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UNIFORM ISOCHRONOUS CUBIC AND QUARTIC

CENTERS: REVISITED

JOAN C. ARTÉS1, JACKSON ITIKAWA2 AND JAUME LLIBRE1

Abstract. In this paper we completed the classification of the
phase portraits in the Poincaré disc of uniform isochronous cubic
and quartic centers previously studied by several authors. There
are three and fourteen different topological phase portraits for the
uniform isochronous cubic and quartic centers respectively.

1. Introduction and Statement of the Main Results

The interest in the isochronous centers started in the XVII century
with the works of C. Huygens, see [4]. The isochronicity phenomena
appears in many physical problems, see for instance [2].

We say that p ∈ R
2 is a center if it is a singular point of a planar

differential system such that there is a neighborhood U of p where all
the orbits of U\{p} are periodic. For every q ∈ U\{p} let T (q) denote
the period of the periodic orbit through q. When T (q) is constant for
all q ∈ U\{p} we say that p is an isochronous center . The fact that p
is isochronous does not imply that the angular velocity of the vector
−→pq is the same for all periodic orbits in U\{p}. When such velocity
is constant we say that p is a uniform isochronous center or a rigid
center .

The uniform isochronous planar centers are characterized in the next
result.

Proposition 1. Assume that a planar polynomial differential system
of degree n has a center at the origin of coordinates. Then this center is
uniform isochronous if and only if by doing a linear change of variables
and a scaling of time it can be written as

(1) ẋ = −y + x f(x, y), ẏ = x+ y f(x, y),

with f(x, y) a polynomial in x and y of degree n− 1, f(0, 0) = 0.
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Proposition 1 is well–known, a proof of it can be found in [6].

The next result due to Collins [3] in 1997 classifies the cubic polynomial
uniform isochronous centers.

Theorem 2. A cubic polynomial differential system has a uniform
isochronous center at the origin if and only if it can be written as

(2) ẋ = −y + xf(x, y), ẏ = x+ yf(x, y),

where f(x, y) = a1x + a2y + a3x
2 + a4xy − a3y

2, and satisfies a21a3 −
a22a3 + a1a2a4 = 0.

This result can be improved as follows.

Corollary 3. A cubic polynomial differential system has a uniform
isochronous center at the origin if and only if it can be written as

(3) ẋ = −y + xf(x, y), ẏ = x+ yf(x, y),

where f(x, y) = a1x+ a2y + a4xy, and satisfies a1a2 = 0 and a4 6= 0.

Corollary 3 is proved in section 2. We note that (3) has one parameter
less than in (2) and eases the polynomial condition that the parameters
must hold.

Using Theorem 2 Collins obtains two normal forms for all the uniform
isochronous cubic centers, one with one parameter and the other a
given system. We prefer to work with the unique normal form given in
Corollary 3.

In the next theorem we present the first integrals of the uniform
isochronous cubic centers described by systems (3). More complicates
first integrals were obtained in [5] using the normal form (2) and were
given only in polar coordinates. The new normal form (3) allows to
provide easier expressions of these first integrals in cartesian coordinates.

Theorem 4. The first integrals H of system (3) are described in what
follows.

Case 1: a2

1
+ a2

2
6= 0.

Subcase 1.1: 4a4 > a2

1
and a2 = 0.

H = e−2 arctan [ 2a4y+a1
S ]

[

x2 + y2

a4y2 + a1y + 1

]S/a1

,

where S =
√

4a4 − a21.

Subcase 1.2: 4a4 < a2

1
and a2 = 0.

H =
(x2 + y2)S/a1(S + a1 + 2a4y)

1−S/a1

(S − a1 − 2a4y)1+S/a1
,
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where S =
√

a21 − 4a4.

Subcase 1.3: 4a4 < −a2

2
and a1 = 0.

H = e−2 arctan [ 2a4x+a2
S ]

[

x2 + y2

a4x2 + a2x− 1

]S/a2

,

where S =
√

−4a4 − a22.

Subcase 1.4: 4a4 > −a2

2
and a1 = 0.

H =
(x2 + y2)S/a2(S + a2 + 2a4x)

1−S/a2

(S − a2 − 2a4x)1+S/a2
,

where S =
√

4a4 + a22.

Subcase 1.5: 4a4 = a2

1
and a2 = 0.

H =
(x2 + y2)e

4

2+a1y

(2 + a1y)2
.

Subcase 1.6: 4a4 = −a2

2
and a1 = 0.

H =
(x2 + y2)e

4

2−a2x

(2− a2x)2
.

Case 2: a1 = a2 = 0.

H =
x2 + y2

1− a4x2
.

Theorem 4 is proved in section 2.

Collins [3] found that differential systems with uniform isochronous
cubic centers may have three topologically different phase portraits,
that is the phase portraits denoted by (a), (b) and (c) in Figure 1.
These results are correct but some steps in their proofs are not and
other steps are not completely justified, see section 2. Also in [5] the
authors omitted one separatrix in one of the phase portraits that they
took from [3]. In short the three correct phase portraits of uniform
isochronous cubic centers are given in Figure 1, for more details see
section 2.

More precisely, a phase portrait of (3) is topologically equivalent to
the phase portrait (a) of Figure 1 if one of the following conditions
holds

� a4 < −a22/4 < 0 and a1 = 0;
� 0 < a21/4 < a4 and a2 = 0;

the phase portrait (b) if one of the following conditions holds

� −a22/4 ≤ a4 < 0 and a1 = 0;
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(a) (b) (c)

Figure 1. Phase portraits of uniform isochronous cubic centers.

� 0 < a4 ≤ a21/4 and a2 = 0;

the phase portrait (c) if one of the following conditions holds

� a1 = 0, a2 6= 0, and a4 > 0;
� a1 6= 0, a2 = 0, and a4 < 0;
� a1 = a2 = 0.

In what follows we study the phase portraits of uniform isochronous
quartic centers. The first studies on some of these phase portraits are
due to Algaba et al. [1]. The phase portraits of uniform isochronous
quartic centers whose nonlinear part is not homogeneous were studied
in [6], and the ones whose nonlinear part is homogeneous in [7]. As we
shall see in section 3, the study done in [6] has some mistakes.

We denote by R
∗ = R \ {0}. The following result classifies all the

phase portraits of the uniform isochronous quartic centers.

Theorem 5. Consider a quartic polynomial vector field X and assume
that X has a uniform isochronous center at the origin. Then the
phase portrait of X is topologically equivalent to the phase portraits
(a), (m) or (n) of Figure 2 when the nonlinear part of the system
is homogeneous. When this nonlinear part is not homogeneous then
the phase portrait of X is topologically equivalent to one of the 12
phase portraits (from (a) to (l)) of Figure 2 according to the following
conditions:

(a) of Figure 2 if either C1C3 > 0, or C3 = 0 and B2 < 0, or C1 = 0
and C3 6= 0, or r3 = r2 = r1, ∀r1, r2, r3 ∈ R

∗, or r1 6= 0 and
r2,3 = a± bi, ∀r1, b ∈ R

∗, a ∈ R;

(b) of Figure 2 if C1 = 0, C3 6= 0 and if either r1, r2, r3 > 0, or
r1, r2, r3 < 0 or r1r2 > 0, r3 = r2, or r2 = r1, r1r3 > 0;

(c) of Figure 2 if C1 = 0, C3 6= 0 and if either r1 < 0, r2, r3 > 0,
or r1, r2 < 0, r3 > 0, or r1 < 0, r2 > 0, r3 = r2, or r2 = r1, r1 <
0, r3 > 0;
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Figure 2. Phase portraits of uniform isochronous quartic centers.
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(d) of Figure 2 if C3 = 0, C1 6= 0, B2 > 0, C1 > −A1B2;

(e) of Figure 2 if either C3 = 0, C1 6= 0, B2 > 0, C1 = −A1B2, or
B2 = C3 = 0;

(f) of Figure 2 if C3 = 0, C1 6= 0, B2 > 0, C1 < −A1B2;

(g) or (h) or (i) of Figure 2 if C1C3 < 0, B2 = 0;

(j) or (k) or (l) of Figure 2 if C1C3 < 0, B2 6= 0;

where in the cases with C1 = 0, we have that r1, r2, r3 are the roots of
the polynomial −C3−B2x−A1x

2−x3 and we assume that r1 ≤ r2 ≤ r3
when these roots are real.

Theorem 5 is proved in section 3.

2. Uniform isochronous cubic centers

In this section we prove all our results on uniform isochronous cubic
centers.

Proof of Corollary 3. The corollary follows doing the change of variables
to system (2) given by the rotation

(

cosα sinα
− sinα cosα

)

,

with cotα = −a4/(2a3), and renaming the parameters. �

Proof of Theorem 4. It is easy to check that (∂H/∂x)ẋ+(∂H/∂y)ẏ = 0
for the functionsH given in the statement of Theorem 4, and hence they
are first integrals of this system under the corresponding conditions.

�

Since planar polynomial differential systems of degree > 1 with
uniform isochronous centers have the infinity filled with singular points
(this is an immediate consequence of their normal form (1)), one must
study the singular points that remain on the line at infinity after
removing it what we call the singular points of the reduced infinity.
Then for the uniform isochronous cubic centers it happens that the
reduced infinity always has two singular points, a saddle and an anti-
saddle which may be either a focus, or a center, or a topological
node. In the case focus or center we obtain phase portrait (a) or (c)
respectively. It is not possible to have a saddle-node as Collins claimed
in Figure 2-d of [3], equivalent to our Figure 1(b). In fact our Figure
1(b) is also equivalent to Collins’ Figure 2-c. This Figure 2-c is what
one obtains when the node at infinity is generic (and produces then
two invariant straight lines in the equations used by Collins), but the
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transition from a node to a focus cannot occur by means of a saddle-
node, but in this case it occurs by means of one-directional node, and
the two previous invariant straight lines become a single one. We note
that this transition from node to focus can also occur in other systems
by means of a star node. Note also that the normal form (3) does not
exhibit invariant straight lines but this does not affect the topological
phase portraits. The existence of the invariant straight lines facilitates
the study of the phase portraits.

It is also worth of remark that the transition from the phase portraits
(b) to (c) cannot be done inside the cubic systems, because when a4 = 0
the system becomes quadratic.

3. Uniform isochronous quartic centers

In this section we prove Theorem 5 on uniform isochronous quartic
centers. Since this theorem was already proved in [6] for the non-
homogeneous nonlinear part and in [7] for the homogeneous nonlinear
part, we will only detail the cases which were not correct in [6]. All
steps in [7] are correct.

The first mistake is that the pairs (a) ≡ (f), (b) ≡ (d) and (c) ≡
(e) of phase portraits of Figure 1 of [6] are topologically equivalent.
These three pairs correspond to our phase portraits (a), (b) and (c)
respectively. Moreover we have improved phase portraits (b) and (c)
by reducing the width of one orbit which resembled a separatrix, and
we have added two orbits in phase portait (c) because the orbits of two
canonical regions were not defined.

The second mistake is that the phase portraits (g) and (h) of Figure
1 of [6] (denoted here with (d) and (e) respectively) are not correct
because the orbits in two canonical regions are not well drawn. The
problem arises from a incorrect blow-up of a singularity. Precisely, the
incorrect blow-up is the one corresponding to Figure 20 of [6]. The
correct Figure 20 is our Figure 3. This produces two parabolic sectors
that do not appear in (g) and (h) of Figure 1 of [6].

The third and last mistake is that a phase portrait is missing in
Figure 1 of [6]. Concretely our phase portrait (f) was omitted. In fact,
phase portraits (d) and (f) bifurcate from (e) according to the sign of
C1 + A1B2.

We have finally renamed and reordered the phase portraits from (i)
to (n) of Figure 1 of [6] to our (g) to (l). And we have finally added the
results from [7] in this new complete theorem for uniform isochronous
quartic centers.
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Figure 3. Correct local phase portrait corresponding to
Figure 20 of [6].
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angular constante, Actas : XVI CEDYA Congreso de Ecuaciones Diferenciales
y Aplicaciones, VI CMA Congreso de Matemática Aplicada, Las Palmas de
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