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Abstract The goal of this article is to give invariant necessary and sufficient
conditions for a quadratic system, presented in whatever normal form, to have
anyone of 17 out of the 20 phase portraits of the family of quadratic systems
with two complex conjugate invariant lines intersecting at a finite real point.
The systems in this family have a maximum of one limit cycle. Among the 17
phase portraits we have two with limit cycles. We also give invariant necessary
and sufficient conditions for a system to have one of the 3 remaining phase
portraits, out of which one has a limit cycle and another one a homoclinic
loop. In the region R determined by these last conditions, due to the presence
of systems with a homoclinic loop, an analytic condition, the three phase
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Agència de Gestio d’Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020
European Research Council grant MSCA-RISE-2017-777911. The third author is supported
by NSERC Grant NR00355. The fourth author is supported by the grant 12.839.08.05F
from SCSTD of ASM and partially by NSERC. The third and the fourth authors are very
thankful for the hospitality provided by the Departament de Matemàtiques during their
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portraits cannot be separated by algebraic conditions in terms of invariant
polynomials. We also give the bifurcation diagram of this family, outside the
region R, in the twelve parameter space of coefficients of the systems.

Keywords quadratic vector fields · infinite and finite singularities · affine
invariant polynomials · Poincar compactification · topological configuration
of singularities · phase portrait · limit cycle.
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1 Introduction

We consider here polynomial differential systems on the plane. These are sys-
tems the form

dx

dt
= p(x, y),

dy

dt
= q(x, y), (1)

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y with real coefficients. We
call degree of a system (1) the integer m = max(deg p, deg q). In particular we
call quadratic a differential system (1) of degree m = 2. We denote here by
QS the whole class of real quadratic differential systems (in short quadratic
systems).

In this article we consider the familyQS2cIL of all quadratic systems having
two complex conjugate invariant lines meeting at a finite real point. We observe
that the group of affine transformations and time rescaling acts on this family.
The first study of this family was done in 1986 by Suo and Chen (see [12]) where
the authors gave a normal form for these systems ((4) in Section 3) and proved
that the maximum number of limit cycles of systems in this family is one.
Actually their proof contained a gap as the authors of [11] later discovered. In
[11] the authors gave a new and complete proof of this result, brought to light
an algebraic geometric structure of this family based on the total multiplicity
of invariant lines which the systems in this family could have and gave the
topological classification of phase portraits in this class. We point out that
actually two of the 22 phase portraits obtained in [11] are topological copies of
two of the remaining 20 phase portraits. Indeed, as the topological equivalence
does not distinguish between a focus and a node, the phase portrait P17 of
[11] containing two nodes can be topologically identified with P11 (Port. 2
here) which has two foci instead of two nodes. The phase portrait P18 of
[11] containing a node and a saddle is topologically equivalent to P21 (Port. 7
here) which has a focus and a saddle. So the family QS2cIL has a total of
20 topologically distinct phase portraits. To obtain their results, Schlomiuk
and Zhang made a thorough study of the normal form proved by Suo and
Chen. Thus they gave necessary and sufficient conditions in terms of the 6
coefficients of the normal form (4) for a system in QS2cIL to be degenerate; to
have invariant straight lines of total multiplicity at least four or to have the
line at infinity filled up with singularity.
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In the literature there are other normal forms for this family (see for ex-
ample [5]). Thus arises the question as to how to transfer these results for
one normal form to another. How do we make our topological classification
independent of normal forms?

The goal of this article is to respond to the above mentioned questions.
Firstly, since in this family we have systems with a limit cycle we would like
to know if it is possible to have an algorithm such that for any given system in
the family QS2cIL in whatever normal form this system may be presented, we
can decide by using this algorithm, whether or not the system possesses a limit
cycle and what is its phase portrait. In case this were not possible then at least
to delimit the cases when such a decision can be made, to go as far as possible in
giving invariant necessary and sufficient conditions for a given phase portrait to
be realized. We respond to this challenge in our Theorems 1 and 2. In Theorem
1 we give invariant necessary and sufficient conditions for a quadratic system to
belong to the familyQS2cIL. In Theorem 2 we determine, for 17 of the 20 phase
portraits of the family QS2cIL, invariant necessary and sufficient conditions for
the realization of each one of these 17 phase portraits. Among these 17 phase
portraits of QS2cIL we have two with limit cycles, out of a maximum of three
phase portraits with limit cycles in QS2cIL. For the remaining three phase
portraits: Port. 5, which has a limit cycle; Port. 6, which has a homoclinic
loop; Port. 7 which is without either a limit cycle or a homoclinic loop, we
give necessary and sufficient conditions for a system to have one of these three
phase portraits. Furthermore Theorem 2 contains the bifurcation diagram for
this family in the 12-parameter space of coefficients of quadratic systems, with
the exception of the semi-algebraic region where Port. 5, Port. 6 and Port. 7
occur. This bifurcation diagram provides us with an algorithm which allows
us to decide whether or not a given quadratic system, in whatever normal
form it may be presented, has one of the 17 phase portraits of QS2cIL which
are different from Port. 5, Port. 6 and Port. 20. The hypersurface of systems
in QS2cIL which possess a homoclinic loop is likely to be analytic but not
algebraic. This explains why our bifurcation diagram cannot be completed in
the semi-algebraic region where systems in QS2cIL possess one of these three
portraits Port. 5, Port. 6 and Port. 7 and why invariant polynomials which
are algebraic objects cannot do any better for this problem. We have pushed
our analysis in terms of invariant polynomials to its very limit. However we
have necessary and sufficient conditions in terms of invariant polynomials for
two phase portraits which have limit cycles: Port. 1 and Port. 9 and naturally,
the question arises as to why were we able to do this. After all limit cycles are
analytic objects and in general it is highly unlikely that we can encapsulate
each phase portrait with a limit cycle in a semi-algebraic set. For these phase
portraits this is possible because on the boundaries of regions in the parameter
space where they occur we have systems with centers on which the limit cycles
collapse and we know that the conditions to have centers in quadratic systems
are algebraic.

Apart from using the results proven in [11], the present paper is based on
the global classification of topological configurations of singularities obtained
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in [3] and based on the authors’ results in [4]. This global classification of topo-
logical configurations of singularities is done in terms of invariant polynomials,
giving us an algorithm for deciding for any given quadratic system in whatever
normal form it can be presented, what is its global topological configuration
of singularities.

The paper is organized as follows: In Section 2 we give the preliminary
notions and exhibit the invariant polynomials in terms of which the invariant
classification is made. In Section 3 we state and prove the Theorems 1 and 2.

2 Some preliminary constructions

We consider the family of quadratic systems:

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ p(x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ q(x, y)

(2)

where max(deg(p), deg(q)) = 2 and pi, qi (i = 0, 1, 2) are homogeneous poly-
nomials of degree i in x, y in case they are not identically zero:

p0 = a00, p1(x, y) = a10x+ a01y, p2(x, y) + a20x
2 + 2a11xy + a02y

2,

q0 = a00, q1(x, y) = a10x+ a01y, q2(x, y) + a20x
2 + 2a11xy + a02y

2.

Let ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the 12-tuple of
the coefficients of systems (2) and denote R[ã, x, y] = R[a00, . . . , b02, x, y].

It is known that on the set QS of all quadratic differential systems (2)
acts the group Aff (2,R) of affine transformations on the plane (cf. [9]). For
every subgroup G ⊆ Aff (2,R) we have an induced action of G on QS. We
can identify the set QS of systems (2) with a subset of R

12 via the map
QS−→ R

12 which associates to each system (2) the 12–tuple ã = (a00, . . . , b02)
of its coefficients. We associate to this group action polynomials in x, y and
parameters which behave well with respect to this action, the GL–comitants,
the T –comitants and the CT –comitants. For their detailed definitions as well
as their constructions we refer the reader to the paper [9] (see also [4]).

In this paper we use some of the invariant polynomials defined and con-
structed in [3] (see Section 3, the set (2)):

{
µ0, . . . , µ4, D, P, R, S, T, U, T1, . . . , T4, H, F ,

F1, . . . ,F4, B,B1,B2, σ, η, M̃, C2, κ, θ2, K̃, Ñ , R̃, K2

}
.

However here intervene some invariant polynomials which are not contained
in the set (2) in [3] and so, we will give their expressions. More exactly we
need the invariant polynomials

B2, θ, H9, H10,
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which were defined in different papers. The invariant polynomials B2, H9 and
H10 are constructed in [10], whereas the invariant polynomial θ is defined
in [2] (we keep the corresponding notations from these articles). So here we
construct here below the above mentioned invariant polynomials. The singular
points of the quadratic systems were also studied in [1].

First we need the GL-comitants of degree one with respect to the coeffi-
cients of systems (2):

Ci(x, y) = ypi(x, y)− xqi(x, y), i = 0, 1, 2;

Di(x, y) =
∂

∂x
pi(x, y) +

∂

∂y
qi(x, y), i = 1, 2

and the so-called transvectant of order k (see [7], [8]) of two polynomials f,
g ∈ R[ã, x, y]

(f, g)(k) =
k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

Using this differential operator we construct now the following GL-comitants
which are of degree two with respect to the coefficients of systems (2):

T1 = (C0, C1)
(1)

, T2 = (C0, C2)
(1)

, T3 = (C0, D2)
(1)

,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1, D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2, D2)
(1) .

And finally we construct the above mentioned invariant polynomials:

B2 =
(
M̂, M̂

)(2)

− 6M̂(C2, D̂)(3), θ = 16
(
(Ĥ, Ĥ − K̂)(2)

)
,

H9 =4
((

(D̂, D̂)(2), D̂
)(1)

, D̂
)(3)

, H10 = 4
((

D̂, K̂ − Ĥ
)(2)

, D2

)(1)

,

where

D̂ =[2C0(T8 − 8T9 − 2D2
2) + C1(6T7 − T6)− (C1, T5)

(1)

+ 6D1(C1D2 − T5)− 9D2
1C2]/36,

K̂ =(T8 + 4T9 + 4D2
2)/72, Ĥ = (−T8 + 8T9 + 2D2

2)/72, M̂ = (C2, D̂)(1),

We observe that all the invariant polynomials which intervene in this article
could also be found in a Mathematica file which can be found at the following
link: http://mat.uab.es/∼artes/articles/config.nb.
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3 Main results

3.1 The invariant criteria for a quadratic system to have two complex
invariant lines meeting at a finite real point

Theorem 1 A quadratic system possesses two complex invariant lines meet-
ing at a finite real point if and only if one of the following two sets of conditions
is satisfied:

(i) η < 0, B2 = 0; (ii) C2 = 0, (D > 0)∨
(
µi = 0, i ∈ {0, 1, . . . , 4}

)
. (3)

Proof: Necessity. Assume that a quadratic system possesses two complex in-
variant lines intersecting at a real finite singular point. According to [12] via
an affine transformation this system takes the following form:

dx

dt
= (αx− βy)(ax + by + c) + k(x2 + y2) ≡ P (x, y),

dy

dt
= (βx+ αy)(ax + by + c) ≡ Q(x, y)

(4)

where α, β, a, b, c, k are arbitrary real. For these systems, which possess the
complex invariant lines x± iy = 0, we calculate:

B2 =0, η = −4
[
a2β2 + (k − bβ)2

]2
,

C2 =− (x2 + y2)
[
aβx+ (bβ − k)y

]
.

(5)

So we conclude that the necessary conditions are B2 = 0 and η ≤ 0. Moreover,
it is clear that the condition η = 0 implies C2 = 0, i.e. aβ = k − bβ = 0. So
setting k = bβ and considering the condition aβ = 0 systems (4) become

ẋ = cαx− cβy + (aα+ bβ)x2 + bαxy,

ẏ = (c+ ax+ by)(βx+ αy), with aβ = 0,
(6)

for which we calculate

D = 192b4c8β4(α2 + β2)4. (7)

So we get D ≥ 0 and hence in the case D 6= 0 we arrive at the first part of
the conditions (ii) from (3). It remains to examine the condition D = 0. We
claim that this condition leads to degenerate systems (6), i.e. according to [4]
(see Lemma 5.2, statement (iii)) the conditions µi = 0, i ∈ {0, 1 . . . , 4} are
satisfied.

Indeed for systems (6) calculations yield:

µ0 =0, µ1 = bcβ(α2 + β2)ω′
1, µ2 = bc2β(α2 + β2)ω′

2,

µ3 =bc3β(α2 + β2)ω′
3, µ4 = 0

with some polynomials ω′
i(a, b, c, α, β, x, y). So considering (7) we observe that

the condition D = 0 implies µ1 = µ2 = µ3 = 0 and since µ0 = µ4 = 0 our
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claim is proved. This completes the proof of the necessity of the conditions of
Theorem 1.

Sufficiency. According to the statement of the theorem we consider two
families of quadratic systems which are defined by the conditions η < 0 or by
C2 = 0, respectively.

3.1.1 The class of systems with η < 0

According to [4] in this case quadratic systems could be brought via a linear
transformation and time rescaling to the following canonical form:

ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2.
(8)

For these systems we have

η = −4, θ = 8(1 + h)
[
g2 + (h− 1)2

]
,

Ñ = (2 + g2 − 2h)x2 + 2g(1 + h)xy + (h− 1)(1 + h)y2
(9)

and we shall consider two cases: θ 6= 0 and θ = 0.

The case θ 6= 0. Then we have h + 1 6= 0 and doing a translation we may
assume c = d = 0 in systems (8) and we get the family of systems

ẋ = a+ gx2 + (h+ 1)xy, ẏ = b + ex+ fy − x2 + gxy + hy2. (10)

For these systems calculation yields:

Coefficient[B2, y
4] = 648a(1 + h)2ϕ1,

Coefficient[B2, xy
3] = 2592a(1 + h)2ϕ2,

ϕ1 = a(1 + g − h)(1 − g − h) + 2bg(h− 1) + f(e− fg + eh),

ϕ2 = 2ag(h− 1) + b(1 + g − h)(−1 + g + h) + e2h− f2 − efg,

(11)

and we examine two subcases: a = 0 and a 6= 0.

The subcase a = 0. In this case for systems (10) we calculate B2 = −648Φx4,
where

Φ =b2(1 + g2 − 2h+ h2)2 + (e2 + f2)(f2 + f2g2 − 2efgh+ e2h2)

− 2b
[
e2h(1 + g2 − 2h+ h2)h+ efg(1 + g2 + 2h− 3h2)

− f2(h− 1)2 + f2g2(2h− 1)
]
.

We observe that Φ is a quadratic polynomial in b and

Discrim [Φ, b] = −4(e+ fg − eh)2(f + fg2 − 2egh− fh2)2

and hence the equation B2 = 0 (which is equivalent with Φ = 0) has real
solutions if and only if the condition (e+ fg− eh)(f + fg2 − 2egh− fh2) = 0
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holds. This relation gives us the two possibilities: e(1 − h) + fg = 0 and
e(1− h) + fg 6= 0 but f(1 + g2 − h2)− 2egh = 0.

1. The possibility e(1 − h) + fg = 0. In order to apply this condition to
systems (10) with a = 0 we consider two cases: 1− h 6= 0 and 1− h = 0.

1.1. The case 1 − h 6= 0. Then without loss of generality we can set
f = u(h− 1) and we get e = gu. This yields

Φ =
[
g2 + (h− 1)2

]2
(b + u2)2 = 0

and due to θ 6= 0 we obtain b = −u2. This leads to the family of systems

ẋ = x(gx+ y + hy),

ẏ = −u2 + gux− x2 + (−1 + h)uy + gxy + hy2

which possess one real and two complex invariant lines meeting at the singular
point (0,−u):

x = 0, x± iy ± iu = 0.

1.2. The case 1−h = 0. Then the condition e(1−h)+fg = 0 gives fg = 0
and since in this case θ = 16g2 6= 0, we get f = 0. Then Φ = (e2 + bg2)2 = 0,
i.e. b = −e2/g2 which lead

ẋ = x(gx+ 2y), ẏ = −e2/g2 + ex− x2 + gxy + y2.

These systems possess one real and two complex invariant lines:

x = 0, g(x± iy)± ie = 0.

2. The possibility e(1 − h) + fg 6= 0, f(1 + g2 − h2) − 2egh = 0. Since
(1 + g2 − h2)2 + (gh)2 6= 0 (due to θ 6= 0) without loss of generality we may
set e = u(1 + g2 − h2) and f = 2ugh and then we obtain

Φ = (1 + g2 − 2h+ h2)2(b− hu2 − g2hu2 − 2h2u2 − h3u2)2 = 0.

Since θ 6= 0 we have b = hu2
[
g2 + (1 + h)2

]
and this leads to the family of

systems

ẋ = x(gx+ y + hy),

ẏ = h(1 + g2 + 2h+ h2)u2 + (1 + g2 − h2)ux− x2 + 2ghuy + gxy + hy2.

These systems possess one real and two complex invariant lines:

x = 0, (x± iy)− u(h+ 1)± igu = 0.
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The subcase a 6= 0. Then considering (11) we deduce that the condition
B2 = 0 implies ϕ1 = ϕ2 = 0 and since θ 6= 0 we obtain

a =− (e+ fg − eh)(f + fg2 − 2egh− fh2)

(1 + g2 − 2h+ h2)2
,

b =(efg3 − efg(−1 + h)(1 + 3h)− (−1 + h)2(f2 − e2h)

+ g2(−f2 − e2h+ 2f2h)/(1 + g2 − 2h+ h2)2.

In this case we get the family of quadratic systems (10) (with the above defined
parameters a and b), which possesses the following two complex invariant lines
intersecting at a real finite point:

(1 + ig − h)(x+ iy)− e− if = 0, (1− ig − h)(x − iy)− e+ if = 0.

Thus we proved that in the case η < 0 and θ 6= 0 the condition B2 = 0 is
necessary and sufficient for the existence of such kind of invariant complex
lines.

The case θ = 0. According to (9) the condition Ñ = 0 is equivalent to

h− 1 = g = 0 and therefore we consider two subcases: Ñ 6= 0 and Ñ = 0.

The subcase Ñ 6= 0. Then the condition θ = 0 gives h = −1 and in addition
we may consider f = 0 doing the translation x → x and y → y + f/2. So
systems (8) become of the form

ẋ = a+ cx+ dy + gx2, ẏ = b+ ex− x2 + gxy − y2 (12)

and we calculate

Coefficient[B2, xy
3] = 2592d2gϕ̃1, Coefficient[B2, x

2y2] = 3888d2gϕ̃2,

ϕ̃1 = b(g2 − 4) + c2 + d2 − 4ag + cdg − e2, µ0 = g2,

ϕ̃2 = a(g2 − 4)− 2ce+ 4bg − d2g − deg.

(13)

1. The possibility µ0 6= 0. Then g 6= 0 and the condition B2 = 0 implies
dϕ̃1 = 0 = dϕ̃2 and we examine two cases: d = 0 and d 6= 0.

1.1. The case d = 0. In this case for systems (12) we calculate B2 =

−648Φ̃x4, where

Φ̃ = (a2 + b2)(4 + g2)2 + (c2 + e2)2 + 4a(2e− cg)(2c+ eg)

−2b(2c+ 2e− cg + eg)(2c− 2e+ cg + eg).

We observe that Φ̃ is a quadratic polynomial in b and

Discrim [Φ̃, b] = −4
[
a(4 + g2)2 − 2(cg − 2e)(2c+ eg)

]2
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and hence the equation B2 = 0 (which is equivalent with Φ̃ = 0) has real
solutions if and only if the condition a(4+g2)2−2(cg−2e)(2c+eg) = 0 holds.
Therefore we obtain

a = 2(cg− 2e)(2c+ eg)/(4+ g2)2, Φ̃ =
[
b(4+ g2)2+(cg− 2e)2− (2c+ eg)2

]2
.

So the condition Φ̃ = 0 gives

b =
[
(2c+ eg)2 − (cg − 2e)2

]
/(4 + g2)2

So we arrive at the canonical form

ẋ = 2(cg − 2e)(2c+ eg)/(4 + g2)2 + cx+ gx2,

ẏ =
[
(2c+ eg)2 − (cg − 2e)2

]
/(4 + g2)2 + ex− x2 + gxy − y2.

These systems possess two real and two complex invariant lines (intersecting
at a real finite point):

(4 + g2)x− 2e+ cg = 0, g(4 + g2)x+ 2(2c+ eg) = 0,

(g − 2i)(x+ iy) + c+ ie = 0, (g + 2i)(x− iy) + c− ie = 0.

1.2. The case d 6= 0. Then considering (13) the condition B2 = 0 implies
ϕ̃1 = 0 = ϕ̃2 and we obtain the condititions under the parameters a and b:

a =(2c+ dg + eg)(−4e+ 2cg + dg2)/(4 + g2)2,

b =−
[
c2(g2 − 4) + cg(−4d− 8e+ dg2)

− (d+ e)(4d− 4e+ 3dg2 + eg2)
]
/(4 + g2)2.

In this case we get the family of quadratic systems (12) with the above defined
parameters a and b, which possess the following two complex invariant lines
intersecting at a real finite point:

(g − 2i)(x+ iy) + c+ i(d+ e) = 0, (g + 2i)(x− iy) + c− i(d+ e) = 0.

2. The possibility µ0 = 0. Then g = 0 and for systems (12) we calculate
B2 = −648Ψx4, where

Ψ = (16a2 + 16b2 − 8bc2 + c4 + 16ace+ 8be2 + 2c2e2 + e4).

We observe that Ψ is a quadratic polynomial in b and

Discrim [Ψ, b] = −256(2a+ ce)2

and hence the equation B2 = 0 (which is equivalent with Ψ = 0) has real
solutions if and only if the condition 2a+ ce = 0 holds. Then a = −ce/2 and
we obtain Ψ = (4b − c2 − d2 + e2)2 = 0, i.e. b = (c2 + d2 − e2)/4 and we get
the family of systems

ẋ = −ce/2 + cx+ dy, ẏ = (c2 + d2 − e2)/4 + ex− x2 − y2

which possess the following two complex invariant lines:

2(x± iy)± ic− d− e = 0.
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The subcase Ñ = 0. In this case we have h = 1 and g = 0 and without
loss of generality we may assume c = d = 0 via the translation x → x − d/2,
y → y − c/2. Hence we obtain the systems

ẋ = a+ 2xy, ẏ = b+ ex+ fy − x2 + y2

for which calculations yield:

B2 = −648
[[
(e2+f2)2−8aef

]
x4+16a(e2−f2)xy(x2−y2)+8aefy2(6x2−y2)

]
.

We observe that the condition B2 = 0 is equivalent to e = f = 0 and in this
case the above systems possesses two couples of complex conjugate invariant
lines, each couple intersecting at a finite real singular point:

(x+ iy)2 + ia− b = 0, (x− iy)2 + ia− b = 0.

As for η < 0 all the cases are examined we deduce, that in this case a
quadratic system possesses two complex invariant lines meeting at a finite real
point if and only if B2 = 0.

3.1.2 The class of systems with C2 = 0

According to [4] in this case quadratic systems could be brought via a linear
transformation and time rescaling to the following canonical form (doing an
additional translation):

ẋ = a+ cx+ x2 + dy, ẏ = b+ xy. (14)

For these systems we calculate

H9 =576d2(4a3 − a2c2 + 18abcd− 4bc3d+ 27b2d2) = 12D,

H10 =36d2, µ0 = 0, µ1 = dx.

According to [10] a non-degenerate quadratic system, belonging to the class
defined by the condition C2 = 0, possesses two complex invariant lines meeting
at a finite real point if and only ifH10 6= 0 andH9 > 0. Evidently the condition
H9 > 0 is equivalent to D > 0. Moreover this condition implies H10 6= 0. On
the other hand the condition D > 0 (i.e. d 6= 0) implies µ1 6= 0 and according
to [4] (see Lemma 5.2, statement (iii)) these systems are non-degenerate. So
we deduce that for D > 0 systems (14) possess two complex invariant lines
meeting at a finite real point.

Assume now that quadratic systems are degenerate, i.e. by [4, Lemma 5.2,
statement (iii)] the conditions µi = 0, i ∈ {0, 1, . . . , 4} are satisfied in R[x, y].
According to [4] (see Subsection 8.5.5) any degenerate quadratic system for
which the condition C2 = 0 is fulfilled could be brought via an affine transfor-
mation and time rescaling to the canonical form

ẋ = x(c + x), ẏ = xy.

It remains to observe that these systems possess the following two complex
invariant lines meeting at a real singular point: x± iy + c = 0.

So all the cases are examined and we deduce that Theorem 1 is proved.
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3.2 The phase portraits of quadratic systems possessing two complex
invariant lines meeting at a finite real point

According to [13] (see also [4, Theorem 6.2]), the next result can be easily
deduced:

Proposition 1 Consider a non-degenerate quadratic differential system. Then:

(i) this system has exactly one center if and only if one of the following
sets of conditions holds

(C1) T4 = 0, T3F < 0, F1 = F2 = F3F4 = 0;

(C2) T4 = T3 = 0, T2 > 0, B < 0, F = F1 = 0;

(C3) T4 = T3 = T2 = T1 = 0, σ 6= 0, F1 = 0,H < 0, B < 0, F = 0;

(C4) T4 = T3 = T2 = T1 = 0, σ 6= 0, F1 = 0,H = B1 = 0, B2 < 0;

(C5) σ = 0, µ0 < 0, D < 0, R > 0, S > 0;

(C6) σ = 0, µ0 = 0, D < 0, R 6= 0;

(C7) σ = 0, µ0 > 0, D > 0;

(C8) σ = 0, µ0 > 0, D = 0, T < 0;

(C9) σ = 0, µ0 = µ1 = 0, µ2 6= 0,U > 0, K̃ = 0;

(C10) σ = 0, µ0 > 0,D = T = P = 0, R 6= 0;

(15)

(ii) and it has two centers if and only if one of the following sets of condi-
tions holds

(Ĉ1) T4 = T3 = 0, T2 < 0, B < 0, H < 0, F = F1 = 0;

(Ĉ2) σ = 0, µ0 > 0, D < 0, R > 0, S > 0.

Theorem 2 Assume that a quadratic system (2) possesses two complex in-
variant straight lines meeting at a finite real point, i.e. one of the sets of the
conditions (3) are satisfied. Then this system has the phase portrait Port.i in-
dicated below on the left if and only if the corresponding conditions indicated
below on the right, are satisfied:

(A) in the case η < 0, B2 = 0:

Port. 1 (P10) ⇔ D 6= 0, µ0 < 0, ¬((C1)∨(Ĉ1)), T4 < 0;

Port. 2 (P11) ⇔ D 6= 0, µ0 < 0, ¬((C1)∨(Ĉ1)), T4 ≥ 0;
Port. 3 (P13) ⇔ D 6= 0, µ0 < 0, (C1);

Port. 4 (P12) ⇔ D 6= 0, µ0 < 0, (Ĉ1);
Port. 5 (P19) or
Port. 6 (P20) or
Port. 7 (P21)



 ⇔

{
D 6= 0, µ0 > 0, ¬((C2)∨(C7)) or
D 6= 0, µ0 = µ1 = 0, ¬(C2);
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Port. 8 (P22) ⇔
{
D 6= 0, µ0 > 0, (C2)∨(C7) or
D 6= 0, µ0 = µ1 = 0, (C2);

Port. 9 (P15) ⇔ D 6= 0, µ0 = 0, µ1 6= 0, T4 < 0;
Port. 10 (P16) ⇔ D 6= 0, µ0 = 0, µ1 6= 0, T4 ≥ 0;
Port. 11 (P14) ⇔ D = 0, µ0 < 0;

Port. 12 (P9) ⇔
{
D = 0, µ0 > 0 or
D = 0, µ0 = 0, κ = 0;

Port. 13 (P5) ⇔ D = 0, µ0 = 0, κ 6= 0, θ2 6= 0, R̃ 6= 0;

Port. 14 (P1) ⇔ D = 0, µ0 = 0, κ 6= 0, θ2 6= 0, R̃ = 0;

Port. 15 (P6) ⇔ D = 0, µ0 = 0, κ 6= 0, θ2 = 0, R̃ 6= 0;

Port. 16 (P2) ⇔ D = 0, µ0 = 0, κ 6= 0, θ2 = 0, R̃ = 0;

(B) in the case C2 = 0:

Port. 17 (P8) ⇔ D 6= 0, B1 6= 0;
Port. 18 (P7) ⇔ D 6= 0, B1 = 0;
Port. 19 (P3) ⇔ D = 0, µ1 = µ2 = µ3 = µ4 = 0, K2 6= 0;
Port. 20 (P4) ⇔ D = 0, µ1 = µ2 = µ3 = µ4 = 0, K2 = 0.

Furthermore, the bifurcation diagram for the phase portraits Port.i with i not
belonging to {5, 6, 7} is indicated in Figure 2.

Remark 1 In the statement of the above theorem we indicate in the first col-
umn, in the parentheses, the corresponding phase portraits from the paper
[11].

Proof: According to Theorem 1 we consider two possibilities: (i) η < 0, B2 = 0
and (ii) (D > 0) ∨

(
µi = 0, i ∈ {0, 1, . . . , 4}

)
.

3.2.1 The possibility η < 0, B2 = 0

By Theorem 1 the systems in this family possess two complex invariant lines
meeting at a finite real point and hence according to [12] via an affine transfor-
mation these systems could be brought to the form (4), for which we calculate

B2 = 0, η = −4
[
a2β2 + (k − bβ)2

]2
, D = 192c8k4(α2 + β2)4,

µ0 = k(k + aα− bβ)(a2 + b2)(α2 + β2).
(16)

Following [3] we shall determine the topological configurations of singularities
(finite and infinite), applying the necessary and sufficient conditions expressed
through invariant polynomials.

First we observe that due to the condition η < 0 systems (4) have at
infinity one real and two complex singularities. Moreover for these systems the
condition D ≥ 0 holds and we examine two cases: D 6= 0 and D = 0.
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Fig. 1 Global phase portraits of quadratic systems with two complex lines meeting at a
real finite point.

The case D 6= 0. Then we have D > 0 and this implies ck 6= 0. So doing a
time rescaling we may assume k = 1 and we consider the family of systems

dx

dt
= (αx− βy)(ax+ by + c) + x2 + y2,

dy

dt
= (βx+ αy)(ax + by + c),

(17)

for which we have

η = −4
[
a2β2 + (1− bβ)2

]2
, D = 192c8(α2 + β2)4,

µ0 = (1 + aα− bβ)(a2 + b2)(α2 + β2).
(18)
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Fig. 2 Bifurcation diagram for the phase portraits of quadratic systems with two complex
lines meeting at a real finite point.

The subcase µ0 < 0. Since D > 0 and η < 0 (i.e. at infinity we have one
real and two complex singularities), according to [3] (see Diagram 1, page 4)
in this case we could have the following topological configurations (we keep
the notations from [3]):

(16) a, a; S ⇔ ¬((C1)∨(Ĉ1)); (17) a, c; S ⇔ (C1); (18) c, c; S ⇔ (Ĉ1).

So comparing with the topological phase portraits given in [11] we deduce,
that the configuration (16) leads to Port 1 and Port. 2; the configuration (17)
leads to Port. 3; the configuration (18) leads to Port. 4.

We observe that the phase portrait Port. 1 has a limit cycle. We prove the
following result.
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Lemma 1 If µ0 < 0 then systems (17) possess a limit cycle (which is unique)
if and only if T4 < 0.

Proof: It is clear that the existence of a limit cycle (see the phase portrait
Port. 1) is governed by the stability or instability of the finite real singularities,
which are anti-saddles. More exactly the limit cycle exists (and it is unique
according to [11]) if and only if the anti-saddles have the same stability.

On the other hand systems (17) possess the following two real and two
complex finite singularities with the corresponding traces ρi (i = 1, 2, 3, 4):

M1(0, 0) ⇒ ρ1 = 2cα;

M2

(
− cα

1 + aα− bβ
,

cβ

1 + aα− bβ

)
⇒ ρ2 = −ac(α2 + β2)

1 + aα− bβ
,

M3,4

(
− c

a± ib
, − ±ic

a± ib

)
⇒ ρ3,4 = −c(2a+ a2α+ b2α)

(a2 + b2)β

± i
c(2b+ a2β + b2β)

(a2 + b2)β
.

(19)

According to [4] (see Subsection 5.4.2) for any quadratic system (2) in the case
µ0 6= 0 we have the following relations between traces of its finite singularities
and the invariant polynomials Ti (i = 1, 2, 3, 4):

T4 = µ0ρ1ρ2ρ3ρ4,

T3 = µ0(ρ1ρ2ρ3 + ρ1ρ2ρ4 + ρ1ρ3ρ4 + ρ2ρ3ρ4),

T2 = µ0(ρ1ρ2 + ρ1ρ3 + ρ1ρ4 + ρ2ρ3 + ρ2ρ4 + ρ3ρ4),

T1 = µ0(ρ1 + ρ2 + ρ3 + ρ4).

(20)

Evidently these relations are also valid for systems (17) in the case µ0 6= 0.
Since for this class of systems the traces ρ3,4 correspond to complex singular-
ities we have ρ3ρ4 > 0.

We consider two possibilities: T4 6= 0 and T4 = 0.

1. The possibility T4 6= 0. In this case due to the conditions ρ3ρ4 > 0 and
µ0 < 0 we get

sign (T4) = sign (µ0ρ1ρ2) = −sign (ρ1ρ2).

So we conclude that the anti-saddles of systems (17) are of the same stability
if and only if T4 < 0. Therefore we obtain the phase portrait Port. 1 if T4 < 0
and Port. 2 is T4 > 0, i.e. in this case the lemma is valid.

2. The possibility T4 = 0. In this case at least one of the traces ρi (i =
1, 2, 3, 4) vanishes. Considering relations (20) we examine two cases: T3 6= 0
and T3 = 0.

2.1. The case T3 6= 0. Then by (20) only one trace vanishes and clearly it
corresponds to a real singularity, i.e. the condition ρ1ρ2 = 0 holds. We observe
that due to µ0D 6= 0 (see (18)) this condition is equivalent to αa = 0.
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We claim that in the case a = 0 for systems (17) the conditions (C1) hold
and this contradicts the conditions for the topological configuration (16) given
above. Indeed, setting a = 0 we calculate

T4 = 0, T3 = 2c3α(1 − bβ)(α2 + β2)
[
(2 + bβ)2 + (bα)2

]
, F1 = F2 = F3 = 0,

F = cα(1− bβ)2(α2 + β2)
[
(2 + bβ)2 + (bα)2

]
, µ0 = b2(1 − bβ)(α2 + β2).

Since T3 6= 0 we get F 6= 0 and T3F < 0 (due to µ0 < 0) and we deduce
that the conditions (C1) are satisfied, i.e. we have a center and this proves our
claim.

Thus we assume a 6= 0 and it remains to examine the case when the
condition ρ1ρ2 = 0 implies α = 0. Then the singularity M1(0, 0) becomes a
weak focus and applying the rescaling t → t/(cβ) (due to D 6= 0 and µ0 < 0)
we get the family of systems in normal form

ẋ = −y +
x2

cβ
− a

c
xy +

1− bβ

cβ
y2, ẏ = x+

a

c
x2 +

a

c
xy. (21)

As it was shown in [11] (see Subsection 4.2) for these systems the first Lya-
punov quantity equals W 1 = −4a/(c2β) and we have a weak focus of order one
(due to a 6= 0). Moreover this focus is stable respectively unstable) if W 1 < 0
(respectively W 1 > 0).

On the other hand for the second singularity M2(0, cβ/(bβ−1)) of systems
(21) we detect its trace ρ2 = aβ/(bβ − 1). So we calculate

ρ2W 1 =
4a2

c2(1− bβ)
, µ0 = β2(1− bβ)(a2 + b2)

and since µ0 < 0 we get ρ2W 1 < 0, i.e. the anti-saddles M1 and M2 have the
opposite stabilities.

Thus we conclude that systems (17) with D 6= 0 and µ0 < 0 could not
possess a limit cycle if T4 = 0 and T3 6= 0.

2.2. The case T3 = 0. Considering (20) we deduce that at least two traces
vanish and, moreover in the case T2 6= 0 only two could vanish.

We claim that due to the conditions ¬(Ĉ1), which are satisfied for the
topological configuration (16), the traces corresponding to the real singularities
could not vanish. Indeed, assume that ρ1 = ρ2 = 0. Then considering (18),
(19) and the condition Dµ0 6= 0 we get a = α = 0 and then for systems (17)
calculations yield:

T4 = T3 = 0, T2 = c2β2(1 − bβ)(2 + bβ)2, B = −c2β2(2 + bβ)4/8,

H = bβ(1− bβ)(2 + bβ)2/2, F = F1 = 0, µ0 = b2(1 − bβ)β2.

Since µ0 < 0 (and this implies bβ > 1) we conclude that in this case the
conditions T2 < 0, B < 0 andH < 0 are satisfied. So we arrive at the conditions
(Ĉ1) which implies the existence of two centers and this proves our claim.
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So we have to force the traces ρ3,4 to vanish and then due to the relations
(20) the condition T2 6= 0 implies ρ1ρ2 6= 0. Moreover due to the condition
µ0 < 0 we get

sign (T2) = sign (µ0ρ1ρ2) = −sign (ρ1ρ2).

On the other hand considering (19) we detect that the condition ρ3 = 0 =
ρ4 yields

α = − 2a

a2 + b2
, β = − 2b

a2 + b2

and then for systems (17) we calculate

T2 =
64a2c2

(a2 + b2)2
, µ0 = −4(a2 − 3b2)

a2 + b2
, D =

49152c8

(a2 + b2)4
.

We observe that the condition D 6= 0 implies c 6= 0 whereas the condition µ0 <
0 implies a 6= 0 and hence we obtain T2 > 0. Since sign (T2) = −sign (ρ1ρ2) we
get ρ1ρ2 < 0 and we conclude that in this case the anti-saddles M1 and M2 of
systems (17) are of the opposite stability. This means that systems (17) could
not have limit cycle in this case and the proof of Lemma 1 is completed.

The subcase µ0 > 0. In this case by [3] (see Diagram 1, page 4) following
the same reasons as above we get exactly two configurations of singularities:

(23) s, a; N ⇔ ¬((C2)∨(C7)); (24) s, c; N ⇔ (C2)∨(C7).

According to [11] we obtain that the configuration (23) leads to one of the
phase portraits Port. 5, or Port. 6 or Port. 7 whereas the configuration (24)
leads to the unique phase portrait Port. 8.

As it was proved in [6] quadratic differential systems can have separatrix
connections or double limit cycles which cannot be controlled by means of
semi-algebraic conditions. In this family we detect the existence of a very likely
non-algebraic loop. So in this case we cannot distinguish the phase portraits
possessing or not limit cycles by means of invariant polynomials.

The subcase µ0 = 0. In this case it is more convenient to consider systems
(4) with free parameter k. Then taking into account (16) and D 6= 0, the
condition µ0 = 0 gives

(a2 + b2)(k + aα− bβ) = 0.

On the other hand for systems (4) we calculate

µ1 = ck(α2 + β2)
[
(2bk+ 2abα− a2β − 3b2β)x− (2ak+ 3a2α+ b2α− 2abβ)y

]
.

We observe that the condition a2 + b2 = 0 implies µ1 = 0 and so we consider
two possibilities: µ1 6= 0 and µ1 = 0
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1. The possibility µ1 6= 0. Then a2 + b2 6= 0 and the condition µ0 = 0
implies k + aα − bβ = 0, i.e. we obtain k = bβ − aα 6= 0 (due to D 6= 0). So
we get the family of systems

ẋ = c(αx− βy) + bβx2 + (bα− aβ)xy − aαy2,

ẏ = (c+ ax+ by)(βx+ αy)
(22)

for which we calculate

µ0 = 0, η = −4a4(α2 + β2)2, D = 192c8(α2 + β2)4(aα− bβ)4,

µ1 = c(a2 + b2)(α2 + β2)(aα− bβ)(βx + αy),

T4 = 2aα(aα− bβ)c4(α2 + β2)2
[
(aα− 3bβ)2 + (bα− aβ)2

]
.

(23)

According to [3] systems (22) are in the class with mf = 3. This means that
only one singularity (which is real) has gone to infinity and coalesced with
a real infinite point, yielding a double point. According to Diagram 2 of [3]
(see page 8) we get a unique topological configuration. More exactly we have
(84) a;

(
1
1

)
SN and the anti-saddle cannot be a center. According to [11] this

leads to the two configurations: Port. 9 and Port. 10.
We observe that Port. 9 has a limit cycle and we prove the following lemma.

Lemma 2 If µ0 = 0 and µ1 6= 0 then systems (22) possess a limit cycle (which
is unique) if and only if T4 < 0.

Proof: Our proof is based on Lemma 1 by applying a perturbation of systems
(22) with a small parameter |ε̃| ≪ 1 in order to obtain for perturbed systems
the condition µ0(ε̃) < 0 (keeping the condition B2 = 0 for the existence of
complex invariant lines x2 + y2 = 0). We examine two cases: T4 6= 0 and
T4 = 0.

1.1. The case T4 6= 0. Then by (23) we have aα − bβ 6= 0 and setting
ε̃ = ε2 sign (aα − bβ) we consider the following family of perturbed systems:

ẋ = c(αx − βy) + (bβ + ε̃)x2 + (bα− aβ)xy + (ε̃− aα)y2,

ẏ = (c+ ax+ by)(βx+ αy).
(24)

For these systems we calculate

B2 = 0, µ0 = −(a2 + b2)(α2 + β2)(aα− bβ − ε̃)ε̃,

η = −4
[
a2β2 + (aα− ε̃)2

]2
, D = 192c8(α2 + β2)4(aα − bβ−̃ε)4,

T4 = 2aα(aα− bβ − ε̃)c4(α2 + β2)2

×
[
(aα− 3bβ)2 + (bα− aβ)2 − 4ε̃(aα− 3bβ − ε̃)

]
.

(25)

It is clear that for |ε̃| ≪ 1 we have the conditions η < 0, D > 0 and T4 6= 0.
Moreover, since B2 = 0, according to Theorem 1 the perturbed systems keep
the complex invariant lines inside the reducible conic x2 + y2 = 0.

On the other hand since ε̃ = ε2 sign (aα− bβ) we obtain

sign (µ0) = −sign ((aα− bβ)ε̃) = −sign (|(aα− bβ)|ε2),
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i.e. we get µ0 < 0. Since T4 6= 0 according to Lemma 1 the perturbed systems
(24) possess a limit cycle if and only if T4 < 0. So we conclude that as for
a sufficiently small perturbation a limit cycle remains, it must exist also for
non-perturbed systems (22) and this completes the proof of lemma in the case
T4 6= 0.

1.2. The case T4 = 0. Considering (23) and the condition ηD 6= 0 we
obtain that the condition T4 = 0 is equivalent to

α
[
(aα− 3bβ)2 + (bα− aβ)2

]
= 0.

1.2.1. The subcase α = 0. Then the singular point M1(0, 0) is a weak
focus. Applying the same perturbation as in the case T4 6= 0 we arrive at the
perturbed systems (24) with α = 0 and according to (25) for these systems
we have µ0 < 0, η < 0, D > 0 and T4 = 0. So we can apply Lemma 1 and we
conclude that in this case we could not have limit cycle.

1.2.2. The subcase α 6= 0. Then we have the conditions aα− 3bβ = 0 and
bα− aβ = 0. We observe that these equations with respect to the parameters
α and β have the determinant 3b2 − a2 and we must force it to be zero, i.e.
a = ±

√
3 b and then we obtain α = ±

√
3 β 6= 0. Then we get the family of

systems

ẋ = cβ(±
√
3x− y) + bβx2 − 3bβy2,

ẏ = β(x±
√
3y)(c±

√
3bx+ by),

(26)

for which calculations yield

µ0 = T4 = T3 = 0, D = 3 · 218b4c8β12, η = −576b4β4, T2 = 768b4c2β6.

We claim that these systems could not possess a limit cycle surrounding the
strong focus M1(0, 0).

Indeed, suppose the contrary, that such a limit cycle exists. Then we apply
to systems (26) the perturbation with a small parameter ε̃ = ε2 sign (bβ),
which leads to the following family of perturbed systems

ẋ = cβ(±
√
3x− y) + (bβ + ε̃)x2 + (ε̃− 3bβ)y2,

ẏ = β(x ±
√
3y)(c±

√
3bx+ by).

(27)

For these systems we calculate

B2 = 0, µ0 = −16b2β2(2bβ − ε̃)ε̃, η = −4
(
12b2β2 − 6bβε̃+ ε̃2

)2
,

D = 3 · 214c8β8(2bβ − ε̃)4, T4 = 384bc4β5(2bβ − ε̃)ε̃.

Since ε̃ = ε2 sign (bβ) we obtain η < 0, D > 0, µ0 < 0 and T4 > 0 and
moreover, for the sufficiently small parameter |ε̃| ≪ 1 the limit cycle persists.

On the other hand since T4 > 0, by Lemma 1 systems (27) could not
possess any limit cycle. So we get a contradiction which proves our claim.

So all the cases are examined and we conclude that Lemma 2 is proved.



Phase portraits of quadratic systems with complex conjugate invariant lines 21

2. The possibility µ1 = 0. In this case a = 0 and it was shown above that
this implies b = 0. So systems (17) become

ẋ = c(αx − βy) + x2 + y2, ẏ = c(βx + αy)

and calculations yield:

µ0 = µ1 = κ = K̃ = 0, µ2 = c2(α2 + β2)(x2 + y2),

U = c6(α2 + β2)2(βx + αy)2(x2 + y2)2, D = 192c8(α2 + β2)4.

Since µ2 > 0, U > 0, κ = K̃ = 0 and η < 0, according to [3] (see Diagram
3,page 10) we obtain the following two topological configurations:

(23) s, a; N ⇔ ¬(C2); (24) s, c; N ⇔ (C2).

We observe that these configurations are already obtained above in the case
mf = 4, whereas the above systems belong to the class withmf = 2. According
to [11] we deduce, that in this case we could have the phase portraits Port. 5,
Port. 6 and Port. 7 in the case (23) and Port. 8 in the case (24).

The case D = 0. For systems (4) we calculate

D = 192c8k4(α2 + β2)4, µ0 = k(k + aα− bβ)(a2 + b2)(α2 + β2),

µ1 = ck(α2 + β2)ω1, µ2 = ck(α2 + β2)ω2, µ3 = ck(α2 + β2)ω3, µ4 = 0,

where ωi(a, b, c, k, α, β, x, y) (i = 1, 2, 3) is a polynomial in all its variables. So
we observe that for D = 0 we obtain µ1 = µ2 = µ3 = µ4 = 0. So considering
[4] we deduce that in the case D = 0 systems (4) possess the singular point
(0, 0) of multiplicity four if µ0 6= 0 (see Lemma 5.2, statement (ii)), whereas
for µ0 = 0 these systems become degenerated (see Lemma 5.2, statement (iii)
of [4]).

Thus we have to examine two subcases: µ0 6= 0 and µ0 = 0.

The subcase µ0 6= 0. As it was mentioned above the singular point (0, 0)
of systems (4) is of multiplicity four, i.e. by [4, Table 6.2] we have D = T =
P = R = 0 and µ0 6= 0. Therefore according to [3] (see Diagram 1, page 7) we
obtain the following two topological configurations:

(67) ee; S ⇔ µ0 < 0; (47) hh; N ⇔ µ0 > 0.

So comparing with the topological phase portraits given in [11] we deduce,
that: a) the configuration (67) leads to Port. 11 (in which we must have an in-
variant line with the finite singularity of order 4 on it) and b) the configuration
(47) leads to Port. 12.
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The subcase µ0 = 0. First we prove the next lemma.

Lemma 3 Assume that for a quadratic system (4) the condition µ0 = 0 = D
holds. Then for this system the condition κ = 0 is equivalent to the condition
(α2 + β2)(a2 + b2 + c2) = 0.

Proof: Considering (16) the condition µ0 = 0 = D implies

ck(α2 + β2) = 0 = k(k + aα− bβ)(a2 + b2)(α2 + β2).

Assume first that the condition (α2 + β2)(a2 + b2 + c2) = 0 is satisfied. Then
considering the form of systems (4), evidently we get that the condition α2 +
β2 = 0 as well as the condition a2 + b2 + c2 = 0 leads to the same degenerate
systems

ẋ = x2 + y2, ẏ = 0 (28)

for which we have κ = 0. Thus the sufficiency of the condition under exami-
nation is proved.

Assume now that the condition (α2 + β2)(a2 + b2 + c2) 6= 0 holds. In this
case the condition µ0 = 0 = D gives

ck = 0 = k(k + aα− bβ)(a2 + b2).

It is clear that in this case we have either (i) k = 0, or (ii) k 6= 0 and
c = 0 = k + aα− bβ.

Therefore evaluating for systems (4) the invariant polynomials κ and η we
obtain

κ = −16(a2 + b2)2β2(α2 + β2), η = −4(a2 + b2)2β4

in the case (i) and

κ = −16a2(a2 + b2)(α2 + β2)2, η = −4a4(α2 + β2)2

in the case (ii). It is clear that in both cases the condition η < 0 implies κ 6= 0
and this completes the proof of the lemma.

In what follows we examine two possibilities: κ 6= 0 and κ = 0.
1. The possibility κ 6= 0. In this case by Lemma 3 the condition (α2 +

β2)(a2 + b2 + c2) 6= 0 and it was mentioned above that the the condition
µ0 = 0 = D implies either (i) k = 0, or (ii) c = 0 and k = bβ − aα 6= 0.

1.1. The case (i). In this case we get the family of degenerate systems

ẋ = (αx − βy)(ax+ by + c), ẏ = (βx + αy)(ax+ by + c),

for which calculations yield:

κ = −16(a2 + b2)2β2(α2 + β2), θ2 = −(a2 + b2)cβ(α2 + β2)/4,

η = −4(a2 + b2)2β4, R̃ = 16α(ax+ by)
[
(aα+ bβ)x+ (bα− aβ)y

]
.

Since η < 0 and κ 6= 0, according to [3] (see Diagram 6, page 15) we obtain
the following four topological configurations:
(171): a, (⊖ [|]; ∅); c©, c©,

(
⊖ [|]; ∅

)
if θ2 6= 0, R̃ 6= 0 ⇒ Port. 13;
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(172): c, (⊖ [|]; ∅); c©, c©,
(
⊖ [|]; ∅

)
if θ2 6= 0, R̃ = 0 ⇒ Port. 14;

(173): (⊖ [|]; f); c©, c©,
(
⊖ [|]; ∅

)
if θ2 = 0, R̃ 6= 0 ⇒ Port. 15;

(174): (⊖ [|]; c); c©, c©,
(
⊖ [|]; ∅

)
if θ2 = 0, R̃ = 0 ⇒ Port. 16.

1.2. The case (ii). Then we have c = 0 and k = bβ − aα and we arrive at
the following family of degenerate systems

ẋ = (bx− ay)(βx + αy), ẏ = (ax+ by)(βx+ αy),

for which we calculate

κ = −16a2(a2 + b2)(α2 + β2)2, η = −4a4(α2 + β2)2, θ2 = 0,

R̃ = 16b(βx+ αy)
[
(aα+ bβ)x + (bα− aβ)y

]
.

Since η < 0, κ 6= 0 and θ2 = 0, according to [3] (see Diagram 6, page 15) we

obtain again topological configuration (173) if R̃ 6= 0 and (174) if R̃ = 0. As
it was shown earlier these two topological configurations lead to the pictures
Port. 15 and Port. 16, respectively.

2. The possibility κ = 0. As it was shown in the proof of Lemma 3 in this
case systems (4) become of the form (28) for which we calculate κ = L1 =
0, η = −4k4.

Therefore according to [3] (see Diagram 6, page 15) we obtain the unique
configuration
(47): (⊖ [· ]; ∅); N,

(
⊖ [· ]; ∅, ∅

)
⇒ Port. 12.

3.2.2 The possibility C2 = 0

Considering (5) the condition C2 = 0 for systems (4) gives aβ = k − bβ = 0.
So setting k = bβ and considering the condition aβ = 0, systems (4) become
the systems

ẋ = cαx− cβy + (aα+ bβ)x2 + bαxy, ẏ = (c+ ax+ by)(βx+ αy), aβ = 0,

for which we calculate

D = 192b4c8β4(α2 + β2)4.

We consider two cases: D 6= 0 and D = 0.

The case D 6= 0. Then β 6= 0 and this implies a = 0. So we arrive at the
systems

ẋ = cαx− cβy + bβx2 + bαxy, ẏ = (c+ by)(βx+ αy) (29)

and for these systems we calculate

µ1 = −b3cβ(α2 + β2)(βx + αy), κ = 0, K̃ = 2b2(βx + αy)2
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We observe that the condition D 6= 0 implies µ1K̃ 6= 0 and since κ = 0, K̃ > 0
and C2 = 0, according to [3] (see Diagram 2, page 8) we obtain the following
two topological configurations:

(96): a; [∞; ∅] if ¬(C4) ⇒ Port. 17; (97): c; [∞; ∅] if (C4) ⇒
Port. 18.

We observe that the set of conditions (C4) given in (15) (see also [3]) could
be simplified for systems (29). Indeed, according to (15) this set of conditions
has the form:

(C4) : T4 = T3 = T2 = T1 = 0, σ 6= 0, F1 = 0, H = B1 = 0, B2 < 0.

On the other hand for systems (29) we calculate:

T4 = T3 = T2 = T1 = 0, σ = 2cα+ 3b(βx+ αy), F1 = H = 0,

B1 = −2b2c4αβ(α2 + β2)(α2 + 9β2),

B2 = −27b4c4β2(α2 + β2)2(3β2 − α2)/4

and we observe that due to D 6= 0 the condition σ 6= 0 holds and the condition
B1 = 0 is equivalent to α = 0. But in this case we obtain B2 < 0. Therefore
we deduce that for systems (29) the set of conditions (C4) is equivalent to the
condition B1 = 0.

The case D = 0. In this case for systems (6) calculations yield:

D = 192b4c8β4(α2 + β2)4, µ0 = 0, µ1 = bcβ(α2 + β2)ω′
1,

µ2 = bc2β(α2 + β2)ω′
2, µ3 = bc3β(α2 + β2)ω′

3, µ4 = 0

where ω′
i(a, b, c, α, β, x, y) (i = 1, 2, 3) is a polynomial in all its variables. So

we observe that the condition D = 0 implies µ1 = µ2 = µ3 = 0 and since
µ0 = µ4 = 0 according to [4] (see Lemma 5.2, statement (iii)) systems (6)
become degenerated.

Considering the conditions aβ = bcβ = 0 we examine two subcases: β = 0
and β 6= 0.

1. The subcase β = 0. This leads to the following family of degenerate
systems

ẋ = αx(c + ax+ by), ẏ = αy(c+ ax+ by)

for which we have K2 = 48c2α4(ax + by)2. Since the above systems must be
quadratic, i.e. the condition α(a2 + b2) 6= 0 has to be satisfied, we deduce that
the condition K2 = 0 is equivalent to c = 0.

According to [3] (see Diagram 2, page 8) we obtain the following two topo-
logical configurations:

(207): a, (⊖ [|]; ∅);
[
∞;

(
⊖ [|]; ∅3

)]
if K2 6= 0 ⇒ Port. 19;

(208): (⊖ [|];n∗);
[
∞;

(
⊖ [|]; ∅2

)]
if K2 = 0 ⇒ Port. 20.

2. The subcase β 6= 0. This implies a = 0 = bc and since b 6= 0 (otherwise
we obtain linear systems) we obtain the degenerate systems

ẋ = bx(βx + αy), ẏ = bx(βx+ αy)
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for which K2 = 0. Therefore by [3] (see Diagram 2, page 8) we arrive at
the same topological configuration (208) which leads to the phase portrait
Port. 20.

As all the cases are examined we conclude that Theorem 2 is proved.
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