

Article Generic Homeomorphisms with Shadowing of One-Dimensional Continua

Alfonso Artigue ¹,*¹ and Gonzalo Cousillas ²,*¹

- ¹ Departamento de Matemática y Estadística del Litoral, Universidad de la República, Salto 50000, Uruguay
- ² Instituto de Matemática y Estadística "Rafael Laguardia", Facultad de Ingeniería, Universidad de la República, Montevideo 11200, Uruguay
- * Correspondence: artigue@unorte.edu.uy (A.A.); gcousillas@fing.edu.uy (G.C.)

Received: 7 May 2019; Accepted: 24 May 2019; Published: 26 May 2019

Abstract: In this article, we show that there are homeomorphisms of plane continua whose conjugacy class is residual and have the shadowing property.

Keywords: shadowing property; generic dynamics; one-dimensional dynamics

MSC: 37E05; 37C50; 37C20

1. Introduction

Let (X, dist) be a compact metric space and denote by $\mathcal{H}(X)$ the space of homeomorphisms $f: X \to X$ with the C^0 distance

$$dist_{C^0}(f,g) = \sup\{dist(f(x),g(x)), dist(f^{-1}(x),g^{-1}(x)) : x \in X\}.$$

A property is said to be *generic* if it holds on a residual subset of $\mathcal{H}(X)$. Recall that a set is G_{δ} if it is a countable intersection of open sets and it is *residual* if it contains a dense G_{δ} subset. For instance, it is known that the shadowing property is generic for X a compact manifold ([1], Theorem 1) or a Cantor set ([2], Theorem 4.3). Recall that $f \in \mathcal{H}(X)$ has the *shadowing property* if for all $\varepsilon > 0$, there is $\delta > 0$ such that if $\{x_i\}_{i \in \mathbb{Z}}$ is a δ -pseudo orbit, then there is $y \in X$ such that $dist(f^i(y), x_i) < \varepsilon$ for all $i \in \mathbb{Z}$. We say that $\{x_i\}_{i \in \mathbb{Z}}$ is a δ -pseudo orbit if $dist(f(x_i), x_{i+1}) < \delta$ for all $i \in \mathbb{Z}$.

A remarkable result, proved in [3,4], states that if *X* is a Cantor set, then there is a homeomorphism of *X* whose conjugacy class is a dense G_{δ} subset of $\mathcal{H}(X)$. That is, a generic homeomorphism of a Cantor set is conjugate to this special homeomorphism. We say that $f, g \in \mathcal{H}(X)$ are *conjugate* if there is $h \in \mathcal{H}(X)$ such that $f \circ h = h \circ g$ and the *conjugacy class* of *f* is the set of all the homeomorphisms conjugate to *f*. This result gives rise to a natural question: besides the Cantor set,

which compact metric spaces have a G_{δ} dense conjugacy class?

On a space with a G_{δ} dense conjugacy class, the study of generic properties (invariant under conjugacy, as the shadowing property) is reduced to determine whether a representative of this class has the property or not.

In Theorem 2, we show that there are one-dimensional plane continua with a G_{δ} dense conjugacy class whose members have the shadowing property. The proof of this result is based on Theorem 1, where we show that for a compact interval *I* there is a G_{δ} conjugacy class in $\mathcal{H}(I)$ which is dense in the subset of orientation preserving homeomorphisms of *I*. In addition, the proof of Theorem 2 depends on Propositions 2 and 3, where we give sufficient conditions for the existence of a residual conjugacy class and for a homeomorphism to have the shadowing property, respectively. The following open question has an affirmative answer in the examples known by the authors:

if a homeomorphism has a G_{δ} *dense conjugacy class, does it have the shadowing property?*