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We dedicate this book to the memory of the mathematician

Constantin Sibirschi (1928–1990)

on the occasion of the 90th anniversary of his birth. Without the theory of algebraic
invariants of polynomial differential equations, founded by Sibirschi, this book could
not have been written.
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Preface

In this book we consider planar polynomial differential systems, i.e. systems of the
form

dx

dt
= p(x, y),

dy

dt
= q(x, y)

where p(x, y), q(x, y) are polynomials in x, y with real coefficients. To each such
system there corresponds a point in RN determined by its N = (n + 1)(n + 2)
coefficients, where n is the degree of the system, i.e. n = max(deg(p), deg(q)). A
system of degree 2 is called quadratic.

The study of these differential systems always begins with the study of their
singularities, finite or infinite, followed by the study of separatrix connections and
of limit cycles. Also in some particular cases, the study of first integrals, algebraic
invariant curves and period function is of great interest.

Our main goal in this book is to classify in a geometrical way the global
schemes of singularities, finite and infinite, of quadratic differential systems and
to obtain their bifurcation diagram in the 12-dimensional space R12. This global
classification and its bifurcation diagram is completely algebraic, and we provide
the algorithm that computes, for every family of quadratic systems, the global
bifurcation diagram of its corresponding schemes of singularities. The study of
singularities is the first step in the topological classification of the phase portraits
of these differential systems and their bifurcation diagram. The geometrical equiv-
alence relation between singularities considered here, is deeper than the topological
one, including features of an algebraic-geometric meaning that play a significant
role in studying bifurcations of the systems.

This was a long-term project. Our work began seven or even eight years ago.
Every year we met in the spring in Barcelona, then in the fall in Montreal, in
order to work on the project. During the past three years, two of us met in late
summer in Chişinău, Moldova. We were happy to have the opportunity to work
together and in the acknowledgements we mention the institutions and grants that
supported us.

Over the years, we published partial results such as the study of infinite sin-
gularities, then of quadratic systems with total multiplicity of finite singularities
less than or equal to one, or with total multiplicity of finite singularities equal to

xi 
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two or three. From the class of quadratic differential systems with total multiplic-
ity of finite singularities equal to four, those with total number of distinct finite
singularities less than or equal to three, were also published. On one of these last
published articles, we worked together with Alex C. Rezende, and we thank him
for his contribution to our project.

The original results appearing in the book in Chapters 7, 12 and in Section
11.4 of Chapter 11 have never been published before and so they appear here
for the first time. Section 11.4 contains the most generic and most difficult cases.
This classification yielded 1765 distinct geometrical configurations of singularities,
finite or infinite, plus at most 8 other such configurations (sharing the same finite
part) that we conjecture are not realizable.

We give in the final chapter of the book some concluding comments with a
view towards the future.

We are thankful to the editors and referees for the improvements they sug-
gested and their advice was followed by us.

Joan Carles Artés
Jaume Llibre
Dana Schlomiuk
Nicolae Vulpe

Barcelona, Montréal, Chişinău, 2020
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