ON THE NUMBER OF INVARIANT STRAIGHT LINES FOR POLYNOMIAL DIFFERENTIAL SYSTEMS

Joan C. Artés, Branko Grünbaum and Jaume Llibre

If P and Q are two real polynomials in the real variables x and y such that the degree of $P^{2}+Q^{2}$ is $2 n$, then we say that the polynomial differential system $x^{\prime}=P(x, y), y^{\prime}=Q(x, y)$ has degree n. Let $\alpha(n)$ be the maximum number of invariant straight lines possible in a polynomial differential systems of degree $n>1$ having finitely many invariant straight lines. In the 1980's the following conjecture circulated among mathematicians working in polynomial differential systems. Conjecture: $\alpha(n)$ is $2 n+1$ if n is even, and $\alpha(n)$ is $2 n+2$ if n is odd. The conjecture was established for $n=2,3,4$. In this paper we prove that, in general, the conjecture is not true for $n>4$. Specifically, we prove that $\alpha(5)=14$. Moreover, we present counterexamples to the conjecture for $n \in\{6,7, \ldots, 20\}$. We also show that $2 n+1 \leq \alpha(n) \leq 3 n-1$ if n is even, and that $2 n+2 \leq \alpha(n) \leq 3 n-1$ if n is odd.

1. Introduction and statement of the main results.

Let P and Q be two real polynomials in the real variables x and y. We say that the polynomial differential system

$$
\begin{equation*}
x^{\prime}=P(x, y), y^{\prime}=Q(x, y), \tag{1}
\end{equation*}
$$

has degree n if the degree of the polynomial $P^{2}+Q^{2}$ is $2 n$.
Studies of polynomial differential systems were carried out by Poincaré in $[\mathbf{P} 1],[\mathbf{P} 2]$ and $[P 3]$. The algebraic feature of polynomial differential systems renders natural certain questions and problems of an algebraic or an algebro-geometric nature, such as to recognize when system (1) has invariant algebraic curves, or is algebraically integrable. See the interesting survey of Schlomiuk [Sc] on these questions. This paper deals with the former aspect.

The straight line $a x+b y+c=0$ is invariant for the flow of system (1), and we call it an invariant straight line of system (1) if $a x^{\prime}+b y^{\prime}=$ $a P(x, y)+b Q(x, y)=(a x+b y+c) R(x, y)$ for some real polynomial R.

Suppose that the polynomial differential system (1) of degree n has finitely many invariant straight lines; then we denote by $\alpha(n, P, Q)$ the number

