

H3 = x2 + y2 in R3

has one crossing limit cycle. Indeed, for this differential system equation (9) is

e−9x1/625

(36− 2x1)162/625
−

6172
15625 ex1/25

(x1

50 + 1)2
= 0.

This equation has the approximated solution x1 = 0.0000583439.. and then system
(17) has a unique solution

(x1, y1, x2) = (0.0000583439.., 0.00000972399.., −0.0000583439..),

which provides the limit cycle of Figure 1. This limit cycle is a crossing limit cycle
which is traveled in counterclockwise sense.
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