ON THE NUMBER OF SLOPES OF INVARIANT STRAIGHT LINES FOR POLYNOMIAL DIFFERENTIAL SYSTEMS'

Joan C · Artes Jaume Llibre

(Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain)

Abstract If P and Q are two real polynomials in the real variables x and y such that the degree of P^2+Q^2 is 2n, then we say that the polynomial differential system x'=P(x,y), y'=Q(x,y) has degree n. In the set of all polynomial differential systems of degree n>1 having finitely many invariant straight lines, let $\alpha(n)$ be the maximum number of invariant straight lines that they have, and let $\beta(n)$ be the maximum number of slopes that these invariant straight lines have. Dai Guoren conjectured that $\beta(n)=2n+(1+(-1)^n)/2$ for n>2. In this paper we prove that the conjecture is true for n=3,4,5, and that it is not true for $n=6,7,\cdots,21$. Moreover, we prove that $\beta(n)=\alpha(n-1)+1$ and then we refer to [AGL] where $\alpha(n)$ is studied.

Key words Polynomial differential system, invariant line, Poincaré sphere.

AMS(1991) Subject classifications O175.12.

1 Introduction and Statement of the Main Results

Let P and Q be two real polynomials in the real variables x and y. We say that the polynomial differential system

$$x' = P(x, y), \quad y' = Q(x, y),$$
 (1)

has degree n if the degree of the polynomial P^2+Q^2 is 2n.

Studies of polynomial differential systems were carried out by Poincaré in [P1], [P2] and [P3]. The algebraic feature of polynomial differential systems renders natural certain questions and problems of an algebraic or an algebra-geometric nature as the following two. Recognize when system (1) has invariant algebraic curves, or is algebraically integrable? See the interesting survey of Schlomiuk [Sc] on these questions. This paper deals with the first question.

The straight line ax+by+c=0 is invariant for the flow of system (1), and we call it an

[。] 收稿日期:1996-03-18.