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Received 16 June 2013, appeared 16 January 2014

Communicated by Handling Editor

Abstract. In this article we obtain the geometric classification of singularities, finite and
infinite, for the two subclasses of quadratic differential systems with total finite multi-
plicity m f = 4 possessing exactly three finite singularities, namely: systems with one
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with one double real and two simple real singularities (265 configurations). We also give
here the global bifurcation diagrams of configurations of singularities, both finite and
infinite, with respect to the geometric equivalence relation, for these classes of quadratic
systems. The bifurcation diagram is done in the 12-dimensional space of parameters
and it is expressed in terms of polynomial invariants. This gives an algorithm for de-
termining the geometric configuration of singularities for any system in anyone of the
two subclasses considered.
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1 Introduction and statement of main results

We consider here differential systems of the form

dx

dt
= p(x, y),

dy

dt
= q(x, y), (1.1)

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R. We call degree of a system (1.1)

the integer m = max{deg p, deg q}. In particular we call quadratic a differential system (1.1)

with m = 2. We denote here by QS the whole class of real quadratic differential systems.
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The study of the class QS has proved to be quite a challenge since hard problems formu-

lated more than a century ago, are still open for this class. It is expected that we have a finite

number of phase portraits in QS. We have phase portraits for several subclasses of QS but

to obtain the complete topological classification of these systems, which occur rather often in

applications, is a daunting task. This is partly due to the elusive nature of limit cycles and

partly to the rather large number of parameters involved. This family of systems depends on

twelve parameters but due to the group action of real affine transformations and time homo-

theties, the class ultimately depends on five parameters which is still a rather large number

of parameters. For the moment only subclasses depending on at most three parameters were

studied globally, including global bifurcation diagrams (for example [1]). On the other hand

we can restrict the study of the whole quadratic class by focusing on specific global features

of the systems in this family. We may thus focus on the global study of singularities and their

bifurcation diagram. The singularities are of two kinds: finite and infinite. The infinite singu-

larities are obtained by compactifying the differential systems on the sphere, on the Poincaré

disk, or on the projective plane as defined in Subsection 2 (see [15], [18]).

The global study of quadratic vector fields began with the study of these systems in the

neighborhood of infinity ( [14], [19], [24], [25], [27]). In [8] the authors classified topologically

(adding also the distinction between nodes and foci) the whole quadratic class, according to

configurations of their finite singularities.

To reduce the number of phase portraits in half in topological classification problems of

quadratic systems, the topological equivalence relation was taken to mean the existence of a

homeomorphism of the phase plane carrying orbits to orbits and preserving or reversing the

orientation.

We use the concepts and notations introduced in [2] and [3] which we describe in Section

2. To distinguish among the foci (or saddles) we use the notion of order of the focus (or

of the saddle) defined using the algebraic concept of Poincaré-Lyapunov constants. We call

strong focus (or strong saddle) a focus (or a saddle) whose linearization matrix has non-zero

trace. Such a focus (or saddle) will be denoted by f (respectively s). A focus (or saddle) with

zero trace is called a weak focus (weak saddle). We denote by f (i) (s(i)) the weak foci (weak

saddles) of order i and by c and $ the centers and integrable saddles. For more notations see

Subsection 2.5.

In the topological classification no distinction was made among the various types of foci or

saddles, strong or weak of various orders. However these distinctions of an algebraic nature

are very important in the study of perturbations of systems possessing such singularities.

Indeed, the maximum number of limit cycles which can be produced close to the weak foci of

a system in QS in perturbations inside the class of all QS depends on the orders of the foci.

There are also three kinds of simple nodes: nodes with two characteristic directions (the

generic nodes), nodes with one characteristic direction and nodes with an infinite number

of characteristic directions (the star nodes). The three kinds of nodes are distinguished alge-

braically. Indeed, the linearization matrices of the two direction nodes have distinct eigenval-

ues, they have identical eigenvalues and they are not diagonal for the one direction nodes,

and they have identical eigenvalues and they are diagonal for the star nodes (see [2], [3], [5]).

We recall that the star nodes and the one direction nodes could produce foci in perturbations.

Furthermore a generic node at infinity may or may not have the two exceptional curves

lying on the line at infinity. This leads to two different situations for the phase portraits. For

this reason we split the generic nodes at infinity in two types as indicated in Subsection 2.5.

The geometric equivalence relation (see further below) for finite or infinite singularities, in-
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troduced in [2] and used in [3], [4], [5] and [6], takes into account such distinctions. This

equivalence relation is also deeper than the qualitative equivalence relation introduced by Jiang

and Llibre in [17] because it distinguishes among the foci (or saddles) of different orders and

among the various types of nodes. This equivalence relation induces also a deeper distinction

among the more complicated degenerate singularities.

In quadratic systems weak singularities could be of orders 1, 2 or 3 [12]. For details

on Poincaré-Lyapunov constants and weak foci of various orders we refer to [23], [18]. As

indicated before, algebraic information plays a fundamental role in the study of perturbations

of systems possessing such singularities. In [28] necessary and sufficient conditions for a

quadratic system to have weak foci (saddles) of orders i, i=1,2,3 are given in invariant form.

For the purpose of classifying QS according to their singularities, finite or infinite, we use

the geometric equivalence relation which involves only algebraic methods. It is conjectured that

there are around 1800 distinct geometric configurations of singularities. The first step in this

direction was done in [2] where the global classification of singularities at infinity of the whole

class QS, was done according to the geometric equivalence relation of configurations of infinite

singularities. This work was then partially extended to also incorporate finite singularities.

We initiated this work in [3] where this classification was done for the case of singularities

with a total finite multiplicity m f ≤ 1, the work was continued in [4] where the classification

was done for m f = 2 and in [5] and [6] where the classification was done for m f = 3. The case

m f = 4 has also been split in several papers the first being [7] which contains exactly three

subclasses possessing two distinct finite singularities.

In the present article our goal is to go one step further in the geometric classification of global

configurations of singularities by studying here the case of finite singularities with total finite

multiplicity four and exactly three finite singularities.

We recall below the notion of geometric configuration of singularities defined in [4] for both

finite and infinite singularities. We distinguish two cases:

1) Consider a system with a finite number of singularities, finite and infinite. In this case

we call geometric configuration of singularities, finite and infinite, the set of all these singularities

(real and complex) together with additional structure consisting of i) their multiplicities, ii)

their local phase portraits around real singularities, each endowed with additional geometric

structure involving the concepts of tangent, order and blow–up equivalence defined in Section

4 of [2] (or [3]) and Section 3 of [4].

2) If the line at infinity is filled up with singularities, in each one of the charts at infinity,

the corresponding system in the Poincaré compactification (see Section 2) is degenerate and

we need to do a rescaling of an appropriate degree of the system, so that the degeneracy

be removed. The resulting systems have only a finite number of singularities on the line at

infinity. In this case we call geometric configuration of singularities, finite and infinite, the set

of all points at infinity (they are all singularities) in which we single out the singularities at

infinity of the “reduced” system, taken together with their local phase portraits and we also

take the local phase portraits of finite singularities each endowed with additional geometric

structure to be described in Section 2.

Remark 1.1. We note that the geometric equivalence relation for configurations is much

deeper than the topological equivalence. Indeed, for example the topological equivalence

does not distinguish between the following three configurations which are geometrically non-

equivalent: 1) n, f ; (1
1)SN, c©, c©, 2) n, f (1); (1

1)SN, c©, c©, and 3) nd, f (1); (1
1)SN, c©, c© where

n and nd mean singularities which are nodes, respectively two directions and one direction
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nodes, capital letters indicate points at infinity, c© in case of a complex point and SN a saddle–

node at infinity and (1
1)encodes the multiplicities of the saddle-node SN. For more details see

the notation in Subsection 2.5.

The invariants and comitants of differential equations used for proving our main result

are obtained following the theory of algebraic invariants of polynomial differential systems,

developed by Sibirsky and his disciples (see for instance [26, 29, 21, 11, 13]).

Our results are stated in the following theorem.

Main Theorem. (A) We consider here all configurations of singularities, finite and infinite, of

quadratic vector fields with finite singularities of total multiplicity m f = 4 possessing exactly three

distinct finite singularities. These configurations are classified in Diagrams 1.1, 1.2 according to the

geometric equivalence relation. We have 296 geometrically distinct configurations of singularities, finite

and infinite. More precisely 31 geometrically distinct configurations with one double and two complex

simple finite singularities and 265 with one double and two simple real finite singularities.

(B) Necessary and sufficient conditions for each one of the 296 different geometric equivalence

classes can be assembled from these diagrams in terms of 26 invariant polynomials with respect to the

action of the affine group and time rescaling appearing in the Diagrams 1.1, 1.2 (see Remark 1.2 for a

source of these invariants).

(C) The Diagrams 1.1, 1.2 actually contain the global bifurcation diagrams in the 12-dimensional

space of parameters, of the global geometric configurations of singularities, finite and infinite, of these

subclasses of quadratic differential systems and provide an algorithm for finding for any given system

in any of the two families considered, its respective geometric configuration of singularities.

Remark 1.2. The diagrams are constructed using the invariant polynomials µ0, µ1, ... which

are defined in Section 5 of [6] and may be downloaded from the web page:

http://mat.uab.es/∼artes/articles/qvfinvariants/qvfinvariants.html

together with other useful tools.

In Diagrams 1.1, 1.2 the conditions on these invariant polynomials are listed on the left

side of the diagrams, while the specific geometric configurations appear on the right side of

the diagram. These configurations are expressed using the notation described in Subsection

2.5.

2 Concepts and results in the literature useful for this paper

2.1 Compactification on the sphere and on the Poincaré disk

Planar polynomial differential systems (1.1) can be compactified on the 2–dimensional sphere

as follows. We first include the affine plane (x, y) in R3, with its origin at (0, 0, 1), and we

consider it as the plane z = 1. We then use a central projection to send the vector field to the

upper and to the lower hemisphere. The vector fields thus obtained on the two hemispheres

are analytic and diffeomorphic to our vector field on the (x, y) plane. By a theorem stated by

Poincaré and proved in [16] there exists an analytic vector field on the whole sphere which

simultaneously extends the vector fields on the two hemispheres, modulo a change of the

independent variables, to the whole sphere. We call Poincaré compactification on the sphere of

the planar polynomial system, the restriction of the vector field thus obtained on the sphere,

to the upper hemisphere completed with the equator. For more details we refer to [15]. The
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Table 1.1: Global configurations: the case µ0 6= 0, D = 0, T > 0.



6 J.C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe

Table 1.2: Global configurations: the case µ0 6= 0, D = 0, T < 0.
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Diagram 1.2 (continued). Global configurations: the case µ0 6= 0, D = 0, T < 0.
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Diagram 1.2 (continued). Global configurations: the case µ0 6= 0, D = 0, T < 0.
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Diagram 1.2 (continued). Global configurations: the case µ0 6= 0, D = 0, T < 0.
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Diagram 1.2 (continued). Global configurations: the case µ0 6= 0, D = 0, T < 0.
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Diagram 1.2 (continued). Global configurations: the case µ0 6= 0, D = 0, T < 0.
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Diagram 1.2 (continued). Global configurations: the case µ0 6= 0, D = 0, T < 0.
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Diagram 1.2 (continued). Global configurations: the case µ0 6= 0, D = 0, T < 0.
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Diagram 1.2 (continued). Global configurations: the case µ0 6= 0, D = 0, T < 0.
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Diagram 1.2 (continued). Global configurations: the case µ0 6= 0, D = 0, T < 0.

vertical projection of this vector field defined on the upper hemisphere and completed with the

equator, yields a diffeomorphic vector field on the unit disk, called the Poincaré compactification

on the disk of the polynomial differential system. By a singular point at infinity of a planar

polynomial vector field we mean a singular point of the vector field on the sphere, which is

located on the equator of the sphere, also located on the boundary circle of the Poincaré disk.

2.2 Compactification on the projective plane

For a polynomial differential system (1.1) of degree m with real coefficients we associate the

differential equation ω1 = q(x, y)dx − p(x, y)dy = 0. This equation defines two foliations with

singularities, one on the real and one on the complex affine planes. We can compactify these

foliations with singularities on the real respectively complex projective plane with homoge-

neous coordinates X, Y, Z. This is done as follows: Consider the pull-back of the form ω1

via the map r : K3 \{Z = 0} → K2 defined by r(X, Y, Z) = (X/Z, Y/Z). We obtain a form

r∗(ω1) = ω̃ which has poles on Z = 0. Eliminating the denominators in the equation ω̃ = 0 we

obtain an equation ω = 0 of the form ω = A(X, Y, Z)dX + B(X, Y, Z)dY + C(X, Y, Z)dZ = 0

with A, B, C homogeneous polynomials of the same degree. The equation ω = 0 defines

a foliation with singularities on P2(K) which, via the map (x, y) → [x : y : 1], extends

the foliation with singularities, given by ω1 = 0 on K2 to a foliation with singularities

on P2(K) which we call the compactification on the projective plane of the foliation with

singularities defined by ω1 = 0 on the affine plane K2 (K equal to R or C). This is be-
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cause A, B, C are homogeneous polynomials over K, defined by A(X, Y, Z) = ZQ(X, Y, Z),

Q(X, Y, Z) = Zmq(X/Z, Y/Z), B(X, Y, Z) = ZP(X, Y, Z), P(X, Y, Z) = Zm p(X/Z, Y/Z) and

C(X, Y, Z) = YP(X, Y, Z) − XQ(X, Y, Z). The points at infinity of the foliation defined by

ω1 = 0 on the affine plane are the singular points of the type [X : Y : 0] ∈ P2(K) and the line

Z = 0 is called the line at infinity of this foliation. The singular points of the foliation on P2(K)

are the solutions of the three equations A = 0, B = 0, C = 0. In view of the definitions of

A, B, C it is clear that the singular points at infinity are the points of intersection of Z = 0 with

C = 0. For more details see [18], or [2] or [3].

2.3 Assembling multiplicities of singularities in divisors of the line at infinity and
in zero-cycles of the plane

An isolated singular point p at infinity of a polynomial vector field of degree n has two types

of multiplicities: the maximum number m of finite singularities which can split from p, in

small perturbations of the system within polynomial systems of degree n, and the maximum

number m′ of infinite singularities which can split from p, in small such perturbations of

the system. We encode the two in the column (m, m′)t. We then encode the global informa-

tion about all isolated singularities at infinity using formal sums called cycles and divisors as

defined in [20] or in [18] and used in [18], [25], [3], [2].

We have two formal sums (divisors on the line at infinity Z = 0 of the complex affine plane)

DS(P, Q; Z) = ∑w Iw(P, Q)w and DS(C, Z) = ∑w Iw(C, Z)w where w ∈ {Z = 0} and where

by Iw(F, G) we mean the intersection multiplicity at w of the curves F(X, Y, Z) = 0 and

G(X, Y, Z) = 0 on the complex projective plane. For more details see [18]. Following [25] we

encode the above two divisors on the line at infinity into just one but with values in the ring

Z2:

DS = ∑
ω∈{Z=0}

(
Iw(P, Q)

Iw(C, Z)

)
w.

For a system (1.1) with isolated finite singularities we consider the formal sum (zero-cycle

on the plane) DS(p, q) = ∑ω∈R2 Iw(p, q)w encoding the multiplicities of all finite singularities.

For more details see [18], [1].

2.4 Some geometrical concepts

Firstly we recall some terminology.

We call elemental a singular point with its both eigenvalues not zero.

We call semi–elemental a singular point with exactly one of its eigenvalues equal to zero.

We call nilpotent a singular point with both its eigenvalues zero but with its Jacobian

matrix at this point not identically zero.

We call intricate a singular point with its Jacobian matrix identically zero.

The intricate singularities are usually called in the literature linearly zero. We use here

the term intricate to indicate the rather complicated behavior of phase curves around such a

singularity.

In this section we use the same concepts we considered in [2], [3], [6], [4], such as orbit

γ tangent to a semi–line L at p, well defined angle at p, characteristic orbit at a singular point p,
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characteristic angle at a singular point, characteristic direction at p. If a singular point has an

infinite number of characteristic directions, we will call it a star–like point.

It is known that the neighborhood of any isolated singular point of a polynomial vector

field, which is not a focus or a center, is formed by a finite number of sectors which could

only be of three types: parabolic, hyperbolic and elliptic (see [15]). It is also known that any

degenerate singular point can be desingularized by means of a finite number of changes of

variables, called blowups, into elemental and semi-elemental singular points (for more details

see the section on blowup in [2] or [15]).

Topologically equivalent local phase portraits can be distinguished according to the alge-

braic properties of their phase curves. For example they can be distinguished algebraically in

the case when the singularities possess distinct numbers of characteristic directions.

The usual definition of a sector is of topological nature and it is local, defined with respect

to a neighborhood around the singular point. We work with a new notion, namely of geometric

local sector, introduced in [2], based on the notion of borsec, term meaning “border of a sector”

(a new kind of sector, i.e. geometric sector) which takes into account orbits tangent to the

half-lines of the characteristic directions at a singular point. For example a generic or semi–

elemental node p has two characteristic directions generating four half lines at p. For each one

of these half lines at p there exists at least one orbit tangent to that half line at p and we pick

such an orbit (one for each half line). Removing these four orbits together with the singular

point, we are left with four sectors which we call geometric local sectors and we call borsecs these

four orbits. The notion of geometric local sector and of borsec was extended for nilpotent and

intricate singular points using the process of desingularization as indicated in [4]. We end up

with the following definition: We call geometric local sector of a singular point p with respect to

a sufficiently small neighborhood V, a region in V delimited by two consecutive borsecs. As

already mentioned these are defined using the desingularization process.

A nilpotent or intricate singular point can be desingularized by passing to polar coordi-

nates or by using rational changes of coordinates. The first method has the inconvenience of

using trigonometrical functions, and this becomes a serious problem when a chain of blowups

are needed in order to complete the desingularization of the degenerate point. The second

uses rational changes of coordinates, convenient for our polynomial systems. In such a case

two blowups in different directions are needed and information from both must be glued

together to obtain the desired portrait.

Here for desingularization we use the second possibility, namely with rational changes

of coordinates at each stage of the process. Two rational changes are needed, one for each

direction of the blow–up. If at a stage the coordinates are (x, y) and we do a blow–up of a

singular point in y-direction, this means that we introduce a new variable z and consider the

diffeomorphism of the (x, y) plane for x 6= 0 defined by φ(x, y) = (x, y, z) where y = xz.

This diffeomorphism transfers our vector field on the subset x 6= 0 of the plane (x, y) on the

subset x 6= 0 of the algebraic surface y = zx. It can easily be checked that the projection

(x, xz, z) 7→ (x, z) of this surface on the (x, z) plane is a diffeomorphism. So our vector field

on the plane (x, y) for x 6= 0 is diffeomeorphic via the map (x, y) 7→ (x, y/x) = (x, z) for x 6= 0

to the vector field thus obtained on the (x, z) plane for x 6= 0. The point p = (0, 0) is then

replaced by the straight line x = 0 = y in the 3-dimensional space of coordinates x, y, z. This

line is also the z-axis of the plane (x, z) and it is called blow–up line.

The two directional blowups can be reduced to only one 1–direction blowup but making

sure that the direction in which we do a blowup is not a characteristic direction, not to lose

information by blowing up in the chosen direction. This can be easily solved by a simple
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linear change of coordinates of the type (x, y) → (x + ky, y) where k is a constant (usually 1).

It seems natural to call this linear change a k–twist as the y–axis gets turned with some angle

depending on k. It is obvious that the phase portrait of the degenerate point which is studied

cannot depend on the values of k’s used in the desingularization process.

We recall that after a complete desingularization all singular points are elemental or semi–

elemental. For more details and a complete example of the desingularization of an intricate

singular point see [4].

Generically a geometric local sector is defined by two consecutive borsecs arriving at the

singular point with two different well defined angles. If this sector is parabolic, then the

solutions can arrive at the singular point with one of the two characteristic angles, and this is

a geometric information that can be revealed with the blowup.

There is also the possibility that two borsecs defining a geometric local sector at a point

p are tangent to the same half–line at p. Such a sector will be called a cusp–like sector which

can either be hyperbolic, elliptic or parabolic denoted by Hf, Ef and Pf respectively. In the

case of parabolic sectors we want to include the information about how the orbits arrive at the

singular points namely tangent to one or to the other borsec. We distinguish the two cases by

writing
x

P if they arrive tangent to the borsec limiting the previous sector in clockwise sense,

or
y

P if they arrive tangent to the borsec limiting the next sector. In the case of a cusp–like

parabolic sector, all orbits must arrive with only one well determined angle, but the distinction

between
x

P and
y

P is still valid because it occurs at some stage of the desingularization and this

can be algebraically determined. Example of descriptions of complicated intricate singular

points are
y

PE
x

P HHH and E
x

PfHH
y

PfE.

A star–like point can either be a node or something much more complicated with elliptic

and hyperbolic sectors included. In case there are hyperbolic sectors, they must be cusp–like.

Elliptic sectors can either be cusp–like, or star–like.

2.5 Notations for singularities of polynomial differential systems

In this work we limit ourselves to the class of quadratic systems with finite singularities of total

multiplicity four and exactly three singularities. In [2] we introduced convenient notations

which we also used in [3]–[6] some of which we also need here. Because these notations are

essential for understanding the bifurcation diagram, we indicate below the notations necessary

for this article.

The finite singularities will be denoted by small letters and the infinite ones by capital

letters. In a sequence of singular points we always place the finite ones first and then infinite

ones, separating them by a semicolon‘;’.

Elemental points: We use the letters ‘s’,‘S’ for “saddles”; $ for “integrable saddles"; ‘n’,

‘N’ for “nodes”; ‘ f ’ for “foci”; ‘c’ for “centers” and c© (respectively c©) for complex finite

(respectively infinite) singularities. We distinguish the finite nodes as follows:

• ‘n’ for a node with two distinct eigenvalues (generic node);

• ‘nd’ (a one–direction node) for a node with two identical eigenvalues whose Jacobian

matrix is not diagonal;

• ‘n∗’ (an star node) for a node with two identical eigenvalues whose Jacobian matrix is

diagonal.
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The case nd (and also n∗) corresponds to a real finite singular point with zero discriminant.

In the case of an elemental infinite generic node, we want to distinguish whether the

eigenvalue associated to the eigenvector directed towards the affine plane is, in absolute value,

greater or lower than the eigenvalue associated to the eigenvector tangent to the line at infinity.

This is relevant because this determines if on the Poincaré disk all the orbits except one arrive

at infinity tangent to the line at infinity or transversal to this line. We will denote them as

‘N∞’ and ‘N f ’ respectively.

Finite elemental foci and saddles are classified as strong or weak foci, respectively strong

or weak saddles. The strong foci or saddles are those with non-zero trace of the Jacobian

matrix evaluated at them. In this case we denote them by ‘s’ and ‘ f ’. When the trace is

zero, except for centers, and saddles of infinite order (i.e. with all their Poincaré-Lyapounov

constants equal to zero), it is known that the foci and saddles, in the quadratic case, may have

up to 3 orders. We denote them by ‘ f (i)’ and ‘s(i)’ where i = 1, 2, 3 is the order. In addition

we have the centers which we denote by ‘c’ and saddles of infinite order (integrable saddles)

which we denote by ‘$’.

Foci and centers cannot appear as singular points at infinity and hence there is no need to

introduce their order in this case. In case of saddles, we can have weak saddles at infinity but

the maximum order of weak singularities in cubic systems is not yet known. For this reason, a

complete study of weak saddles at infinity cannot be done at this stage. Due to this, in [2]–[7]

and here we chose not even to distinguish between a saddle and a weak saddle at infinity.

All non–elemental singular points are multiple points, in the sense that there are pertur-

bations which have at least two elemental singular points as close as we wish to the multiple

point. For finite singular points we denote with a subindex their multiplicity as in ‘s(5)’ or in

‘ês(3)’ (the notation ‘ ’ indicates that the saddle is semi–elemental and ‘̂ ’ indicates that the

singular point is nilpotent, in this case a triple elliptic saddle, i.e. it has two sectors, one elliptic

and one hyperbolic). In order to describe the two kinds of multiplicity for infinite singular

points we use the concepts and notations introduced in [25]. Thus we denote by ‘(a
b)...’ the

maximum number a (respectively b) of finite (respectively infinite) singularities which can be

obtained by perturbation of the multiple point. For example ‘(1
1)SN’ means a saddle–node at

infinity produced by the collision of one finite singularity with an infinite one; ‘(0
3)S’ means a

saddle produced by the collision of 3 infinite singularities.

Semi–elemental points: They can either be nodes, saddles or saddle–nodes, finite or infi-

nite (see [15]). We denote the semi–elemental ones always with an overline, for example ‘sn’,

‘s’ and ‘n’ with the corresponding multiplicity. In the case of infinite points we put ‘ ’ on top

of the parenthesis with multiplicities.

Semi–elemental nodes could never be ‘nd’ or ‘n∗’ since their eigenvalues are always differ-

ent. In case of an infinite semi–elemental node, the type of collision determines whether the

point is denoted by ‘N f ’ or by ‘N∞’. The point ‘(2
1)N’ is an ‘N f ’ and ‘(0

3)N’ is an ‘N∞’.

There do not exist finite or infinite nilpotent points and neither do there exist intricate

points when m f = 4 and there are three finite distinct singularities. Neither is it possible to

have the line at infinity filled up with singularities. For this reason we skip the notations of

these points in this paper. We refer the interested reader to [2]-[7].
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2.6 Affine invariant polynomials and preliminary results

Consider real quadratic systems of the form

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P(x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y),

(2.1)

with homogeneous polynomials pi and qi (i = 0, 1, 2) in x, y which are defined as follows:

p0 = a00, p1(x, y) = a10x + a01y, p2(x, y) = a20x2 + 2a11xy + a02y2,

q0 = b00, q1(x, y) = b10x + b01y, q2(x, y) = b20x2 + 2b11xy + b02y2.

Let ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the 12-tuple of the coefficients of

systems (2.1) and denote R[ã, x, y] = R[a00, . . . , b02, x, y].

It is known that on the set QS of all quadratic differential systems (2.1) acts the group

Aff (2, R) of affine transformations on the plane (cf. [25]). For every subgroup G ⊆ Aff (2, R)

we have an induced action of G on QS. We can identify the set QS of systems (2.1) with

a subset of R12 via the map QS−→ R12 which associates to each system (2.1) the 12–tuple

ã = (a00, . . . , b02) of its coefficients. We associate to this group action polynomials in x, y and

parameters which behave well with respect to this action, the GL–comitants, the T–comitants

and the CT–comitants. For their constructions we refer the reader to the paper [25] (see also

[26]). In the statement of our main theorem intervene invariant polynomials constructed in

these articles and which could also be found on the following associated web page:

http://mat.uab.es/∼artes/articles/qvfinvariants/qvfinvariants.html

We shall need the next result.

Lemma 2.1 ([22]). Consider the equation

az4 + 4bz3 + 6cz2 + 4dz + e = 0

and the associated polynomials:

P̂ = ae − 4bd + 3c2, Q̂ = (b2 − ac)e + ad2 + (c2 − 2bd)c, D̂ = 27Q̂2 − P̂3,

R̂ = b2 − ac, Ŝ = 12R̂2 − a2P̂, T̂ = 3aQ̂ = 2P̂R̂, Û = 2d2 − 3ce.

These polynomials completely determine the number of distinct roots, real and complex, and their

multiplicities. More precisely, in the case a 6= 0 we have:

• 4 real simple roots ⇔ D̂ < 0, R̂ > 0, Ŝ > 0;

• 2 real and 2 complex simple roots ⇔ D̂ > 0;

• 4 complex simple roots ⇔ D̂ < 0 and either R̂ ≤ 0 or Ŝ < 0;

• 3 real roots, 1 double and 2 simple ⇔ D̂ = 0, T̂ < 0;

• 1 real double and 2 complex simple roots ⇔ D̂ = 0, T̂ > 0;

• 2 real roots, 1 triple and 1 simple ⇔ D̂ = P̂ = 0, R̂ 6= 0;

• 2 real roots both double ⇔ D̂ = T̂ = 0, P̂R̂ > 0;

• 2 complex roots, both double ⇔ D̂ = T̂ = 0, P̂R̂ < 0;

• 1 real root of multiplicity 4 ⇔ D̂ = P̂ = R̂ = 0.
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3 The proof of the Main Theorem

Our proof is based on previous work done in [8] where the study of finite singularities of

quadratic differential systems was done, on [2] where we studied the infinite singularities of

these systems and on [28] where the characterization of weak finite singularities was done,

characterization missing in [8], and where also all the canonical forms for studying singulari-

ties of quadratic systems are described.

The idea of the proof is to follow the steps taken in these papers for the specific case we

consider here, unifying the part for the finite singularities in [8] with the part for the infinite

singularities in [2], while adding also the information about weak finite singularities in [28].

This combinatorial work leads to a large number of combinations of potential geometric

configurations of singularities. It remains to show which of these are actually realizable and

which ones are to be discarded.

These combinations are characterized in terms of equalities and inequalities among poly-

nomials over R in the coefficients of the systems. Proceeding by trial and error we produce

examples when the conditions can be realized. When several such trials are unsuccessful,

suspecting the conditions expressed in terms of invariant polynomials cannot be realized, we

then look for a proof that the conditions are contradictory and in this case that combination is

discarded from the list.

Such contradictions can occur with repetitions and for this reason we thought it best to

single out a number of Lemmas which were instrumental for discarding un-realizable com-

binations. These Lemmas are of the type "if A then B" where A and B are conjunctions of

equalities and inequalities expressed in terms of above mentioned polynomials.

Consider real quadratic systems (2.1). According to [28] for a quadratic system (2.1) to

have finite singularities of total multiplicity four (i.e. m f = 4) the condition µ0 6= 0 must be

satisfied. We consider here the two subclasses of quadratic differential systems with m f = 4

possessing exactly three finite singularities, namely:

• systems with one double real and two simple complex singularities (µ0 6= 0, D = 0,

T > 0);

• systems with one double and two simple real finite singularities (µ0 6= 0, D = 0, T < 0).

Clearly the systems from each one in the above mentioned subclasses have finite singular-

ities of total multiplicity 4 and therefore by [2] the following lemma is valid.

Lemma 3.1. The geometric configurations of singularities at infinity of the family of quadratic systems

possessing finite singularities of total multiplicity 4 (i.e. µ0 6= 0) are classified in Diagram 3.1

according to the geometric equivalence relation. Necessary and sufficient conditions for each one of

the 24 different equivalence classes can be assembled from these diagrams in terms of 9 invariant

polynomials with respect to the action of the affine group and time rescaling.

3.1 Systems with one double real and two simple complex singularities

Assume that systems (2.1) have one real double and two simple complex finite singularities.

In this case according to [28] we shall consider the family of systems

ẋ = cm x + 2cn y + g x2 − 2cn xy + (g + cm) y2,

ẏ = em x + 2en y + l x2 − 2en xy + (l + em) y2,
(3.1)
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Table 3.1: Configurations of infinite singularities: the case µ0 6= 0.

with (cl − eg)(m2 + 4n2) 6= 0, possessing the following three distinct singularities: M1,2(0, 0)

(double), M3,4(1,±i).

We observe that for this family of systems we have

µ0 = (cl − eg)2(m2 + 4n2), E1 = 2(cl − eg)4(cm + 2en)(m2 + 4n2)2 (3.2)
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and hence µ0 > 0. On the other hand according to [8] the double point is a saddle-node if

E1 6= 0 and it is a cusp if E1 = 0.

Lemma 3.2. If for a system (3.1) the conditions θ = E1 = θ1θ2 = 0 hold, then θ1 = θ2 = 0, η > 0

and θ3 6= 0.

Proof: We claim that the hypotheses of the lemma imply n 6= 0. Indeed, assuming n = 0 we

calculate for systems (3.1)

µ0 = m2(cl − eg)2, E1 = 2cm5(cl − eg)4.

Therefore the condition E1 = 0 implies c = 0 and then we have

µ0 = e2g2m2 6= 0, θ = −64eg2lm = 0.

So we get l = 0 and we calculate θ1 = −64g4 and θ2 = −eg2m2. Clearly θ1θ2 6= 0 (due to

µ0 6= 0) and this proves our claim.

Thus n 6= 0 and we may assume n = 1 due to a time rescaling and considering (3.2) we

deduce that the condition E1 = 0 implies e = −cm/2. Then calculations yield

θ = 8c(2l + gm)(4c2 − 4g2 + 8cl + 4l2 + 4glm + c2m2 + 2clm2),

µ0 = c2(2l + gm)2(4 + m2)/4

and due to µ0 6= 0 the condition E1 = 0 implies c = −l ± (lm − 2g)/
√

4 + m2. We calculate

θ1 = −32(2l + gm)3(lm − 2g)(m ±
√

4 + m2)/(4 + m2),

θ2 = −(2l + gm)(lm − 2g)
[
2g + l(−m ±

√
4 + m2)

]
(4 + m2 ∓ m

√
4 + m2)/(4 + m2),

µ0 = (2l + gm)2
[
2g + l(−m ±

√
4 + m2)

]2
/4.

We observe that (m ±
√

4 + m2)(4 + m2 ∓ m
√

4 + m2) 6= 0 (we have only complex roots) and

therefore due to µ0 6= 0 we get that θ1 = 0 is equivalent to θ2 = 0 and this implies g = lm/2.

Then we calculate

η = c4(4 + m2)3/16 = µ0, θ3 = c6(4 + m2)4/32

and since µ0 6= 0 we get θ3 6= 0 and η > 0. This completes the proof of the lemma.

Lemma 3.3. Systems (3.1) could not possess two star nodes at infinity.

Proof: Suppose the contrary that we have two star nodes at infinity. According to [2] a

quadratic system possesses two infinite star nodes if and only if θ = θ1 = θ3 = θ4 = 0.

It is clear that in this case there must be three real singularities at infinity and by [2, Lemma 1]

via a linear transformation and a time rescaling systems (2.1) could be brought to the canoni-

cal systems (SI), where we can assume that the star nodes are the origins of the infinite local

charts. Then following [2] we determine that the corresponding linear matrices in these local

charts are

R1 ⇒
(

1 −e

0 g

)
; R2 ⇒

(
1 −d

0 h

)
.

Therefore we obtain that the above conditions imply, for the canonical form mentioned, the

relations: g − 1 = h − 1 = e = d = 0 and we get the systems

ẋ = a + cx + x2, ẏ = b + f y + y2.
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For these systems we calculate

µ0 = 1, D = −48(4a − c2)2(4b − f 2)2,

T = 6(4a − c2)(4b − f 2)x2y2(4bx2 − f 2x2 + 4ay2 − c2y2)

and therefore the condition D = 0 implies T = 0. However according to [8] a quadratic

system possesses one double real and two complex singularities if and only if µ0 6= 0, D = 0

and T > 0. This contradiction completes the proof of the lemma.

3.1.1 The case E1 6= 0

Then the double finite singular point is a semi-elemental saddle-node.

The subcase η < 0 Then systems (3.1) possess one real and two complex infinite singular

points and according to Lemma 3.1 there can be only 4 geometrically distinct configurations

at infinity. It remains to construct the corresponding examples:

• sn(2), c©, c©; N∞, c©, c©: Example ⇒ ((3.1) : c = 1, e = −2, g = 5, l = 0, m = 1, n = 1) (if

θ < 0);

• sn(2), c©, c©; N f , c©, c©: Example ⇒ ((3.1) : c = −1, e = 2, g = 5, l = 0, m = 1, n = 1) (if

θ > 0);

• sn(2), c©, c©; Nd, c©, c©: Example ⇒ ((3.1) : c = 1, e = 0, g = −5/2, l = 1, m = 3/2, n =

1) (if θ = 0, θ2 6= 0);

• sn(2), c©, c©; N∗, c©, c©: Example ⇒ ((3.1) : c = 1, e = 0, g = −1, l = 1, m = 1, n = 0) (if

θ = 0, θ2 = 0).

The subcase η > 0 In this case systems (3.1) possess three real infinite singular points. Since

for these systems the condition µ0 > 0 holds, taking into consideration Lemmas 3.3 and 3.1

we can have at infinity only 9 distinct configurations. The corresponding examples are:

• sn(2), c©, c©; S, N∞, N∞: Example ⇒ ((3.1) : c = 1, e = 1, g = −21/20, l = −3, m = 0, n =

2) (if θ < 0, θ1 < 0);

• sn(2), c©, c©; S, N f , N f : Example ⇒ ((3.1) : c = 1, e = 2, g = −1, l = 0, m = 1, n = 1) (if

θ < 0, θ1 > 0);

• sn(2), c©, c©; S, N∞, N f : Example ⇒ ((3.1) : c = 1, e = 1, g = −1, l = 0, m = 1, n = 1) (if

θ > 0);

• sn(2), c©, c©; S, N∞, Nd: Example ⇒ ((3.1) : c = 1, e = 1, g = −1, l = −3, m = 0, n = 2) (if

θ = 0, θ1 < 0, θ2 6= 0);

• sn(2), c©, c©; S, N∞, N∗: Example ⇒ ((3.1) : c = 3, e = 1, g = −3, l = −2, m = 1, n = 0) (if

θ = 0, θ1 < 0, θ2 = 0);

• sn(2), c©, c©; S, N f , Nd: Example ⇒ ((3.1) : c = 2, e = 1, g = 6, l = 0, m = −3, n = 2) (if

θ = 0, θ1 > 0, θ2 6= 0);

• sn(2), c©, c©; S, N f , N∗: Example ⇒ ((3.1) : c = 1, e = 1, g = 2, l = 1, m = −2, n = 0) (if

θ = 0, θ1 > 0, θ2 = 0);

• sn(2), c©, c©; S, Nd, Nd: Example ⇒ ((3.1) : c = 1, e = 1, g = −2, l = −1, m = 1, n = 1) (if

θ = 0, θ1 = 0, θ3 6= 0);

• sn(2), c©, c©; S, Nd, N∗: Example ⇒ ((3.1) : c = 1, e = 1, g = −1, l = 0, m = 1, n = 0) (if

θ = θ1 = θ3 = 0).
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The subcase η = 0 In this case systems (3.1) possess at infinity either one double and one

simple real singular points (if M̃ 6= 0), or one triple real singularity (if M̃ = 0). So by

Lemma 3.1 we could have at infinity exactly 5 distinct configurations. We have the folloing 4

configurations:

• sn(2), c©, c©; (0
2)SN, N∞: Example ⇒ ((3.1) : c = 1, e = 1, g = −1, l = −3, m = 1, n = 1)

(if θ < 0);

• sn(2), c©, c©; (0
2)SN, N f : Example ⇒ ((3.1) : c = 1, e = 1, g = 1, l = −1, m = −1, n = 1)

(if θ > 0);

• sn(2), c©, c©; (0
2)SN, Nd: Example ⇒ ((3.1) : c = 1, e = 1, g = 0, l = −2, m = 0, n = 1) (if

θ = 0, θ2 6= 0);

• sn(2), c©, c©; (0
2)SN, N∗: Example ⇒ ((3.1) : c = 1, e = 0, g = −2, l = 1, m = 2, n = 0) (if

θ = θ2 = 0),

if M̃ 6= 0 and one configuration

• sn(2), c©, c©; (0
3)N: Example ⇒ ((3.1) : c = 0, e = 1, g = 1/4, l = 3

√
3/4, m = 0, n = 1)

if M̃ = 0.

3.1.2 The case E1 = 0

Then the double finite singular point, according to [8] is a cusp. As µ0 6= 0 considering (3.2)

we get the relation cm + 2en = 0.

The subcase η < 0 Then systems (3.1) possess one real and two complex infinite singular

points and considering Lemmas 3.2 and 3.1 there could be only 3 distinct configurations at

infinity. It remains to construct the corresponding examples:

• ĉp(2), c©, c©; N∞, c©, c©: Example ⇒ ((3.1) : c = 2, e = 1, g = 5, l = 0, m = 1, n = −1)

(if θ < 0);

• ĉp(2), c©, c©; N f , c©, c©: Example ⇒ ((3.1) : c = 2, e = 1, g = 3, l = 0, m = −1, n = 1)

(if θ > 0);

• ĉp(2), c©, c©; Nd, c©, c©: Example ⇒ ((3.1) : c = −2, e = 1, g = (3 +
√

5)/2, l = 3, m =

1, n = 1) (if θ = 0).

The subcase η > 0 In this case systems (3.1) possess three real infinite singular points. Since

for these systems the condition µ0 > 0 holds, taking into consideration Lemmas 3.2 and 3.1

we could have at infinity only 6 distinct configurations. The corresponding examples are:

• ĉp(2), c©, c©; S, N∞, N∞: Example ⇒ ((3.1) : c = 2, e = 1, g = 12, l = 0, m = 5, n = −5)

(if θ < 0, θ1 < 0);

• ĉp(2), c©, c©; S, N f , N f : Example ⇒ ((3.1) : c = −2, e = 1, g = 2, l = 0, m = 1, n = 1) (if

θ < 0, θ1 > 0);

• ĉp(2), c©, c©; S, N∞, N f : Example ⇒ ((3.1) : c = −1, e = 1, g = 2, l = 1, m = 2, n = 1) (if

θ > 0);

• ĉp(2), c©, c©; S, N∞, Nd: Example ⇒ ((3.1) : c = −2, e = 1, g = −17+37
√

5
20 , l = −17

10 , m =

1, n = 1) (if θ=0, θ1<0);

• ĉp(2), c©, c©; S, N f , Nd: Example ⇒ ((3.1) : c = −
√

3, e = 1, g = 2, l = 0, m = 2/
√

3, n = 1)

(if θ = 0, θ1 > 0);

• ĉp(2), c©, c©; S, Nd, Nd: Example ⇒ ((3.1) : c = 1, e = 0, g = 0, l = −1, m = 0, n = 1) (if

θ = θ1 = 0).
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The subcase η = 0 In this case systems (3.1) possess at infinity either one double and one

simple real singular points (if M̃ 6= 0), or one triple real singularity (if M̃ = 0). So by Lemmas

3.2 and 3.1 we could have at infinity exactly 4 distinct configurations. We have the following

3 configurations:

• ĉp(2), c©, c©; (0
2)SN, N∞: Example ⇒ ((3.1) : c = 1, e = −2, g = 4, l = 0, m = 4, n = 1) (if

θ < 0);

• ĉp(2), c©, c©; (0
2)SN, N f : Example ⇒ ((3.1) : c = 2, e = −1, g = 2, l = 0, m = 1, n = 1) (if

θ > 0);

• ĉp(2), c©, c©; (0
2)SN, Nd: Example ⇒ ((3.1) : c = 1, e = −1/

√
3, g = 1, l = 0, m = 1, n =√

3/2) (if θ = 0)

if M̃ 6= 0 and one configuration

• ĉp(2), c©, c©; (0
3)N: Example ⇒ ((3.1) : c = 1, e = 0, g = 0, l = −2, m = 0, n = 1)

if M̃ = 0.

3.2 Systems with one double and two simple real finite singularities

Assume that systems (2.1) possess one double and two simple real finite singularities. In this

case according to [28] we shall consider the family of systems

ẋ = cx + cuy − cx2 + 2hxy − cuy2, ẏ = ex + euy − ex2 + 2mxy − euy2, (3.3)

with u(cm− eh) 6= 0, possessing the following three distinct singularities: M1,2(0, 0), M3(1, 0), M4(0, 1).

For these singularities we have the following values for the traces ρi, for the determinants ∆i,

for the discriminants τi and for the linearization matrices M3 and M4:

M3 =

(−c 2h + cu

−e 2m + eu

)
, M4 =

(
c + 2h −cu

e + 2m −eu

)
,

ρ1 = ρ2 = c + eu, ∆1 = ∆2 = 0; ρ3 = −c + 2m + eu, ∆3 = 2(eh − cm);

ρ4 = c + 2h − eu, ∆4 = −2(eh − cm)u; τi = ρ2
i − 4∆i, i = 1, 3, 4.

(3.4)

Then for systems above we calculate

µ0 = 4(eh − cm)2u = −∆3∆4, K̃ = 2∆3(x2 − uy2), E1 = −∆2
3∆2

4ρ1/2,

η = −4
(
N 2

2 −N1N3

)
/3, M̃ = −8(N1x2 − 2N2xy +N3y2),

T4 = −∆3∆4ρ2
1ρ3ρ4, T3 = −∆3∆4ρ1

[
ρ1(ρ3 + ρ4) + 2ρ3ρ4

]
,

T2 = −∆3∆4

[
ρ2

1 + 2ρ1(ρ3 + ρ4) + ρ3ρ4

]
, T1 = −∆3∆4(2ρ1 + ρ3 + ρ4),

W4 = ∆2
3∆2

4ρ4
1τ3τ4, W3 = ∆2

3∆2
4ρ2

1

[
ρ2

1(τ3 + τ4) + 2τ3τ4

]
,

W2 = ∆2
3∆2

4

[
ρ4

1 + 2ρ2
1(τ3 + τ4) + τ3τ4

]
, W1 = ∆2

3∆2
4

[
2ρ2

1 + τ3 + τ4

]
,

(3.5)

where
N1 = c2 − 6eh + 4cm + 4m2 − 3e2u, N2 = ch + 2hm − 4ceu + emu,

N3 = 4h2 − 3c2u + 4ehu − 6cmu + e2u2.

Remark 3.4. In order to construct the examples or to prove nonexistence of some configura-

tions, besides the family (3.3) we shall use here another normal form of quadratic systems,

associated with singularities at infinity So we will use the family of systems:

(S3) ẋ = cx + dy + gx2 + hxy, ẏ = ex + f y + (g − 1)xy + hy2,

which have one double and one simple real distinct infinite singularities (i.e. η = 0, M̃ 6= 0).
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Lemma 3.5. If for a system (3.3):

(i) the condition M̃ = 0 holds, then the conditions µ0 < 0 and ρ3ρ4 = 0 imply τ3τ4 > 0;

(ii) the conditions ρ3ρ4 = F1 = 0, µ0 < 0 and W4 6= 0 are satisfied, then η 6= 0. Moreover if

F2 = 0 then η > 0 and F3F4 6= 0.

(iii) the condition θ = 0 holds then:

(iii1) the conditions θ1 6= 0 and θ2 = 0 imply τ3τ4 ≥ 0 and we have τ3τ4 = 0 if and only if

ρ3ρ4 = 0. In the case τ3τ4 = 0 the condition η = 0 is equivalent to F1 = 0;

(iii2) the condition θ1 = 0 implies µ0 = η and θ2 = 0 and and furthermore a) if E1 = 0 then the

condition θ2 = 0 is equivalent to θ1 = 0. In addition θ1 = θ2 = 0 implies θ3 6= 0; b) if θ3 = 0 then

τ3τ4 ≥ 0, θ4 6= 0 and we have τ3τ4 = 0 if and only if ρ3ρ4 = 0.

(iv) the conditions ρ3ρ4 = τ3τ4 = F1 = 0 and µ0 < 0 hold, then either F2 6= 0 and η < 0, or

F2 = F3 = η = 0.

(v) the conditions ρ3ρ4 = θ = θ1 = 0 hold, then F1 6= 0. Moreover the condition τ3τ4 = 0 is

equivalent to θ3 = 0.

Proof: (i) Assume that for a system (3.3) the conditions M̃ = 0, µ0 < 0 and ρ3ρ4 = 0 are

fulfilled. We claim that in this case the condition ce 6= 0 holds. Indeed, considering (3.5)

we detect, that in the case ce = 0 the conditions N1 = N2 = N3 = 0 yield either c = m =

2h + eu = 0 or c + 2m = e = h = 0. In the first case we obtain µ0 = e4u3, ρ3ρ4 = −2e2u2 and

in the second one we get µ0 = 16m4u, ρ3ρ4 = −8m2. Therefore in both cases the condition

µ0 6= 0 implies ρ3ρ4 6= 0. The contradiction obtained proves our claim.

Thus ce 6= 0 and the relations N1 = N2 = N3 = 0 are equivalent to h =
(4c − m)(c + 2m)2

27ce
,

u =
(c + 2m)3

27ce2
and we calculate

ρ3 =
(c + 2m)3 − 27ce(c − 2m)

27ce
, ρ4 =

(7c − 4m)(c + 2m)2 + 27c2e

27ce
.

Since the condition ρ3ρ4 = 0 holds, without loss of generality we may assume ρ4 = 0, i.e.

e =
(4m − 7c)(c + 2m)2

27c2
6= 0 and then we calculate

τ3τ4 =
210c(5c − 8m)(c − m)6

27(7c − 4m)4
, µ0 =

64c(c − m)6

27(7c − 4m)2(c + 2m)
.

So the condition µ0 < 0 implies c(c + 2m) < 0 and then cm < 0. Therefore c(5c − 8m) > 0

which implies τ3τ4 > 0 and this completes the proof of the statement (i) of the lemma.

(ii) Assume that for a system (3.3) the conditions ρ3ρ4 = 0 and F1 = 0 hold. Without loss

of generality we may assume ρ3 = 0 (i.e. m = (c − eu)/2) and then we calculate

F1 = u(ceu − c2 + 2eh)(2c2 + 3ce + 2eh + 2ceu + e2u), µ0 = u(ceu − c2 + 2eh)2. (3.6)

So due to µ0 6= 0 the condition F1 = 0 yields 2c2 + e(3c + 2h + 2cu + eu) = 0 and we observe

that e 6= 0, otherwise we get c = 0 and this implies µ0 = 0. Therefore we obtain h =

−(2c2 + 3ce + 2ceu + e2u)/(2e) and we calculate

η = 4c(c + e)Ψ1(c, e, u)/e2, µ0 = u(c + e)2(3c + eu)2, W4 = c(c + eu)4Ψ2(c, e, u)/e2,

F2 = −c(c + e)4u2(c + eu)4(3c + eu)2(6c + eu)/e2,
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where Ψ2(c, e, u) is a polynomial and

Ψ1(c, e, u) = 12c4 + 4c3e(9 + 7u) + 3c2e2(9 + 6u + 7u2) + 3ce3u2(3 + 2u) + u4e4. (3.7)

Suppose that the conditions µ0 < 0 and W4 6= 0 are satisfied. Then the condition η = 0 is

equivalent to Ψ1(c, e, u) = 0. According to Lemma 2.1 for this quartic equation with respect

to c we calculate:

D̂ = 19683e12u5(u − 2)3(4u − 9)(1 + 2u + 2u2)/16,

R̂ = e2(27 + 90u + 7u2), Ŝ = −48e4u(8u3 − 477u2 − 1998u − 972)

We observe that µ0 < 0 and Ψ1(c, e, u)=0 imply u < 0 and e 6= 0. Then D̂ < 0 and checking

the roots of the polynomials R̂|e=1 and Ŝ|e=1 it is easy to determine that the possibility R̂ > 0

and Ŝ > 0 (simultaneously) cannot be realized.

Thus by Lemma 2.1 the polynomial Ψ1(c, e, u) does not have real roots, i.e. η 6= 0.

Next, if we impose the condition F2 = 0 (i.e. c = −eu/6) to be fulfilled, then we obtain:

η = e4(u − 6)u3(81 − 126u + 50u2)/972, µ0 = e4(u − 6)2u3/144,

F3F4 = 57e20(u − 6)8u19/(217319),

and clearly the condition µ0 < 0 implies η > 0 and F3F4 6= 0. This completes the proof of the

statement (ii).

(iii) Assume now that for systems (3.3) the condition θ = 0 is satisfied. For these systems

we have

θ = 64(eh − cm)
[
(h + eu)2 − (c + m)2u

]
, µ0 = 4u(eh − cm)2

and as µ0 6= 0 the condition θ = 0 implies (h + eu)2 − (c + m)2u = 0.

(iii1) Assume first θ1 6= 0. We observe that in this case the condition c + m 6= 0 must hold,

otherwise we get c + m = h + eu = 0 and this implies θ1 = 0. So c + m 6= 0 and setting a new

parameter v = h + eu (then h = v − eu) the condition θ = 0 gives u = v2/(c + m)2. Then we

calculate

θ = 0, θ1 =
256v2(cm + m2 − ev)3

(c + m)4
, µ0 =

4v2(c2 + cm − ev)2(cm + m2 − ev)2

(c + m)6
,

θ2 = −v(c + m + v)(c2 + cm − ev)(cm + m2 − ev)

(c + m)3

(3.8)

and due to µ0 6= 0 the condition θ2 = 0 yields c + m + v = 0 (i.e. v = −c − m) and this gives

τ3τ4 = ρ2
3ρ2

4 ≥ 0, µ0 = 4(c + e)2(e + m)2

and obviously the condition τ3τ4 = 0 is equivalent to ρ3ρ4 = 0. Moreover if we suppose that

ρ3ρ4 = 0, then we may assume ρ3 = 0 (i.e. c = e + 2m) and we calculate

F1 = −16(e + m)3(e + 2m), η = 32(e + m)3(e + 2m)

and evidently the condition F1 = 0 is equivalent to η = 0.

(iii2) Suppose now θ1 = 0. Then c + m = 0 otherwise we obtain (3.8) and therefore the

condition µ0 6= 0 implies θ1 6= 0. So assuming m = −c and h = −eu we obtain

θ = θ1 = θ2 = 0, E1 = −8u2(c + eu)(c2 − e2u)4,

µ0 = 4u(c2 − e2u)2 = η, θ3 = 2u(1 − u)(c2 − e2u)3.
(3.9)
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a) Assume E1 = 0. Due to µ0 6= 0 this condition is equivalent to c + eu = 0, i.e. c = −eu

and then we get θ3 = 2e6(u − 1)4u4 6= 0 due to µ0 = 4e4(u − 1)2u3 6= 0.

b) Assume now θ3 = 0. Since µ0 6= 0 we get u = 1 and this gives

τ3τ4 = ρ2
3ρ2

4, θ4 = −4(c − e)4(c + e), µ0 = 4(c − e)2(c + e)2.

Clearly θ4 6= 0 due to µ0 6= 0 and the condition τ3τ4 = 0 is equivalent to ρ3ρ4 = 0. This

completes the proof of the statement (iii) of the lemma.

(iv) Assume that for a system (3.3) the conditions ρ3ρ4 = 0 and F1 = 0 hold. As it was

shown in the proof of the statement (ii) supposing ρ3 = F1 = 0 we arrive at the following

relations:

m = (c − eu)/2, h = −(2c2 + 3ce + 2ceu + e2u)/(2e)

where e 6= 0 due to µ0 6= 0. Since we choose ρ3 = 0 then the condition τ3τ4 = 0 gives τ4 = 0

(since the singular point M3(1, 0) is elemental). We calculate

τ4 =
4c(c + e)

e2

[
(c + eu)2 + e(c − eu)

]
≡ 4c(c + e)

e2
ξ(c, e, u), µ0 = (c + e)2u(3c + eu)2

and as µ0 6= 0, the condition τ4 = 0 yields cξ = 0.

If c = 0 then calculations yield F2 = F3 = η = 0, i.e. in this case the statement (iv) is

valid.

Assume now c 6= 0. Then ξ(c, e, u) = 0 and as Discrim [ξ, c] = e2(1 + 8u), to factorize this

polynomial we set a new variable v as follows: 1 + 8u = v2 ≥, i.e. u = (v2 − 1)/8. The we

obtain

ξ = (8c + 3e − 4ev + ev2)(8c + 3e + 4ev + ev2)/64 = 0

and we may assume (8c + 3e − 4ev + ev2) = 0 as the second possibility can be obtained from

the first one by substituting v with −v.

Thus we obtain c = e(3 − v)(v − 1)/8 and we calculate

µ0 = 2−13e4(v − 5)4(v2 − 1)3, F2 = 2−32e10(v − 5)6(3 − v)(v − 1)10(1 + v)6(5v − 19),

η = 2−13e4(v − 5)2(3 − v)(v − 1)2(v2 − 1)(205 + 67v − 65v2 + 9v3).

We observe that the equation 205+ 67v − 65v2 + 9v3 = 0 possesses a single real root v0 < 1.25.

Therefore obviously the condition µ0 < 0 (i.e. |v| < 1) implies η < 0 and F2 6= 0. This

completes the proof of the statement (iv) of Lemma 3.5.

(v) Assume that for a system (3.3) the condition θ = θ1 = 0 holds. As it was shown in the

proof of the statement (iii) in this case the conditions m = −c and h = −eu are fulfilled and

we obtain ρ3ρ4 = (eu − 3c)(c − 3eu) = 0. As it was mentioned earlier we may assume ρ3 = 0

(i.e. c = eu/3) and we calculate

F1 = 16e4u4(u − 9)/81, θ3 = 2e6(u − 9)3(u − 1)u4/729,

µ0 = 4e4u3(u − 9)2/81, τ3τ4 = −64e4(u − 9)(u − 1)u3/81.

Clearly the condition µ0 6= 0 implies F1 6= 0 and the condition τ3τ4 = 0 is equivalent to θ3 = 0.

This completes the proof of the statement (v) and also the proof of Lemma 3.5.

Lemma 3.6. A system (3.3) possesses a finite star node if and only if the condition U3 = 0 holds and in

this case the star node is unique. Moreover, for a system (3.3) the condition U3 = 0 implies η = θ2 = 0

and E1M̃ 6= 0.
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Proof: Assume that a system (3.3) possess a finite star node. Then without loss of generality we

may consider that such a point is M2(1, 0) and considering (3.4) we obtain c = 0, m = −c/2

and h = −cu/2. Herein we get U3 = 0.

Conversely, assume that U3 = 0. Evaluating the invariant polynomial U3 for systems (3.3)

we have

Coefficient[U3, x5] = eU′, Coefficient[U3, y5] = cuU′′,

where U′ and U′′ are some polynomials in the parameters of these systems. As u 6= 0 (due to

µ0 6= 0) we shall consider three cases: (i) e = 0; (ii) c = 0 and (iii) ce 6= 0.

(i) The case e = 0. Then we calculate

µ0 = 4c2m2u 6= 0, Coefficient[U3, x4y] = −12c2m2(c + 2m) = 0

and this implies m = −c/2. Herein we obtain

U3 = 3c2(2h + cu)y2(c2x3 + c2ux2y + 2c2uxy2 + 6chuxy2 + 2chuy3 + 4h2uy3 − c2u2y3)

and µ0 = c4u 6= 0. Then obviously we obtain that the condition U3 = 0 is equivalent to

2h + cu = 0, i.e. h = −cu/2 and this implies that the singular point M2(1, 0) is a star node.

(ii) The case c = 0. In this case calculations yield

µ0 = 4e2h2u 6= 0, Coefficient[U3, xy4] = 12e2h2u2(2h + eu)

and hence the condition U3 = 0 implies h = −eu/2. Herein we get

U3 = −3e2(e + 2m)ux2
[
(4m2 − e2u + 2emu)x3 + 2eu(3m + eu)x2y + e2u2xy2 + e2u3y3

]

and µ0 = e4u3 6= 0. Clearly the condition U3 = 0 is equivalent to e + 2m = 0, i.e. m = −e/2

and this implies that the singular point M4(0, 1) is a star node.

(iii) The case ce 6= 0. Considering the matrices (3.4) we conclude that in this case we could

not have a star node. So in what follows we shall prove that in the case ce 6= 0 the invariant

polynomial U3 could not vanish. We calculate

Coefficient[U3, y5] = 12cu
[
e2h2u2 − 2cehu(c + 2h + cu + mu)+

+c
(
c3u(1 + u) + 2c2u(h + m + mu) + c(4hmu − h2 − h2u + m2u2 − 2h3)

)]
≡ 12cuΦ1(c, e, h, m, u)

We observe that the polynomial Φ1 is a quadratic polynomial in e and therefore the condition

Discrim [Φ1, e] = 4ch2(c + h)2u2(c + 2h + cu) ≥ 0

must hold. Since cu 6= 0 we conclude that the following conditions have to be fulfilled: either

h = 0 or h = −c or h(h + c) 6= 0 and c(c + 2h + cu) = v2 ≥ 0.

1) The subcase h = 0. Then we have

Φ1 = c2u
[
(c + m)2u + c(c + 2m)

]
= 0

and we observe that due to cu 6= 0 the condition c + m 6= 0 holds. Therefore we get u =

−c(c + 2m)/(c + m)2 and then we calculate

Coefficient[U3, xy4] = 24c5m(c + 2m)2(c2 + 4cm + 2em + 3m2)/(c + m)5,

µ0 = −4c3m2(c + 2m)/(c + m)2.
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So due to µ0 6= 0 the condition U3 = 0 gives e = −(c + m)(c + 3m)/(2m) and calculations

yield:

Coefficient[U3, x2y3] =
6c4(c + 2m)2(3c2 + 6cm − 5m2)

(c + m)3
= 0,

Coefficient[U3, x3y2] =
3c3(c + 2m)(c + 3m)(7c4 + 35c3m + 43c2m2 + cm3 + 2m4)

m(c + m)3
= 0.

Since µ0 6= 0 the equations above (which are forms in two variables) have not common solu-

tions, i.e. U3 could not vanish.

2) The subcase h = −c 6= 0. Then we obtain

Φ1 = c2(−c + cu + eu + mu)2 = 0

and due to cu 6= 0 we get e = (c − cu − mu)/u. Herein we calculate

Coefficient[U3, x2y3] = 48c3(u − 1)2
[
c2(1 − u) + u2(c + m)2

]
/u ≡

≡ 48c3(u − 1)2

u
Φ2(c, m, u) = 0, µ0 = 4c4(u − 1)2/u

and due to µ0 6= 0 we get Φ2 = 0. We observe that the polynomial Φ2 is a quadratic polyno-

mial in c and therefore the condition Discrim [Φ2, c] = 4m2(u − 1)u2 ≥ 0 must hold. Since

mu(u − 1) 6= 0 (if m = 0 then Φ2 = c2(1 − u + u2) 6= 0) we conclude that the condition

u − 1 = w2
> 0 must hold. Hence u = w2 + 1 and we obtain Φ2 = (c + m − cw + cw2 +

mw2)(c + m + cw + cw2 + mw2) = 0. This leads to the relation m = − c(1 ± w + w2)

1 + w2
and we

calculate

U3 =
24c5(1 ± w)w6x3(∓wx + 2y + 2w2y)2

(1 + w2)4
, µ0 =

4c4w4

1 + w2
.

Thus considering the change above we obtain e = (c − cu − mu)/u = c(1 ± w)/(1 + w2) 6= 0

and we again get U3 6= 0.

3) The subcase c(c + 2h + cu) = v2 ≥ 0 and h(c + h) 6= 0. Since c 6= 0 we obtain h =

−(c2 + c2u − v2)/(2c) 6= 0 and then we calculate

Φ1 =
[
eu(c2 + c2u − v2) + 2c(cmu + v2) + v(c2 − c2u + v2)

]
×

[
eu(c2 + c2u − v2) + 2c(cmu + v2)− v(c2 − c2u + v2)

]
/(4c2) = 0.

Therefore due to h 6= 0 (i.e. c2 + c2u − v2 6= 0) we obtain

e = −2c2mu − c2v + c2uv − 2cv2 − v3)/(u(c2 + c2u − v2)).

Herein we calculate

Coefficient[U3, xy4] = −3v(c2u − c2 − v2)(c2u − c2 − 2cv − v2)

c3(c2 + c2u − v2)
Φ3(c, m, u, v),

µ0 =
v2(c2u − c2 − 2cv − v2)2

c2u
, c + h =

c2 − c2u + v2

2c
6= 0,

where Φ3 = c4u2(c + v)− (c + v)3(c2 + 2cv − v2)− 2c2uv(2c2 + 4cm + cv + v2). As µ0 6= 0 and

(c + h) 6= 0 we conclude that the condition U3 = 0 implies Φ3 = 0. Then we obtain

m =
c4u2(c + v)− (c + v)3(c2 + 2cv − v2)− 2c2uv(2c2 + cv + v2)

8c3uv



32 J.C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe

and calculations yield

Coefficient[U3, x2y3] = −3(c + v)(c2 − c2u + v2)(c2 − c2u + 2cv + v2)

8c5u
Φ4(c, u, v),

µ0 =
v2(c2 − c2u + 2cv + v2)2

c2u
, e =

(c + v)(c2 − c2u + 4cv + v2)

4cuv
6= 0,

where

Φ4 = 3c4u2(c− v)− 2c2u(3c3 + 3c2v− 5cv2 − 3v3) + (c+ v)(3c4 + 6c3v− 16c2v2 − 10cv3 − 3v4).

As µ0 6= 0 and e(c + h) 6= 0 we conclude that the condition U3 = 0 implies Φ4 = 0.

On the other hand we have

Coefficient[U3, x3y2] = −3(c + v)(c2u − c2 − 2cv − v2)

32c7u2v
Φ5(c, u, v),

Coefficient[U3, x4y] = −3(c + v)(c2u − c2 − 2cv − v2)

256c9u3v2
Φ6(c, u, v),

where

Φ5 = 7c10(u − 1)4 + 2c9(−27 + u)(u − 1)3v − c8(u − 1)2(−119 + u(2 + 5u))v2

+ 4c7(u − 1)2(−6 + 5u)v3 + 2c6(u − 1)(93 + u(−23 + 10u))v4 + 4c5(5 + (13 − 18u)u)v5

+ 10c4(19 + (8 − 3u)u)v6 + 4c3(18 + 19u)v7 + c2(−29 + 20u)v8 − 26cv9 − 5v10,

Φ6 = 11c13(u − 1)5 + c12(u − 1)4(−139 + 17u)v + c11(u − 1)3(678 + (−167 + u)u)v2

− c10(u − 1)2(1478 + 5u(−147 + u(4 + u)))v3 + c9(u − 1)2(−917 + u(−140 + 33u))v4

+ c8(u − 1)(−1899 + u(1451 + u(−89 + 25u)))v5 − 2c7(u − 1)(1950 + u(−229 + 71u))v6

+ 2c6(1166 + u(−617 + (116 − 25u)u))v7 + c5(u − 1)(261 + 218u)v8

+ c4(−869 + u(−167 + 50u))v9 − c3(278 + 147u)v10 + c2(42 − 25u)v11 + 37cv12 + 5v13.

We calculate

Resultant[Φ4, Φ5, u] = 3 · 217c24v10(c + v)A, Resultant[Φ4, Φ6, u] = −220 · 9c30v13(c + v)2B,

where
A = 15c5 + 18c4v − 15c3v2 − 10c2v3 + 4cv4 + 2v5,

B = 38c6 + 148c5v + 125c4v2 − 108c3v3 − 8c2v4 + 8cv5 + v6.

So to have U3 = 0 (i.e. Φ4 = Φ5 = Φ6 = 0) the polynomials A and B must have a common

solution (factor). However

Resultant[A,B, c] = 73805864677632v30 6= 0

and this proves that U3 could not vanish. As all the cases are examined we conclude that the

condition U3 = 0 is necessary and sufficient for the existence of a star node of systems (3.3).

It remains to observe that in the case U3 = 0 the uniqueness of the star node follows directly

from (3.4), because for the matrices M3 and M4 corresponding to the elemental singularities

we could not have simultaneously e = cu = 0 due to µ0 6= 0.

Suppose now that the condition U3 = 0 is fulfilled for a system (3.3). We may assume

M3(1, 0) to be a star node, i.e. the conditions e = 0, h = −cu/2 and m = −c/2 hold. Then we

calculate

µ0 = c4u, η = θ2 = 0, E1 = −c9u2/2, M̃ = −8c2u2y2

and clearly the condition µ0 6= 0 gives E1M̃ 6= 0. This completes the proof of the lemma.

In what follows we determine the geometric configurations of systems (3.3).
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3.2.1 The case µ0 < 0

Then u < 0 and hence sign (K̃) = sign (∆3) = sign (∆4).

The subcase K̃ < 0 Then the elemental singular points are both saddles and by [8] the type

of the double singular point is governed by the invariant polynomial E1. On the other hand

at infinity we must have three nodes as the sum of the indices of the finite singularities equals

-2.

The possibility E1 6= 0 In this case ρ1 6= 0 and besides the two saddles we have a semi-

elemental saddle-node.

1) The case T4 6= 0. Then ρ3ρ4 6= 0 and both saddles are strong. So we arrive at the

configuration

• s, s, sn(2); N f , N f , N f : Example ⇒ ((3.3) : c = 1, e = 0, h = 0, m = 1, u = −1)

2) The case T4 = 0. By (3.5) we get ρ3ρ4 = 0 and we consider two subcases: T3 6= 0 and

T3 = 0.

a) The subcase T3 6= 0. Then by [28] only one saddle is weak.

a1) The possibility F1 6= 0. In this case according to [28] the weak saddle is of order one

and we get the configuration

• s, s(1), sn(2); N f , N f , N f : Example ⇒ ((3.3) : c = 1, e = 3, h = 0, m = 2, u = −1).

a2) The possibility F1 = 0. Then by [28] the weak saddle has the order ≥ 2. We claim that in

this case the condition F2 6= 0 must be satisfied. Indeed, as the conditions T4 = 0 and E1 6= 0

imply ρ3ρ4 = 0 we may assume that the singular point M2 is weak (i.e. ρ3 = 0) and this gives

to the relation: m = (c − eu)/2. This leads to the values of F1 and µ0 given in (3.6).

We observe that the conditions F1 = 0 and µ0 6= 0 imply e 6= 0, otherwise we get F1 =

−2c4u = 0 which contradicts µ0 = c4u 6= 0. So e 6= 0 and the condition F1 = 0 is equivalent

to h = −(2c2 + 3ce + 2ceu + e2u)/(2e). Herein we calculate

F2 = −c(c + e)4u2(c + eu)4(3c + eu)2(6c + eu)/e2, E1 = −(c + e)4u2(c + eu)(3c + eu)4/2

and clearly due to E1 6= 0 the condition F2 = 0 implies c(6c + eu) = 0. However we get

µ0 = e4u3, K̃ = 2e2u(x2 − uy2) if c = 0 and

µ0 = e4(u − 6)2u3/144, K̃ = e2u(u − 6)(x2 − uy2)/6 if c = −eu/6

and in both cases the condition µ0 < 0 implies K̃ > 0. This contradiction proves our claim.

Thus F2 6= 0 and by [28] the weak saddle has order 2. This leads to the configuration

• s, s(2), sn(2); N f , N f , N f : Example ⇒ ((3.3) : c = 1, e = 1/3, h = −10/3, m = 2/3, u =

−1).

b) The subcase T3 = 0. Considering (3.5) and the condition E1 6= 0 (i.e. ρ1 6= 0) we obtain

ρ3 = ρ4 = 0 and T2 6= 0. Then by [28] we have two weak saddles. We claim that in this case

the condition F1 6= 0 must hold. Indeed, the conditions ρ3 = ρ4 = 0 yield m = (c − eu)/2 and

h = (eu − c)/2 and then we calculate:

F1 = 2(c + e)2u(eu − c)(c + eu), E1 = −(c + e)4u2(c − eu)4(c + eu)/2.

It is evident that the condition E1 6= 0 implies F1 6= 0 and our claim is proved.

Thus by [28] both weak saddles are of the first order and we obtain the configuration

• s(1), s(1), sn(2); N f , N f , N f : Example ⇒ ((3.3) : c = −3, e = 1, h = 1, m = −1, u = −1).
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The possibility E1 = 0. In this case ρ1 = 0 and besides the two saddles we have a cusp.

Then c = −eu and by (3.5) we obtain

T4 = T3 = 0, T2 = −∆3∆4ρ3ρ4, T1 = −∆3∆4(ρ3 + ρ4).

1) The case T2 6= 0. Then ρ3ρ4 6= 0 and both saddles are strong. So we arrive at the

configuration

• s, s, ĉp(2); N f , N f , N f : Example ⇒ ((3.3) : c = 1, e = 1, h = 1, m = 2, u = −1)

2) The case T2 = 0. This implies ρ3ρ4 = 0 and we consider two subcases: T1 6= 0 and T1 = 0

a) The subcase T1 6= 0. Then only one saddle is weak. We claim that in this case we could

have a weak saddle only of order one, i.e. that the condition F1 6= 0 holds.

Indeed, as the condition T2 = 0 implies ρ3ρ4 = 0, we may assume that the singular point

M2 is weak and then the relations ρ1 = ρ3 = 0 give c = −eu = m. Then we calculate

F1 = 4e2u(h − eu)(h − eu2), T1 = 8e2u(h − eu)(h − eu2)2

and obviously the condition T1 6= 0 implies F1 6= 0 and this proves our claim.

So the weak saddle is of order one and we get the configuration

• s, s(1), ĉp(2); N f , N f , N f : Example ⇒ ((3.3) : c = 1, e = 1, h = −2, m = 1, u = −1).

b) The subcase T1 = 0. We observe that in this case all the traces vanish (this implies σ = 0)

and we arrive at the Hamiltonian systems. So we obtain the configuration

• $, $, ĉp(2); N f , N f , N f : Example ⇒ ((3.3) : c = −1, e = −1, h = 1, m = −1, u = −1).

The subcase K̃ > 0 Then according to [8] the elemental singular points are both anti-saddles

and the type of the double singular point is governed by the invariant polynomial E1.

The possibility E1 6= 0 In this case ρ1 6= 0 and besides the two anti-saddles we have a

semi-elemental saddle-node.

1) The case W4 < 0. According to [8] we have a node and a focus. Moreover the node is

generic, whereas the type of the focus depends on the invariant polynomial T4.

a) The subcase T4 6= 0. Then the focus is strong. Since the total index of the finite singulari-

ties equals +2 we deduce that at infinity we must have singular points of a total index -1. So

considering Lemma 3.1 we arrive at the following 4 configurations

• n, f , sn(2); S, c©, c©: Example ⇒ ((3.3) : c = 1, e = 47/20, h = 1, m = 1/10, u = −1) (if

η < 0)

• n, f , sn(2); S, S, N∞: Example ⇒ ((3.3) : c = 1, e = 5, h = 1, m = 1, u = −1) (if η > 0);

• n, f , sn(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = −2, e = −1, h = 1, m = 1, u = −1) (if

η = 0, M̃ 6= 0);

• n, f ,sn(2); (
0
3)S: Example ⇒ ((3.3) : c = 1, e = 1, h = 5/27, m = −1, u = −1/27) (if

η = 0, M̃ = 0).

b) The subcase T4 = 0. Considering (3.5) and the condition E1 6= 0 we get ρ3ρ4 = 0, i.e. the

focus is weak. Then without loss of generality we may assume that the singularity M3(1, 0) is

a weak focus, i.e. m = (c − eu)/2. In this case we obtain

T4 = 0, F1 = u(ceu − c2 + 2eh)(2c2 + 3ce + 2eh + 2ceu + e2u), µ0 = u(−c2 + 2eh + ceu)2.
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By Lemma 3.5 in this case the condition M̃ 6= 0 holds and we consider two possibilities:

F1 6= 0 and F1 = 0.

b1) The possibility F1 6= 0. By [28] the weak focus has order one and considering Lemma

3.1 we arrive at the following 3 configurations

• n, f (1), sn(2); S, c©, c©: Example ⇒ ((3.3) : c = 1, e = 2, h = 2, m = 3/2, u = −1) (if

η < 0)

• n, f (1), sn(2); S, S, N∞: Example ⇒ ((3.3) : c = 1, e = 2, h = 1, m = 3/2, u = −1) (if

η > 0);

• n, f (1), sn(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = 0, e = 8/5, h = 1, m = 4/5, u = −1) (if

η = 0).

b2) The possibility F1 = 0. In this case we have a weak focus of order at least two. According

to Lemma 3.5 in this case the condition η 6= 0 is verified.

α) The case F2 6= 0. By [28] the weak focus has order one and considering Lemma 3.1 and

the condition η 6= 0 we arrive at the following 2 configurations:

• n, f (2), sn(2); S, c©, c©: Example ⇒ ((3.3) : c = 1, e = −2, h = −1, m = 7/16, u = −1/16)

(if η < 0);

• n, f (2), sn(2); S, S, N∞: Example ⇒ ((3.3) : c = 1, e = 4, h = 5/4, m = 5/2, u = −1) (if

η > 0).

β) The possibility F2 = 0. Since by Lemma 3.5 we have F3F4 6= 0 and η > 0, according

to[28] the weak focus has order three and we get one configuration

• n, f (3), sn(2); S, S, N∞: Example ⇒ ((3.3) : c = 1/6, e = 1, h = 7/18, m = 7/12, u = −1).

2) The case W4 > 0. According to [8] in this case we have two foci if either W2 < 0 or

(W2 ≥ 0 and W1W3 < 0); and we have two nodes if W2 > 0 and W1W3 > 0.

a) The subcase W2 < 0 or (W2 ≥ 0, W1W3 < 0). We have two foci and for the existence of at

least one weak focus, the condition T4 = 0 is necessary.

a1) The possibility T4 6= 0. Then both foci are strong. So considering Lemma 3.1 we arrive

at the following 4 configurations

• f , f , sn(2); S, c©, c©: Example ⇒ ((3.3) : c = −2, e = 2/5, h = 1, m = 0, u = −2) (if

η < 0)

• f , f , sn(2); S, S, N∞: Example ⇒ ((3.3) : c = −2, e = 1/5, h = 1, m = 0, u = −2) (if

η > 0);

• f , f , sn(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = −2, e = ξ, h = 1, m = 0, u = −2) (where

ξ = η−1(0) ≈ 0.38248); (if η = 0, M̃ 6= 0);

• f , f ,sn(2); (
0
3)S: Example ⇒ ((3.3) : c = −1, e = 1/2, h = 10/27, m = 1, u = −4/27) (if

η = 0, M̃ = 0).

a2) The possibility T4 = 0. Considering the condition E1 6= 0 and (3.5) we get ρ3ρ4 = 0. Then

at least one focus is weak and without loss of generality we may assume that the singularity

M3(1, 0) is a weak focus, i.e. m = (c − eu)/2. In this case we obtain

T4 = 0, T3 = −∆3∆4ρ2
1ρ4, µ0 = u(ceu − c2 + 2eh)2

F1 = u(ceu − c2 + 2eh)(2c2 + 3ce + 2eh + 2ceu + e2u).

α) The case T3 6= 0. Then only the focus M3(1, 0) is weak.

α1) The subcase F1 6= 0. By [28] the weak focus has order one and considering Lemma 3.1

we arrive at the following 4 configurations
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• f , f (1), sn(2); S, c©, c©: Example ⇒ ((3.3) : c = −1, e = 3, h = 1, m = 1, u = −1) (if

η < 0)

• f , f (1), sn(2); S, S, N∞: Example ⇒ ((3.3) : c = −1, e = 8, h = 1, m = 7/2, u = −1) (if

η > 0);

• f , f (1), sn(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = −1, e = ξ, h = 1, m = (ξ − 1)/2, u = −1)

(where ξ = η−1(0) ≈ 7.754938) (if η = 0, M̃ 6= 0);

• f , f (1),sn(2); (
0
3)S: Example ⇒ ((3.3) : c = 1, e = −5, h = −2/5, m = −2, u = −1/25)

(if η = 0, M̃ = 0).

α2) The subcase F1 = 0. We claim that in this case if we have two foci (i.e. τ3 < 0 and

τ4 < 0), then the condition η < 0 must hold. Indeed, since µ0 6= 0 the condition F1 = 0

implies 2c2 + 3ce + 2eh + 2ceu + e2u = 0. We observe that e 6= 0 otherwise c = 0 and this

implies µ0 = 0. So we obtain h = −(2c2 + 3ce + 2ceu + e2u)/(2e) and calculations yield

η = 4c(c + e)Ψ1(c, e, u)/e2, µ0 = u(c + e)2(3c + eu)2,

τ3 = 4(c + e)(3c + eu), τ4 = 4c(c + e)(c2 + ce + 2ceu − e2u + e2u2)/e2,

where Ψ1(c, e, u) is the polynomial from (3.7). Since the condition µ0 < 0 implies u < 0,

it was shown in the proof of the statement (ii) of Lemma 3.5 (see page 28) that in this case

sign (Ψ1) = 1. Therefore sign (η) = sign
(
c(c + e)

)
.

We observe that the the conditions c(c + e) > 0 (i.e. η > 0 ) and u < 0 imply c2 + ce +

2ceu − e2u + e2u2
> 0. Indeed, if ce < 0 then we have

c2 + ce + 2ceu − e2u + e2u2 = c(c + e)− e2u + e2u2 + 2ceu > 0

due to c(c + e) > 0 and u < 0. Assuming ce > 0 we have again

c2 + ce + 2ceu − e2u + e2u2 = ce − e2u + (c + eu)2
> 0.

So we get τ4 > 0 and this proves our claim.

Considering Lemma 3.5 (see the statement (ii)) we deduce that in this case the condition

F2 6= 0 must hold, i.e. by [28] the weak focus has order two. Thus considering Lemma 3.1 we

get the configuration

• f , f (2), sn(2); S, c©, c©: Example ⇒ ((3.3) : c = −1, e = 4, h = 9/4, m = 3/2, u = −1).

β) The case T3 = 0. Then ρ3 = ρ4 = 0 and both elemental singularities are weak singularities

(foci or centers). The condition ρ3 = ρ4 = 0 implies m = (c − eu)/2 and h = (eu − c)/2 and

we calculate
µ0 = u(c + e)2(c − eu)2, F1 = −2u(c + e)2(c − eu)(c + eu),

E1 = −u2(c + e)4(c − eu)4(c + eu)/2

and we arrive at the next remark.

Remark 3.7. If for a system (3.3) the conditions ρ3 = ρ4 = 0 and E1 6= 0 hold, then F1M̃ 6= 0.

Indeed, from the above expressions it immediately follows F1 6= 0. On the other hand

considering the relations m = (c− eu)/2 and h = (eu− c)/2 we calculate Coefficient[M̃, xy] =

−16(c + eu)2 6= 0 due to E1 6= 0.

Therefore considering Lemma 3.1 we arrive at the following 3 configurations of singulari-

ties:

• f (1), f (1), sn(2); S, c©, c©: Example ⇒ ((3.3) : c = 1, e = −2, h = −3/8, m = 3/8, u =

−1/8) (if η < 0)
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• f (1), f (1), sn(2); S, S, N∞: Example ⇒ ((3.3) : c = 4/15, e = −2, h = −1/120, m =

1/120, u = −1/8) (if η > 0);

• f (1), f (1), sn(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = 5/16, e = −2, h = −1/32, m =

1/32, u = −1/8) (if η = 0).

b) The subcase W2 > 0 and W1W3 > 0. We have two nodes which are generic due to W4 6= 0.

So considering Lemma 3.1 we arrive at the following 4 configurations

• n, n, sn(2); S, c©, c©: Example ⇒ ((3.3) : c = 1, e = 1, h = 1, m = 0, u = −2) (if η < 0);

• n, n, sn(2); S, S, N∞: Example ⇒ ((3.3) : c = 1, e = 3, h = 1, m = 0, u = −2) (if η > 0);

• n, n, sn(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = 1, e = ξ, h = 1, m = 0, u = −2) (where

ξ = η−1(0) ≈ 2.719192) (if η = 0, M̃ 6= 0);

• n, n,sn(2); (
0
3)S: Example ⇒ ((3.3) : c = −1/2, e = −3/5, h = −5/6, m = 1, u = −25/35)

(if η = 0, M̃ = 0).

3) The case W4 = 0. Since E1 6= 0 (i.e. ρ1 6= 0) by (3.5) we obtain τ3τ4 = 0 and therefore at

least one elemental singular point is a node with coinciding eigenvalues and we may assume

that such a singular point is M3(1, 0) (i.e. τ3 = 0) . Considering [8] we examine three subcases:

W3 < 0, W3 > 0 and W3 = 0.

a) The subcase W3 < 0. According to [8] the second elemental singularity is a focus. We

claim that in this case we could not have a finite star node. Indeed, supposing that M3(1, 0)

is a star node considering (3.4) we get e = 0, h = −cu/2 and m = −c/2. Then we calculate

W3 = c14u2(1 + u)2 ≥ 0 which contradicts our assumption.

a1) The possibility T4 6= 0. In this case we have a strong focus and considering Lemma 3.1

we get the following 4 configurations:

• nd, f , sn(2); S, c©, c©: Example ⇒ ((3.3) : c = 1, e = −1, h = 1/2, m = −1, u = −1) (if

η < 0);

• nd, f , sn(2); S, S, N∞: Example ⇒ ((3.3) : c = 2, e = −1, h = −1/8, m = 0, u = −1) (if

η > 0);

• nd, f , sn(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = 3, e = 0, h = 1, m = −3/2, u = −1) (if

η = 0, M̃ 6= 0);

• nd, f ,sn(2); (
0
3)S: Example ⇒ ((3.3) : c = −2, e = 0, h = 0, m = 1, u = −1) (if η = 0,

M̃ = 0).

a2) The possibility T4 = 0. Since τ3 = 0 we must have ρ3 6= 0 and then the condition T4 = 0

implies ρ4 = 0. In this case we have a weak focus.

α) The case F1 6= 0. The weak focus is of order one. Since W4 = 0, by Lemma 3.5 (the

statement (i) we have M̃ 6= 0. So considering Lemma 3.1 we get the following 3 configurations:

• nd, f (1), sn(2); S, c©, c©: Example ⇒ ((3.3) : c = −1, e = 1, h = 0, m = 2, u = −1) (if

η < 0);

• nd, f (1), sn(2); S, S, N∞: Example ⇒ ((3.3) : c = −5, e = 1, h = 2, m = 0, u = −1) (if

η > 0);

• nd, f (1), sn(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = −(16ξ2 + 1)/4, e = (4ξ − 1)2/4, h =

ξ, m = (1 − 2ξ)/2, u = −1) (where ξ = η−1(0) ≈ −0.91591) (if η = 0).

β) The case F1 = 0. Then the weak focus has at least order two.

β1) The subcase F2 6= 0. According to Lemma 3.5 (the statement (iv)) in this case the

condition η < 0 holds and according to Lemma 3.1 we get the configuration
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• nd, f (2), sn(2); S, c©, c©: Example ⇒ ((3.3) : c = −2/5, e = 3/20, h = −2/5, m =

7/5, u = −8).

β2) The subcase F2 = 0. By Lemma 3.5 (the statement (iv)) in this case the conditions F2 =

F3 = 0 and η = 0 are satisfied. Moreover, as it was shown in the proof of the statement (iv)

(see page 29) for systems (3.3) the following conditions are fulfilled: c = 0, m = −eu/2 h =

−eu/2. In this case we obtain

F1 = F2 = F3 = T4 = η = 0, T3F = e12u11/2, µ0 = e4u3, M̃ = −8e2u2x2

and as µ0 < 0 we get T3F < 0 and M̃ 6= 0. Therefore by [28, Main Theorem, statement (b4)]

besides the one-direction node we have a center and considering Lemma 3.1 we obtain the

configuration

• nd, c, sn(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = 0, e = 2, h = 1, m = 1, u = −1).

b) The subcase W3 > 0. According to [8] the second elemental singularity is a generic node.

b1) The possibility U3 6= 0. In this case by Lemma 3.6 we cannot have a finite star node and

considering Lemma 3.1 we get the following 4 configurations:

• n, nd, sn(2); S, c©, c©: Example ⇒ ((3.3) : c = 2, e = 1, h = 9/8, m = 0, u = −1) (if

η < 0);

• n, nd, sn(2); S, S, N∞: Example ⇒ ((3.3) : c = 0, e = 1, h = 1/8, m = 0, u = −1) (if

η > 0);

• n, nd, sn(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = −2, e = 0, h = 4, m = 1, u = −1) (if

η = 0, M̃ 6= 0);

• n, nd,sn(2); (
0
3)S: Example ⇒ ((3.3) : c = −2, e = 0, h = 0, m = 1, u = −1/5) (if η = 0,

M̃ = 0).

b2) The possibility U3 = 0. By Lemma 3.6 we have one finite star node (which is unique)

and in this case the condition M̃ 6= 0 holds. Hence by Lemma 3.1 we get the configuration

• n, n∗, sn(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = 2, e = 0, h = 2, m = −1, u = −2).

c) The subcase W3 = 0. In this case we have τ3 = τ4 = 0, i.e. each one of the nodes has

coinciding eigenvalues.

c1) The possibility U3 6= 0. In this case by Lemma 3.6 we cannot have a star node and

considering Lemma 3.1 we get the following 4 configurations:

• nd, nd, sn(2); S, c©, c©: Example ⇒ ((3.3) : c = 2, e = −2, h = −5, m = 1, u = −4) (if

η < 0);

• nd, nd, sn(2); S, S, N∞: Example ⇒ ((3.3) : c = 2, e = −1/2, h = 3/4, m = −3/4, u =

−1) (if η > 0);

• nd, nd, sn(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = −1, e = 0, h = −1, m = 1/2, u = −9/4)

(if η = 0, M̃ 6= 0);

• nd, nd,sn(2); (
0
3)S: Example ⇒ ((3.3) : c = 1, e = 0, h = 0, m = −1/2, u = −1/4) (if

η = 0, M̃ = 0).

c2) The possibility U3 = 0. By Lemma 3.6 one of the nodes is a star node. We may assume

M3(1, 0) to be a star node, i.e. the conditions e = 0, h = −cu/2 and m = −c/2 hold. In this

case we calculate µ0 = c4u W3 = c14u2(1 + u)2 and due to µ0 < 0 the condition W3 = 0 gives

u = −1. So and we get the configuration

• nd, n∗, sn(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = −1, e = 0, h = −1/2, m = 1/2, u = −1).
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The possibility E1 = 0 In this case ρ1 = 0 and besides two anti-saddles we have a cusp.

Then c = −eu and by (3.5) we obtain

W4 = W3 = 0, W2 = ∆2
3∆2

4τ3τ4, W1 = ∆2
3∆2

4(τ3 + τ4

)
,

T4 = T3 = 0, T2 = −∆3∆4ρ3ρ4, T1 = −∆3∆4(ρ3 + ρ4).

1) The case W2 < 0. According to [8, Table 1, line 74] we have a node and a focus. Moreover

the node is generic, whereas the type of the focus depends on the invariant polynomial T2.

a) The subcase T2 6= 0. The focus is strong and considering Lemma 3.1 we arrive at the

following 4 configurations

• n, f , ĉp(2); S, c©, c©: Example ⇒ ((3.3) : c = 1, e = 1, h = 1, m = 0, u = −1) (if η < 0)

• n, f , ĉp(2); S, S, N∞: Example ⇒ ((3.3) : c = −3/2, e = −1, h = 2, m = 2, u = −3/2)

(if η > 0);

• n, f , ĉp(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = ξ, e = −1, h = 2, m = 2, u = ξ) (where

ξ = η−1(0) ≈ −1.5278) (if η = 0, M̃ 6= 0);

• n, f , ĉp(2); (
0
3)S: Example ⇒ ((3.3) : c = 8, e = 1, h = 28, m = −10, u = −8) (if η = 0,

M̃ = 0).

b) The subcase T2 = 0. Then the focus is weak and without loss of generality we may

assume that the singularity M3(1, 0) is a weak focus, i.e. m = (c − eu)/2 and since c = −eu

we get m = −eu. We calculate

µ0 = 4e2u(h − eu2)2, F1 = 4e2u(h − eu)(h − eu2),

We remark that in this case the condition F1 6= 0 holds, otherwise we get h = eu and then we

calculate W2 = −210e12(1 − u)6u9
> 0 due to µ0 = 4e4(u − 1)2u3

< 0.

Thus in this case by [28] we have a first order weak focus. Since by Lemma 3.5 (the

statement (i)) the condition M̃ 6= 0 holds, according to Lemma 3.1 we arrive at the following

3 configurations

• n, f (1), ĉp(2); S, c©, c©: Example ⇒ ((3.3) : c = 1, e = 1, h = 2, m = 1, u = −1) (if

η < 0)

• n, f (1), ĉp(2); S, S, N∞: Example ⇒ ((3.3) : c = 1, e = 1, h = 6/5, m = 1, u = −1) (if

η > 0);

• n, f (1), ĉp(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = 1, e = 1, h = ξ, m = 1, u = −1) (where

ξ = η−1(0) ≈ 1.311184) (if η = 0).

2) The case W2 > 0. According to [8, Table 1, line 73] we have two nodes and both are

generic and considering Lemma 3.1 we arrive at the following 4 configurations:

• n, n, ĉp(2); S, c©, c©: Example ⇒ ((3.3) : c = 3, e = 3, h = 3/2, m = 1, u = −1) (if

η < 0);

• n, n, ĉp(2); S, S, N∞: Example ⇒ ((3.3) : c = 3, e = 3, h = 21/20, m = 1, u = −1) (if

η > 0);

• n, n, ĉp(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = 3, e = 3, h = ξ, m = 1, u = −1) (where

ξ = η−1(0) ≈ 1.090358) (if η = 0, M̃ 6= 0);

• n, n, ĉp(2); (
0
3)S: Example ⇒ ((3.3) : c = 1, e = 1, h = 2, m = −2, u = −1 ) (if η = 0,

M̃ = 0).

3) The case W2 = 0. According to [8, Table 1, line 73] we have two nodes and at least one is

with coinciding eigenvalues. Since E1 = 0, by Lemma 3.6 we could not have a finite star node.



40 J.C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe

We assume that the singular point M3(1, 0) is a point with coinciding eigenvalues. So we

impose τ3 = 0 and since ρ1 = 0 (due to E1 = 0) by (3.5) we obtain W1 = ∆2
3∆2

4τ4.

a) The subcase W1 6= 0. Then τ4 6= 0 and hence the second node is generic. So considering

Lemma 3.1 we arrive at the following 4 configurations

• n, nd, ĉp(2); S, c©, c©: Example ⇒ ((3.3) : c = 1, e = 1, h = 1/2, m = 0, u = −1) (if

η < 0);

• n, nd, ĉp(2); S, S, N∞: Example ⇒ ((3.3) : c = 1, e = 1, h = 5/2, m = 2, u = −1) (if

η > 0);

• n, nd, ĉp(2); (
0
2)SN, S: Example ⇒ ((3.3) : c = 1, e = 1, h = (1 + ξ2)/2, m = ξ, u = −1)

(where ξ = η−1(0) ≈ 0.5694) (if η = 0, M̃ 6= 0);

• n, nd, ĉp(2); (
0
3)S: Example ⇒ ((3.3) : c = 64/125, e = 1, h = 544/625, m = −152/125, u =

−4/5) (if η = 0, M̃ = 0).

b) The subcase W1 = 0. Then τ4 = 0 and hence the singular point M4(0, 1) is a node with

coinciding eigenvalues. It was shown above that none of the nodes could be a star node.

We claim that in this case the condition η < 0 holds. Indeed considering the relations

c = −eu and h = (m2 + e2u2)/(2e) we calculate

τ4 = (m4 + 4e4u2 + 8e3mu2 + 2e2m2u2 + e4u4)/e2 ≡ φ(e, m, u)/e2.

Consider the equation φ(e, m, u) = 0. We observe that the polynomial φ is homogeneous of

degree 4 with respect to c and m and it is bi-quadratic in u. So denoting m/e = z we calculate

Discrim [φ(1, z, u), u2] = 16(1+ z)2(1+ 2z) and clearly the condition (1+ z)2(1+ 2z) ≥ 0 must

hold.

Assume 1+ z 6= 0. Then 1+ 2z ≥ 0 and setting a new variable w as follows: 1+ 2z = w2 ≥
0 (i.e. z = (w2 − 1)/2) we calculate

φ(1, z, u) =
[
4u2 + (w − 1)4

][
4u2 + (w + 1)4

]
.

It is clear that the condition u 6= 0 implies φ(1, z, u) 6= 0.

Suppose now z = −1. This yields m = −e and then we have

φ(e,−e, u) = e2(u2 − 1)2 = 0.

Since µ0 < 0 (i.e. u < 0) we get u = −1 and then we calculate

τ3 = τ4 = 0, η = −16e4 = µ0

and as µ0 < 0 this completes the proof of our claim.

Thus in the case W2 = W1 = 0 we get the unique configuration

• nd, nd, ĉp(2); S, c©, c©: Example ⇒ ((3.3) : c = 1, e = 1, h = 1, m = −1, u = −1).

3.2.2 The case µ0 > 0

Following [8] we shall consider two subcases: E1 6= 0 and E1 = 0.

The subcase E1 6= 0 Then the double singular point is a a semi-elemental saddle-node.
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The possibility W4 < 0. According to [8] besides the saddle-node we have a saddle

and a focus. Moreover by [28] their types depend on the invariant polynomials Ti and Fi

(i = 1, . . . , 4).

1) The case T4 6= 0. Then ρ3ρ4 6= 0 and both elemental singularities are strong.

a) The subcase η < 0. Then systems (3.3) possess one real and two complex infinite singular

points and according to Lemmas 3.1 and 3.5 (the statement (iii)) there can only be 3 distinct

configurations at infinity:

• s, f , sn(2); N∞, c©, c©: Example ⇒ ((3.3) : c = 2, e = 1/2, h = 1, m = 0, u = 1) (if

θ < 0);

• s, f , sn(2); N f , c©, c©: Example ⇒ ((3.3) : c = 0, e = 1, h = 1, m = 0, u = 1) (if θ > 0);

• s, f , sn(2); Nd, c©, c©: Example ⇒ ((3.3) : c = 2, e = 1, h = 1, m = 0, u = 1) (if θ = 0).

b) The subcase η > 0. In this case systems (3.3) possess three real infinite singular points.

Since for these systems the condition µ0 > 0 holds, taking into consideration Lemmas 3.1

and 3.5 (the statement (iii)) we could have at infinity only 6 distinct configurations. The

corresponding examples are:

• s, f , sn(2); S, N∞, N∞: Example ⇒ ((3.3) : c = 2, e = 2/5, h = −2/5, m = −8/5, u = 1)

(if θ < 0, θ1 < 0);

• s, f , sn(2); S, N f , N f : Example ⇒ ((3.3) : c = 1/2, e = 1, h = 0, m = −2, u = 2) (if

θ < 0, θ1 > 0);

• s, f , sn(2); S, N∞, N f : Example ⇒ ((3.3) : c = −3/2, e = 1/2, h = 0, m = −2, u = 2) (if

θ > 0);

• s, f , sn(2); S, N∞, Nd: Example ⇒ ((3.3) : c = 6/5, e = 1/5, h = 1, m = 0, u = 1) (if

θ = 0, θ1 < 0);

• s, f , sn(2); S, N f , Nd: Example ⇒ ((3.3) : c = 1/4, e = 1/2, h = −1/4, m = 0, u = 1/4)

(if θ = 0, θ1 > 0);

• s, f , sn(2); S, Nd, Nd: Example ⇒ ((3.3) : c = −3, e = −1, h = 2, m = 3, u = 2) (if

θ = 0, θ1 = 0).

c) The subcase η = 0. In this case systems (3.3) possess at infinity either one double and one

simple real singular points (if M̃ 6= 0) or one triple real singularity (if M̃ = 0). So by Lemmas

3.1 and 3.5 (the statement (iii)) we have the following 4 configurations:

• s, f , sn(2); (
0
2)SN, N∞: Example ⇒ (S3) : ((3.3) : c = 0, d = −1, e = 1, f = 1, g = 2, h =

1) (if θ < 0);

• s, f , sn(2); (
0
2)SN, N f : Example ⇒ (S3) : ((3.3) : c = 1, d = 0, e = 1, f = 0, g = 1/2, h =

1) (if θ > 0);

• s, f , sn(2); (
0
2)SN, Nd: Example ⇒ (S3) : (c = 1, d = 0, e = 1, f = 0, g = 1, h = 1) (if

θ = 0),

if M̃ 6= 0 and one configuration

• s, f , sn(2); (
0
3)N: Example ⇒ (S4) : ((3.3) : c = 0, d = −1, e = 0, f = 2, g = 1, h = −1)

if M̃ = 0.

2) The case T4 = 0. Considering the condition E1 6= 0 and (3.5) we get ρ3ρ4 = 0. Then

at least one singularity is weak and without loss of generality we may assume that such a

singularity is M3(1, 0).

a) The subcase T3 6= 0. In this case only one singularity is weak and considering the
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condition ρ3 = 0 (i.e. m = (c − eu)/2) we calculate

µ0 = u(c2 − 2eh − ceu)2, T3 = u(c + eu)2(c + 2h − eu)(c2 − 2eh − ceu)2,

T3F = u2(c + eu)4(c + 2h − eu)2(c2 − 2eh − ceu)3/8.

We observe that the condition T3 6= 0 implies T3F 6= 0 and we consider two possibilities:

T3F < 0 and T3F > 0.

a1) The possibility T3F < 0. According to [28, Main Theorem, the statement (b)] the weak

singularity is a focus.

α) The case F1 6= 0. Then the order of the weak focus is one.

α1) The subcase η < 0. According to Lemma 3.5 (the statement (iii)) the condition θ = θ2 = 0

could not be satisfied. So by Lemma 3.1 there can only be 3 distinct configurations at infinity:

• s, f (1), sn(2); N∞, c©, c©: Example ⇒ ((3.3) : c = −3, e = −2, h = −1, m = −1/2, u = 1)

(if θ < 0);

• s, f (1), sn(2); N f , c©, c©: Example ⇒ ((3.3) : c = −1, e = −3, h = 0, m = 1, u = 1) (if

θ > 0);

• s, f (1), sn(2); Nd, c©, c©: Example ⇒ ((3.3) : c = 1, e = 2, h = 1/2, m = 3/2, u = 1) (if

θ = 0).

α2) The subcase η > 0. In this case systems (3.1) possess three real infinite singular points.

Since for these systems the condition µ0 > 0 holds, taking into consideration Lemmas 3.1 and

3.5 (the statement (iii)) we could have at infinity only the following 6 distinct configurations:

• s, f (1), sn(2); S, N∞, N∞: Example ⇒ ((3.3) : c = 7/2, e = 1, h = 4, m = 1, u = 3/2) (if

θ < 0, θ1 < 0);

• s, f (1), sn(2); S, N f , N f : Example ⇒ ((3.3) : c = −1/2, e = 1, h = 3/2, m = −5/2, u =

9/2) (if θ < 0, θ1 > 0);

• s, f (1), sn(2); S, N∞, N f : Example ⇒ ((3.3) : c = −3/2, e = 1, h = 4, m = −5/2, u = 7/2)

(if θ > 0);

• s, f (1), sn(2); S, N∞, Nd: Example ⇒ ((3.3) : c = 1/4, e = 7/4, h = 3/32, m = 13/16, u =

1/4) (if θ = 0, θ1 < 0);

• s, f (1), sn(2); S, N f , Nd: Example ⇒ ((3.3) : c = 1/4, e = −1/4, h = −5/32, m =

3/16, u = 1/4) (if θ = 0, θ1 > 0);

• s, f (1), sn(2); S, Nd, Nd: Example ⇒ ((3.3) : c = 3/10, e = 1, h = −1/10, m = −3/10, u =

1/10) (if θ = 0, θ1 = 0).

α3) The subcase η = 0. In this case systems (3.1) possess at infinity either one double and

one simple real singular points (if M̃ 6= 0) or one triple real singularity (if M̃ = 0). So by

Lemmas 3.1 and 3.5 (the statement (iii)) we have the following 4 configurations:

• s, f (1), sn(2); (
0
2)SN, N∞: Example ⇒ ((3.3) : c = 3/2, e = 1/42, h = −7, m = −1, u =

147) (if θ < 0);

• s, f (1), sn(2); (
0
2)SN, N f : Example ⇒ ((3.3) : c = 50, e = ξ, h = −58, m = (50− 8ξ)/2, u =

8) (where ξ = η−1(0) ≈ 44.635072) (if θ > 0);

• s, f (1), sn(2); (
0
2)SN, Nd: Example ⇒ ((3.3) : c = ξ, e = χ, h =

1 + 4ξ2 − 32ξχ

8χ
, m =

(ξ − 8χ)/2, u = 8) (where (ξ, χ) = (η−1(0), θ−1(0)) ≈ (1.1776729, 0.1071644)) (if θ = 0),

if M̃ 6= 0 and one configuration

• s, f (1), sn(2); (
0
3)N: Example ⇒ ((3.3) : c = −3, e = −1/405, h = −65, m = 1, u = 2025) if

M̃ = 0.
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β) The case F1 = 0. We claim that in this case the condition e 6= 0 holds. Indeed, since the

condition ρ3 = 0 gives m = (c − eu)/2, supposing e = 0 we obtain µ0 = c4u > 0 and then

F1 = −2c4u 6= 0. So e 6= 0 and due to a time rescaling we may assume e = 1. In this case we

calculate

F1 = u(cu − c2 + 2h)(3c + 2c2 + 2h + u + 2cu), µ0 = u(cu − c2 + 2h)2

and as µ0 6= 0 the condition F1 = 0 implies h = −(3c + 2c2 + u + 2cu)/2. Then we have

µ0 = u(c + 1)2(3c + u)2, F2 = −c(1 + c)4u2(c + u)4(3c + u)2(6c + u),

η = 4c(c + 1)Ψ2(c, u), θ = −8(1 + c)(3c + u)Ψ3(c, u), τ3 = 4(c + 1)(3c + u),

τ4 = 4c(1 + c)[(c + u)2 + c − u], E1 = −(1 + c)4u2(c + u)(3c + u)4/2,

(3.10)

where

Ψ2(c, u) = 12c4 + u4 + 3cu2(3 + 2u) + 4c3(9 + 7u) + 3c2(9 + 6u + 7u2),

Ψ3(c, u) = 4c4 + 2c(u − 3)u − (u − 1)u2 + 4c3(3 + 2u) + c2(9 − u + 4u2).

Lemma 3.8. Assume that the conditions µ0 > 0, E1 6= 0, T4 = F1 = 0 and W4 < 0 hold. Then we

have: (i) M̃ 6= 0; (ii) the condition η = 0 implies θ > 0; (iii) if in addition T3F < 0 then (iii1) the

condition η < 0 implies θ > 0 and (iii2) the conditions η > 0 and θ ≤ 0 imply θ1 > 0.

Proof: Since µ0E1 6= the condition T4 = 0 gives ρ3ρ4 = 0 and we may consider ρ3 = 0. Then

forcing the condition F1 = 0 we have e 6= 0 (we may assume e = 1 as it is mentioned above)

and h = −(3c + 2c2 + u + 2cu)/2 and we arrive at the relations (3.10).

(i) Suppose that the condition M̃ = 0 holds. We calculate Coefficient[M̃, xy] = −16c(3 +

2c − u)(c + u)xy and as E1τ4 6= 0 the condition M̃ = 0 implies 3 + 2c − u = 0, i.e. u = 3 + 2c.

Then we obtain M̃ = −72(1+ c)(1+ 2c)(x2 + 3cy2 + 2c2y2). Hence the condition M̃ = 0 yields

c = −1/2 and this implies τ3τ4 = 1/4 > 0, i.e. we get a contradiction.

(ii) Assume that the condition η = 0 is fulfilled. The only intersection of the curves η = 0

and θ = 0 outside the union {µ0 = 0, E1 = 0, W4 = 0} is the point (c0, u0) ≈ (−0.5745, 2.1564)

for which W4 > 0. In any other open subset of the region R defined by {µ0 > 0, E1 6= 0, W4 <

0} these curves do not intersect. So when η = 0 the polynomial θ has a fixed sign which could

be different if R is disconnected. Checking the sign of θ on the points of the curve η = 0 in

any subset of R we detect that θ is always positive.

(iii) Assume now that the condition T3F < 0 holds. Due to ρ3 = 0 this is equivalent to

τ3 < 0 (as we have a weak focus).

(iii1) As we mentioned above the only intersection of the curves η = 0 and θ = 0 outside

the union {µ0 = 0, E1 = 0, W4 = 0} is in the domain W4 > 0 where we also have τ3 > 0. On

the other hand inside the intersection of the region R with the region defined by τ3 < 0 we

can have either η > 0 or η ≤ 0 (respectively θ > 0 or θ ≤ 0). But since there is no intersection

of these curves it means that some combinations of signs is not possible. It remains to observe

that in the domain η < 0 we have θ > 0.

(iii2) Considering the intersection points of the curve θ1 = 0 with θ = 0 (respectively with

η = 0) we detect that they are also in the complement of the region of τ3 < 0 and µ0 > 0.

Moreover in this region the curve θ1 = 0 is located on the domain where η > 0 and θ > 0. It

remains to observe that in the region where θ < 0 we have θ1 > 0. This completes the proof

of the lemma.

We consider two subcases: F2 6= 0 and F2 = 0.
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β1) The subcase F2 6= 0. In this case the weak focus is of order two and by the above remark

and Lemma 3.1 we arrive at the following configurations of singularities:

• s, f (2), sn(2); N f , c©, c©: Example ⇒ ((3.3) : c = −1/2, e = 1, h = 1/2, m = −3/8, u =

1/4) (if η < 0);

• s, f (2), sn(2); S, N f , N f : Example ⇒ ((3.3) : c = −3/2, e = 1, h = 5, m = −13/4, u = 5)

(if η > 0, θ < 0);

• s, f (2), sn(2); S, N∞, N f : Example ⇒ ((3.3) : c = −3, e = 1, h = 41/2, m = −13/2, u =

10) (if η > 0, θ > 0);

• s, f (2), sn(2); S, N f , Nd: Example ⇒ ((3.3) : c = ξ, e = 1, h = −(2ξ2 + 23ξ + 10)/2, m =

(ξ − 10)/2, u = 10) (where ξ = θ−1(0) ≈ −2.6027488) (if η > 0, θ = 0);

• s, f (2), sn(2); (
0
2)SN, N f : Example ⇒ ((3.3) : c = −4/5, e = 1, h = (28 + 15ξ)/50, m =

−(4 + 5ξ)/10, u = ξ) (where ξ = η−1(0) ≈ 2.23643428) (if η = 0).

β2) The subcase F2 = 0. Considering (3.10) and the condition E1τ4 6= 0 we get (6c + u) = 0,

i.e. c = −u/6. Calculations yield:

T4 = F1 = F2 = 0, τ3 = u(6 − u)/3, η = u3(u − 6)(81 − 126u + 50u2)/972,

F3F4 = 572−173−19u19(u − 6)8, θ = u3(u − 6)(729 − 459u + 25u2)/486
(3.11)

and clearly the conditions τ3 < 0 and u > 0 (due to µ0 > 0) imply u > 6, η > 0 and F3F4 6= 0.

Hence we could not have a center in this case. Considering Lemma 3.8 and Lemma 3.1 we

arrive at the following configurations of singularities:

• s, f (3), sn(2); S, N f , N f : Example ⇒ ((3.3) : c = −2, e = 1, h = 17, m = −7, u = 12) (if

θ < 0);

• s, f (3), sn(2); S, N∞, N f : Example ⇒ ((3.3) : c = −3, e = 1, h = 81/2, m = −21/2, u =

18) (if θ > 0);

• s, f (3), sn(2); S, N f , Nd: Example ⇒ ((3.3) : c = −ξ/6, e = 1, h = ξ(5ξ − 9)/36, m =

−7ξ/12, u = ξ) (where ξ = 27(17 + 3
√

21 )/50) (if θ = 0).

a2) The possibility T3F > 0. According to [28] the weak singularity is a saddle.

α) The case F1 6= 0. Then the order of the weak saddle is one.

α1) The subcase η < 0. According to Lemmas 3.5 (the statement (iii)) and 3.1 there can only

be 3 distinct configurations at infinity:

• s(1), f , sn(2); N∞, c©, c©: Example ⇒ ((3.3) : c = 2, e = 4, h = −2, m = −1, u = 1) (if

θ < 0);

• s(1), f , sn(2); N f , c©, c©: Example ⇒ ((3.3) : c = 2, e = 2, h = −2, m = 0, u = 1) (if

θ > 0);

• s(1), f , sn(2); Nd, c©, c©: Example ⇒ ((3.3) : c = 2, e = 10/3, h = −2, m = −2/3, u = 1)

(if θ = 0).

α2) The subcase η > 0. In this case systems (3.1) possess three real infinite singular points.

Since for these systems the condition µ0 > 0 holds, taking into consideration Lemmas 3.1 and

3.5 (the statement (iii)) we could have at infinity only the following 6 distinct configurations:

• s(1), f , sn(2); S, N∞, N∞: Example ⇒ ((3.3) : c = 3, e = 17/2, h = −8, m = −11/4, u = 1)

(if θ < 0, θ1 < 0);

• s(1), f , sn(2); S, N f , N f : Example ⇒ ((3.3) : c = −5/2, e = −1, h = 3, m = −1, u = 1/2)

(if θ < 0, θ1 > 0);

• s(1), f , sn(2); S, N∞, N f : Example ⇒ ((3.3) : c = 3, e = 8, h = −8, m = −5/2, u = 1) (if

θ > 0);
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• s(1), f , sn(2); S, N∞, Nd: Example ⇒ ((3.3) : c = 2, e = 40, h = −9, m = −4, u = 1/4) (if

θ = 0, θ1 < 0);

• s(1), f , sn(2); S, N f , Nd: Example ⇒ ((3.3) : c = 4, e = 40, h = −21/2, m = −3, u = 1/4)

(if θ = 0, θ1 > 0);

• s(1), f , sn(2); S, Nd, Nd: Example ⇒ ((3.3) : c = −1, e = −12, h = 3, m = 1, u = 1/4) (if

θ = 0, θ1 = 0).

α2) The subcase η = 0. In this case systems (3.1) possess at infinity either one double and

one simple real singular points (if M̃ 6= 0) or one triple real singularity (if M̃ = 0). So by

Lemmas 3.1 and 3.5 (the statement (iii)) we have the following 4 configurations:

• s(1), f , sn(2); (
0
2)SN, N∞: Example ⇒ ((3.3) : c = 1/2, e = 27/10, h = −5/3, m = −1, u =

25/27) (if θ < 0);

• s(1), f , sn(2); (
0
2)SN, N f : Example ⇒ ((3.3) : c = ξ, e = 1, h = −2, m = (ξ − 1)/2, u = 1)

(where ξ = η−1(0) ≈ 1.137298) (if θ > 0);

• s(1), f , sn(2); (
0
2)SN, Nd: Example ⇒ ((3.3) : c = ξ, e = χ, h = −2, m = (ξ − χ)/2, u = 1)

(where (ξ, χ) = (η−1(0), θ−1(0)) ≈ (0.824045, 2.1573787)) (if θ = 0),

if M̃ 6= 0 and one configuration

• s(1), f , sn(2); (
0
3)N: Example ⇒ ((3.3) : c = 3/4, e = −1331/1620, h = −10/11, m = 1, u =

2025/1331)

if M̃ = 0.

β) The case F1 = 0. Then the order of the weak saddle is at least two. In this case by

Lemma 3.8 we have M̃ 6= 0 (i.e. at infinity we could not have a triple singularity) and the

condition η = 0 implies θ > 0 (see the statement (ii) of this lemma).

We consider two subcases: F2 6= 0 and F2 = 0.

β1) The subcase F2 6= 0. According to [28] the weak saddle is of the order two. As M̃ 6= 0

by Lemmas 3.1 and 3.5 (the statement (v)) we arrive at the following configurations:

• s(2), f , sn(2); N∞, c©, c©: Example ⇒ ((3.3) : c = −4/25, e = 1, h = −172/625, m =

−4/5, u = 36/25) (if η < 0, θ < 0);

• s(2), f , sn(2); N f , c©, c©: Example ⇒ ((3.3) : c = −2, e = 1, h = 1/2, m = −3/2, u = 1)

(if η < 0, θ > 0);

• s(2), f , sn(2); Nd, c©, c©: Example ⇒ ((3.3) : c = −1/5, e = 1, h = (13 − 15ξ)/50, m =

−(1 + 5ξ)/10, u = ξ) (where ξ = θ−1(0) ≈ 1.568605) (if η < 0, θ = 0);

• s(2), f , sn(2); S, N∞, N∞: Example ⇒ ((3.3) : c = 1/20, e = 1, h = −3/16, m = −3/40, u =

1/5) (if η > 0, θ < 0, θ1 < 0);

• s(2), f , sn(2); S, N f , N f : Example ⇒ ((3.3) : c = −9/8, e = 1, h = 1/2, m = −5/8, u =

1/8) (if η > 0, θ < 0, θ1 > 0);

• s(2), f , sn(2); S, N∞, N f : Example ⇒ ((3.3) : c = 1/10, e = 1, h = −2/5, m = −3/20, u =

2/5) (if η > 0, θ > 0);

• s(2), f , sn(2); S, N∞, Nd: Example ⇒ ((3.3) : c = 1/20, e = 1, h = −(31 + 220ξ)/400, m =

(1 − 20ξ)/40, u = ξ) (where ξ = θ−1(0) ≈ 0.193463) (if η > 0, θ = 0, θ1 < 0);

• s(2), f , sn(2); S, N f , Nd: Example ⇒ ((3.3) : c = (1 + 8ξ)/4, e = 1, h = −3(1 + 4ξ)/8, m =

ξ, u = 1/4) (where ξ = −(3 +
√

5)/8) (if η > 0, θ = 0, θ1 > 0);

• s(2), f , sn(2); (
0
2)SN, N f : Example ⇒ ((3.3) : c = −6/5, e = 1, h = (35ξ + 18)/50, m =

−(5ξ + 6)/10, u = ξ) (where ξ = η−1(0) ≈ 0.07381883) (if η = 0).

β2) The subcase F2 = 0. As it was shown earlier (see page 44, p. β2)) in this case we get
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c = −u/6 and then we calculate:

τ4 = u2(u − 6)(25u − 42)/324, θ2 = −u2(u − 6)(22u − 27)/864.

So considering (3.11) we observe that the condition τ4 < 0 implies 42/25 < u < 6 and then

η < 0 and θ2F3F4 6= 0. Hence we could not have a center in this case. Considering Lemma

3.1 we arrive at the following three configurations of singularities:

• s(3), f , sn(2); N∞, c©, c©: Example ⇒ ((3.3) : c = −17/60, e = 1, h = −17/720, m =

−119/120, u = 17/10) (if θ < 0);

• s(3), f , sn(2); N f , c©, c©: Example ⇒ ((3.3) : c = −1/3, e = 1, h = 1/18, m = −7/6, u =

2) (if θ > 0);

• s(3), f , sn(2); Nd, c©, c©: Example ⇒ ((3.3) : c = −ξ/6, e = 1, h = ξ(5ξ − 9)/36, m =

−7ξ/12, u = ξ) (where ξ = 27(17 − 3
√

21 )/50) (if θ = 0).

b) The subcase T3 = 0. In this case we have ρ3 = ρ4 = 0 and hence both singularities are

weak. Considering Remark 3.7 we have F1 6= 0 and M̃ 6= 0, i.e. both singularities have order

one and at infinity there could not be a triple singularity. Moreover, we claim, that in this case

the condition θ = θ1 = 0 could not be satisfied. Indeed, suppose the contrary, that θ = θ1 = 0.

As it was shown in the proof of the statement (iii) of Lemma 3.5 (see page 28) in this case for

systems (3.3) the conditions m = −c and h = −eu must hold. However this implies

ρ3 = eu − 3c, ρ4 = c − eu, µ0 = 4u(c2 − e2u)2

and evidently the condition ρ3 = ρ4 = 0 yields µ0 = 0 and this contradiction proves our claim.

b1) The subcase η < 0. Then systems (3.3) possess one real and two complex infinite singular

points and according to Lemmas 3.1 and 3.5 (the statement (iii)) there can only be 3 distinct

configurations at infinity:

• s(1), f (1), sn(2); N∞, c©, c©: Example ⇒ ((3.3) : c = 2, e = 1, h = 1/4, m = −1/4, u =

5/2) (if θ < 0);

• s(1), f (1), sn(2); N f , c©, c©: Example ⇒ ((3.3) : c = 1, e = 0, h = −1/2, m = 1/2, u = 1)

(if θ > 0);

• s(1), f (1), sn(2); Nd, c©, c©: Example ⇒ ((3.3) : c = 2, e = 1, h = ξ/2− 1, m = 1− ξ/2, u =

ξ) (where ξ = θ−1(0) ≈ 2.50977025) (if θ = 0).

b2) The subcase η > 0. In this case systems (3.3) possess three real infinite singular points.

Taking into consideration the conditions µ > 0, θ2 + θ2
1 6= 0 and Lemmas 3.1 and 3.5 (the

statement (iii)) we could have at infinity only 5 distinct configurations. The corresponding

examples are:

• s(1), f (1), sn(2); S, N∞, N∞: Example ⇒ ((3.3) : c = 619/5, e = 1, h = 1001/10, m =

−1001/10, u = 324) (if θ < 0, θ1 < 0);

• s(1), f (1), sn(2); S, N f , N f : Example ⇒ ((3.3) : c = 1, e = 0, h = −1/2, m = 1/2, u =

1/10) (if θ < 0, θ1 > 0);

• s(1), f (1), sn(2); S, N∞, N f : Example ⇒ ((3.3) : c = 1, e = 0, h = −1/2, m = 1/2, u =

3/25) (if θ > 0);

• s(1), f (1), sn(2); S, N∞, Nd: Example ⇒ ((3.3) : c = 6804/55, e = 1, h = 5508/55, m =

−5508/55, u = 324) (if θ = 0, θ1 < 0);

• s(1), f (1), sn(2); S, N f , Nd: Example ⇒ ((3.3) : c = 1, e = 0, h = −1/2, m = 1/2, u = 1/9)

(if θ = 0, θ1 > 0).
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b3) The subcase η = 0. Since by Lemma 3.8 we have M̃ 6= 0, in this case systems (3.3)

possess at infinity one double and one simple real singular points. So by Lemmas 3.1 and 3.5

(the statement (iii)) we have the following 3 configurations :

• s(1), f (1), sn(2); (
0
2)SN, N∞: Example ⇒ ((3.3) : c = ξ, e = 1, h = (324 − ξ)/2, m =

(ξ − 324)/2, u = 324) (where ξ = η−1(0) ≈ 123.8421627) (if θ < 0);

• s(1), f (1), sn(2); (
0
2)SN, N f : Example ⇒ ((3.3) : c = 1, e = 0, h = −1/2, m = 1/2, u = 1/8)

(if θ > 0);

• s(1), f (1), sn(2); (
0
2)SN, Nd: Example ⇒ ((3.3) : c = ξ, e = 1, h = (χ − ξ)/2, m = (ξ −

χ)/2, u = χ) (where (ξ, χ) = (η−1(0), θ−1(0)) = (123 + 55
√

5 )/2, 161 + 72
√

5 ) (if θ = 0).

The possibility W4 > 0. According to [8, Table 1, line 75] besides the semi-elemental

saddle-node we have a saddle and a node and this node is generic (due to W4 6= 0, i.e.

τ3τ4 6= 0).

1) The case T4 6= 0. Then ρ3ρ4 6= 0 and the saddle is strong.

a) The subcase η < 0. According to Lemma 3.1 we obtain 4 distinct configurations:

• s, n, sn(2); N∞, c©, c©: Example ⇒ ((3.3) : c = −3, e = 0, h = 1, m = 1, u = 1) (if θ < 0);

• s, n, sn(2); N f , c©, c©: Example ⇒ ((3.3) : c = 4, e = 0, h = 2, m = 1, u = 1) (if θ > 0);

• s, n, sn(2); Nd, c©, c©: Example ⇒ ((3.3) : c = 3, e = 1, h = 4, m = 1, u = 4) (if θ = 0,

θ2 6= 0);

• s, n, sn(2); N∗, c©, c©: Example ⇒ ((3.3) : c = −2, e = 1, h = 0, m = 1, u = 1) (if θ = 0,

θ2 = 0).

b) The subcase η > 0.

Taking into consideration Lemmas 3.1 and 3.5 (the statement (iii)) we could have at infinity

only 9 distinct configurations. The corresponding examples are:

• s, n, sn(2); S, N∞, N∞: Example ⇒ ((3.3) : c = −3/2, e = 0, h = 1/3, m = 1, u = 1) (if

θ < 0, θ1 < 0);

• s, n, sn(2); S, N f , N f : Example ⇒ ((3.3) : c = −1/2, e = 0, h = 1/3, m = 1, u = 1) (if

θ < 0, θ1 > 0);

• s, n, sn(2); S, N∞, N f : Example ⇒ ((3.3) : c = −1/2, e = 0, h = 2, m = 1, u = 1) (if

θ > 0);

• s, n, sn(2); S, N∞, Nd: Example ⇒ ((3.3) : c = −3/2, e = 0, h = 1/2, m = 1, u = 1) (if

θ = 0, θ1 < 0, θ2 6= 0);

• s, n, sn(2); S, N∞, N∗: Example ⇒ ((3.3) : c = 4, e = 1, h = −3, m = −2, u = 1) (if

θ = 0, θ1 < 0, θ2 = 0);

• s, n, sn(2); S, N f , Nd: Example ⇒ ((3.3) : c = −1/2, e = 0, h = 1/2, m = 1, u = 1) (if

θ = 0, θ1 > 0, θ2 6= 0);

• s, n, sn(2); S, N f , N∗: Example ⇒ ((3.3) : c = −2, e = 1, h = 3, m = −2, u = 1) (if

θ = 0, θ1 > 0, θ2 = 0);

• s, n, sn(2); S, Nd, Nd: Example ⇒ ((3.3) : c = 0, e = −1/2, h = 1, m = 0, u = 2) (if

θ = θ1 = 0, θ3 6= 0);

• s, n, sn(2); S, Nd, N∗: Example ⇒ ((3.3) : c = 2, e = 1, h = −1, m = −2, u = 1) (if

θ = θ1 = 0, θ3 = 0).

c) The subcase η = 0 In this case systems (3.3) possess at infinity either one double and one

simple real singular points (if M̃ 6= 0) or one triple real singularity (if M̃ = 0). By Lemma
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3.1 we could have at infinity exactly 5 distinct configurations. So we have the following 4

configurations:

• s, n, sn(2); (
0
2)SN, N∞: Example ⇒ ((3.3) : c = 1, e = 0, h = 1/2, m = −3/8, u = 1) (if

θ < 0);

• s, n, sn(2); (
0
2)SN, N f : Example ⇒ ((3.3) : c = 1, e = 0, h = 2, m = 3/2, u = 1) (if θ > 0);

• s, n, sn(2); (
0
2)SN, Nd: Example ⇒ ((3.3) : c = 1, e = 1, h = −2(7 + 5

√
2), m = 0, u =

17 + 12
√

2) (if θ = 0, θ2 6= 0);

• s, n, sn(2); (
0
2)SN, N∗: Example ⇒ ((3.3) : c = −4, e = 1, h = 7/2, m = −1/2, u = 1) (if

θ = 0, θ2 = 0)

if M̃ 6= 0 and one configuration

• s, n, sn(2); (
0
3)N: Example ⇒ ((3.3) : c = 1, e = 1, h = 40/27, m = 3/2, u = 64/27)

if M̃ = 0.

2) The case T4 = 0. By (3.5) we get ρ3ρ4 = 0 and hence the saddle is weak. We consider two

subcases: F1 6= 0 and F1 = 0.

a) The subcase F1 6= 0. Then by [28] the weak saddle has order one.

a1) The possibility η < 0. Considering Lemmas 3.1 and 3.5 (the statement (iii)) there can

only be 3 distinct configurations at infinity:

• s(1), n, sn(2); N∞, c©, c©: Example ⇒ ((3.3) : c = 1, e = 1, h = −2, m = −1, u = 3) (if

θ < 0);

• s(1), n, sn(2); N f , c©, c©: Example ⇒ ((3.3) : c = 2, e = 0, h = 2, m = 1, u = 1) (if θ > 0);

• s(1), n, sn(2); Nd, c©, c©: Example ⇒ ((3.3) : c = −3, e = 1, h = 7/2, m = −3/4, u = 4)

(if θ = 0).

a2) The possibility η > 0. Since for these systems the condition µ0 > 0 holds, taking into

consideration Lemmas 3.1 and 3.5 (the statement (iii)) we could have at infinity only 6 distinct

configurations. The corresponding examples are:

• s(1), n, sn(2); S, N∞, N∞: Example ⇒ ((3.3) : c = 0, e = 1, h = −1/2, m = −3/4, u = 3/2)

(if θ < 0, θ1 < 0);

• s(1), n, sn(2); S, N f , N f : Example ⇒ ((3.3) : c = 1, e = 0, h = 2, m = 1/2, u = 1) (if

θ < 0, θ1 > 0);

• s(1), n, sn(2); S, N∞, N f : Example ⇒ ((3.3) : c = 1, e = 0, h = 2, m = 1/2, u = 9/5) (if

θ > 0);

• s(1), n, sn(2); S, N∞, Nd: Example ⇒ ((3.3) : c = 2/3, e = 1, h = −2, m = −5/3, u = 4)

(if θ = 0, θ1 < 0);

• s(1), n, sn(2); S, N f , Nd: Example ⇒ ((3.3) : c = 0, e = −1, h = −2, m = −3, u = 4) (if

θ = 0, θ1 > 0);

• s(1), n, sn(2); S, Nd, Nd: Example ⇒ ((3.3) : c = 2/3, e = 1, h = −2, m = −2/3, u = 2)

(if θ = 0, θ1 = 0).

a3) The possibility η = 0. In this case systems (3.3) possess at infinity either one double

and one simple real singular points (if M̃ 6= 0) or one triple real singularity (if M̃ = 0). So by

Lemmas 3.1 and Lemma 3.5 (the statement (iii)) we have the following 3 configurations:

• s(1), n, sn(2); (
0
2)SN, N∞: Example ⇒ ((3.3) : c = 1, e = 2, h = −3, m = −3/2, u = 2) (if

θ < 0);

• s(1), n, sn(2); (
0
2)SN, N f : Example ⇒ ((3.3) : c = 1, e = 0, h = 2, m = 1/2, u = 2) (if

θ > 0);



Global configurations of singularities 49

• s(1), n, sn(2); (
0
2)SN, Nd: Example ⇒ ((3.3) : c = ξ2 − 2, e = 1, h = ξ(3 − ξ − ξ2), m =

−1, u = ξ2) (where ξ = η−1(0) ≈ 1.3816417) (if θ = 0)

if M̃ 6= 0 and one configuration

• s(1), n, sn(2); (
0
3)N: Example ⇒ ((3.3) : c = 17 − 3

√
33, e = 1, h = (155 − 27

√
33)/2, m =

−1, u = 19 − 3
√

33)

if M̃ = 0.

b) The subcase F1 = 0. In this case according to [28] the weak saddle is of order at least

two. We claim that for F1 = 0 we could not have θ = θ1 = 0. Indeed, suppose the contrary.

As it was shown in the proof of the statement (iii) of Lemma 3.5 (see page 28) in this case for

systems (3.3) the conditions m = −c and h = −eu must hold. Then we have ρ3 = eu − 3c = 0

(i.e. c = eu/3) and this implies

F1 = 16e4u4(u − 9)/81, µ0 = 4e4u3(u − 9u)2/81

and evidently the condition µ0 6= 0 gives F1 6= 0. The contradiction we have obtained proves

our claim.

b1) The possibility F2 6= 0. Then we have a weak saddle of order two.

α) The case η < 0. According to Lemmas 3.1 and 3.5 (the statement (iii)) there can only be

3 distinct configurations at infinity:

• s(2), n, sn(2); N∞, c©, c©: Example ⇒ ((3.3) : c = −1/3, e = 1, h = 1/6, m = −5/6, u =

4/3) (if θ < 0);

• s(2), n, sn(2); N f , c©, c©: Example ⇒ ((3.3) : c = −3, e = 1, h = −13/4, m = −7/4, u =

1/2) (if θ > 0);

• s(2), n, sn(2); Nd, c©, c©: Example ⇒ ((3.3) : c = (841+ 800ξ)/400, e = 1, h = −29(1421+

1200ξ)/8000, m = ξ, u = 841/400) (where ξ = (−2253 +
√

23281 )/1600) (if θ = 0).

β) The case η > 0.

Thus as for these systems the condition µ0 > 0 holds, taking into consideration Lemmas

3.1 and 3.5 (the statement (iii)) we could have at infinity only 5 distinct configurations. The

corresponding examples are:

• s(2), n, sn(2); S, N∞, N∞: Example ⇒ ((3.3) : c = −2/3, e = 1, h = 25/27, m = −13/9, u =

20/9) (if θ < 0, θ1 < 0);

• s(2), n, sn(2); S, N f , N f : Example ⇒ ((3.3) : c = 1, e = 1, h = −4, m = 0, u = 1) (if

θ < 0, θ1 > 0);

• s(2), n, sn(2); S, N∞, N f : Example ⇒ ((3.3) : c = 1/2, e = 1, h = −4, m = −5/4, u = 3)

(if θ > 0);

• s(2), n, sn(2); S, N∞, Nd: Example ⇒ ((3.3) : c = −3/5, e = 1, h = (27 + 5ξ)/50, m =

−(3 + 5ξ)/10, u = ξ) (where ξ = θ−1(0) ≈ 2.1793598) (if θ = 0, θ1 < 0);

• s(2), n, sn(2); S, N f , Nd: Example ⇒ ((3.3) : c = −2, e = 1, h = (3ξ − 2)/2, m = −(2 +

ξ)/2, u = ξ) (where ξ = θ−1(0) ≈ 0.07264) (if θ = 0, θ1 > 0)

γ) The case η = 0 In this case systems (3.3) possess at infinity either one double and one

simple real singular points (if M̃ 6= 0) or one triple real singularity (if M̃ = 0). So by Lemmas

3.1 and Lemma 3.5 (the statement (iii)) we have the following 3 configurations:

• s(2), n, sn(2); (
0
2)SN, N∞: Example ⇒ ((3.3) : c = ξ, e = 1, h = −(43+ 146ξ + 40ξ2)/40, m =

(20ξ − 43)/40, u = 43/20) (where ξ = η−1(0) ≈ −0.5715053) (if θ < 0);

• s(2), n, sn(2); (
0
2)SN, N f : Example ⇒ ((3.3) : c = −2(5 +

√
13)/3, e = 1, h = −(56 +

19
√

13)/9, m = −(8 +
√

13)/3, u = 2) (if θ > 0);
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• s(2), n, sn(2); (
0
2)SN, Nd: Example ⇒ ((3.3) : c = ξ, e = 1, h = −(2ξ2 + 3ξ + 2ξχ +

χ)/2, m = (χ − ξ)/2, u = χ) (where (ξ, χ) = (η−1(0), θ−1(0)) ≈ (−0.574581, 2.156464))

(if θ = 0)

if M̃ 6= 0 and one configuration

• s(2), n, sn(2); (
0
3)N: Example ⇒ ((3.3) : c = −1/2, e = 1, h = 1/2, m = −5/4, u = 2)

if M̃ = 0.

b2) The possibility F2 = 0. Then by [28] we have either a weak saddle of order three or an

integrable saddle.

As it was shown earlier (see page 44, p. β2)) in this case we get c = −u/6 and then we

calculate:

τ4 = u2(u − 6)(25u − 42)/324, µ0 = u3(u − 6)2/144.

So considering (3.11) we observe that the conditions τ3 > 0 and τ4 > 0 imply 0 < u < 42/25

and then η < 0, θ < 0 and F3F4 6= 0. Hence we could not have an integrable saddle and

considering Lemma 3.1 in this case we get a single configuration of singularities:

• s(3), n, sn(2); N∞, c©, c©: Example ⇒ ((3.3) : c = −1/6, e = 1, h = −1/9, m = −7/12, u =

1).

The possibility W4 = 0. Since E1 6= 0 (i.e. ρ1 6= 0) by (3.5) we obtain τ3τ4 = 0 and

therefore at least one elemental singular point is a node with coinciding eigenvalues and we

may assume that such a singular point is M3(1, 0) (i.e. τ3 = 0) . On the other hand considering

[8] we conclude that besides this node we have a semi-elemental saddle-node M1,2(0, 0) and a

saddle M4(0, 1).

1) The case U3 6= 0. Then the node M3(1, 0) is a one-direction node.

a) The subcase T4 6= 0. We obtain ρ3ρ4 6= 0 and the saddle is strong.

a1) The possibility η < 0. According to Lemmas 3.1 and 3.5 (the statement (iii)) there can

only be 3 distinct configurations at infinity:

• s, nd, sn(2); N∞, c©, c©: Example ⇒ ((3.3) : c = 2, e = 1, h = 1/8, m = 0, u = 1) (if

θ < 0);

• s, nd, sn(2); N f , c©, c©: Example ⇒ ((3.3) : c = 0, e = 1, h = 1/8, m = 0, u = 1) (if θ > 0);

• s, nd, sn(2); Nd, c©, c©: Example ⇒ ((3.3) : c = −11/4, e = 1, h = 9/8, m = 0, u = 1/4)

(if θ = 0).

a2) The possibility η > 0. Since for these systems the condition µ0 > 0 holds, taking into

consideration Lemmas 3.1 and 3.5 (the statement (iii)) we could have at infinity only 6 distinct

configurations. The corresponding examples are:

• s, nd, sn(2); S, N∞, N∞: Example ⇒ ((3.3) : c = −4, e = −1, h = 15/8, m = 3, u = 1) (if

θ < 0, θ1 < 0);

• s, nd, sn(2); S, N f , N f : Example ⇒ ((3.3) : c = 0, e = −1, h = −1/2, m = 2, u = 2) (if

θ < 0, θ1 > 0);

• s, nd, sn(2); S, N∞, N f : Example ⇒ ((3.3) : c = 0, e = −1, h = −9/8, m = 2, u = 1) (if

θ > 0);

• s, nd, sn(2); S, N∞, Nd: Example ⇒ ((3.3) : c = −6, e = −1, h = 10, m = 3, u = 4) (if

θ = 0, θ1 < 0);

• s, nd, sn(2); S, N f , Nd: Example ⇒ ((3.3) : c = 0, e = 1, h = 8, m = −6, u = 4) (if

θ = 0, θ1 > 0);
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• s, nd, sn(2); S, Nd, Nd: Example ⇒ ((3.3) : c = 10, e = 1, h = −2, m = −10, u = 2) (if

θ = 0, θ1 = 0).

a3) The possibility η = 0. In this case systems (3.3) possess at infinity either one double

and one simple real singular points (if M̃ 6= 0) or one triple real singularity (if M̃ = 0). So by

Lemmas 3.1 and Lemma 3.5 (the statement (iii)) we have the following 3 configurations:

• s, nd, sn(2); (
0
2)SN, N∞: Example ⇒ ((3.3) : c = 1, e = 0, h = 1/2, m = −1/2, u = 2) (if

θ < 0);

• s, nd, sn(2); (
0
2)SN, N f : Example ⇒ ((3.3) : c = 1, e = 0, h = 1, m = −1/2, u = 1) (if

θ > 0);

• s, nd, sn(2); (
0
2)SN, Nd: Example ⇒ ((3.3) : c = 1, e = 0, h = 1/2, m = −1/2, u = 1) (if

θ = 0)

if M̃ 6= 0 and one configuration

• s, nd, sn(2); (
0
3)N: Example ⇒ ((3.3) : c = 1, e = 0, h = 0, m = −1/2, u = 1)

if M̃ = 0.

b) The subcase T4 = 0. We obtain ρ3ρ4 = 0 (then ρ4 = 0 due to τ3 = 0) and the saddle is

weak.

b1) The possibility F1 6= 0. In his case we have a weak saddle of order one.

α) The case η < 0. According to Lemmas 3.1 and 3.5 (the statement (iii)) there can be 4

distinct configurations at infinity:

• s(1), nd, sn(2); N∞, c©, c©: Example ⇒ ((3.3) : c = 4, e = 1, h = 2, m = 0, u = 8) (if

θ < 0);

• s(1), nd, sn(2); N f , c©, c©: Example ⇒ ((3.3) : c = −1, e = 1, h = 2, m = 0, u = 3) (if

θ > 0);

• s(1), nd, sn(2); Nd, c©, c©: Example ⇒ ((3.3) : c = (ξ2 − 48)/32, e = 1, h = 2 + ξ/4, m =

−1, u = (ξ2 + 16ξ + 80)/32) (where ξ = θ−1(0) ≈ −9.4251021) (if θ = 0, θ2 6= 0);

• s(1), nd, sn(2); N∗, c©, c©: Example ⇒ ((3.3) : c = −3, e = 1, h = 2, m = 0, u = 1) (if

θ = 0, θ2 = 0).

β) The case η > 0. Since µ0 > 0, by Lemma 3.1 there are 10 possibilities. However

according to Lemma 3.5 (the statements (iii)2 and (v)) the at infinity we cannot have in this

case the configurations S, Nd, Nd or S, N∗, N∗.

Thus at infinity we could only have 8 distinct configurations. The corresponding examples

are:

• s(1), nd, sn(2); S, N∞, N∞: Example ⇒ ((3.3) : c = 17/4, e = 1/4, h = −2, m = −2, u = 1)

(if θ < 0, θ1 < 0);

• s(1), nd, sn(2); S, N f , N f : Example ⇒ ((3.3) : c = −7/6, e = 1, h = 4, m = −3, u = 41/6)

(if θ < 0, θ1 > 0);

• s(1), nd, sn(2); S, N∞, N f : Example ⇒ ((3.3) : c = −23/32, e = 1, h = 3/4, m = −1, u =

25/32) (if θ > 0);

• s(1), nd, sn(2); S, N∞, Nd: Example ⇒ ((3.3) : c = (12−
√

287 )/156, e = −12(14+
√

287 )/13, h =

(11 +
√

287 )/144, m = 1/12, u = 1/144) (if θ = 0, θ1 < 0, θ2 6= 0);

• s(1), nd, sn(2); S, N∞, N∗: Example ⇒ ((3.3) : c = 1, e = 5, h = −4, m = −2, u = 1) (if

θ = 0, θ1 < 0, θ2 = 0);

• s(1), nd, sn(2); S, N f , Nd: Example ⇒ ((3.3) : c = (2 −
√

7 )/6, e = 2(4 −
√

7 )/3, h =

(−1 +
√

7 )/4, m = −1/2, u = 1/4) (if θ = 0, θ1 > 0, θ2 6= 0);
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• s(1), nd, sn(2); S, N f , N∗: Example ⇒ ((3.3) : c = 1, e = 1, h = −2, m = 0, u = 1) (if

θ = 0, θ1 > 0, θ2 = 0);

• s(1), nd, sn(2); S, Nd, N∗: Example ⇒ ((3.3) : c = 1/3, e = 1, h = −1, m = −1/3, u = 1)

(if θ = θ1 = 0).

γ) The case η = 0 In this case systems (3.3) possess at infinity either one double and one

simple real singular points (if M̃ 6= 0) or one triple real singularity (if M̃ = 0). Since by Lemma

3.5 (the statements (iii))

So by Lemmas 3.1 and Lemma 3.5 (the statement (iii)) we have the following 3 configura-

tions:

• s(1), nd, sn(2); (
0
2)SN, N∞: Example ⇒ ((3.3) : c = 1 − 2ξ, e = 1, h = ξ, m = ξ, u = 1)

(where ξ = η−1(0) ≈ −7.41375) (if θ < 0);

• s(1), nd, sn(2); (
0
2)SN, N f : Example ⇒ ((3.3) : c = −2ξ + 2

√
1 + 2ξ, e = −1, h = −1 + ξ −√

1 + 2ξ, m = ξ, u = 2) (where ξ = η−1(0) ≈ 1.42926) (if θ > 0);

• s(1), nd, sn(2); (
0
2)SN, Nd: Example ⇒ ((3.3) : c =

3ξ − χ

χ − 1
, e =

ξ + 2ξχ − χ

χ2(χ − 1)
, h = ξ, m =

1, u = χ2) (where (ξ, χ) = (η−1(0), W−1
4 (0)) ≈ (−2.58495, 36.90034)) (if θ = 0)

if M̃ 6= 0 and one configuration

• s(1), nd, sn(2); (
0
3)N: Example ⇒ ((3.3) : c = 32/27, e = −1, h = −8/9, m = 20/27, u =

16/27)

if M̃ = 0.

b2) The possibility F1 = 0. In this case we have a weak saddle of order at least two. We

consider two cases: F2 6= 0 and F2 = 0.

α) The case F2 6= 0. Then the weak saddle has order two.

Assume that for systems (3.3) the conditions µ0E1 6= 0 and T4 = F1 = W4 = 0 are satisfied.

As it was shown earlier (see page 43) the conditions T4 = 0 (we assume ρ3 = 0) and F1 = 0

imply the relations (3.10). Therefore the condition W4 = 0 (which in this case is equivalent to

τ4 = 0) gives

E1 = −(1 + c)4u2(c + u)(3c + u)4/2, F2 = −c(1 + c)4u2(c + u)4(3c + u)2(6c + u),

F3 = −c(1 + c)4u2(c + u)4(2c + u)(3c + u)2, τ4 = 4c(1 + c)[(c + u)2 + c − u] ≡ 4c(1 + c)ψ(c, u),
(3.12)

and as F2 6= 0 the condition τ4 = 0 implies ψ(c, u) = 0. Since Discriminant[ψ, c] = 1 + 8u

in order to have a real solution we set 1 + 8u = v2 (i.e. u = (v2 − 1)/8) and then we obtain

ψ(c, v2 − 1) = (3 + 8c − 4v + v2)(3 + 8c + 4v + v2)/64 = 0. We may consider only the first

factor because the second factor is obtained from the first one by replacing v by −v and we

arrive at the same result.

So c = (4v − v2 − 3)/8 and we calculate

T4 = F1 = W4 = 0, µ0 = 2−13(v − 5)4(v2 − 1)3,

F2 = −2−32(v − 5)6(v − 3)(v − 1)10(1 + v)6(5v − 19),

η = −2−13(v − 5)2(v − 3)(v − 1)3(1 + v)(205 + 67v − 65v2 + 9v3),

θ = (v − 5)2(v − 3)(v − 1)3(1 + v)(11 + v − 5v2 + v3)/256,

θ1 = −(v − 5)2(v − 1)3(1 + v)(38v − 361 + 166v2 − 66v3 + 7v4)/256,

θ2 = 2−11(v − 5)2(v − 3)(v − 1)2(1 + v)(v2 − v − 4).

(3.13)

As we have only one parameter v which satisfies |v| > 1 (due to µ0 > 0) we could only obtain

the following configurations:
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• s(2), nd, sn(2); N∞, c©, c©: Example ⇒ ((3.3) : c = −3/8, e = 1, h = 3/16, m = −9/8, u =

15/8) (if η < 0, θ < 0);

• s(2), nd, sn(2); N f , c©, c©: Example ⇒ ((3.3) : c = −15/8, e = 1, h = −3/16, m =

−9/8, u = 3/8) (if η < 0, θ > 0);

• s(2), nd, sn(2); Nd, c©, c©: Example ⇒ ((3.3) : c = (3 − ξ)(ξ − 1)/8, e = 1, h = (ξ −
1)(ξ2 − 2ξ − 7)/16, m = −(ξ − 1)2/8, u = (ξ2 − 1)/8) (where ξ = θ−1(0) ≈ 4.10277) (if

η < 0, θ = 0);

• s(2), nd, sn(2); S, N f , N f : Example ⇒ ((3.3) : c = 1/8, e = 1, h = −7/16, m = −1/8, u =

3/8) (if η > 0, θ < 0);

• s(2), nd, sn(2); S, N∞, N f : Example ⇒ ((3.3) : c = 3/32, e = 1, h = −69/128, m =

−9/32, u = 21/32) (if η > 0, θ > 0);

• s(2), nd, sn(2); S, N∞, Nd: Example ⇒ ((3.3) : c = (3 − ξ)(ξ − 1)/8, e = 1, h = (ξ −
1)(ξ2 − 2ξ − 7)/16, m = −(ξ − 1)2/8, u = (ξ2 − 1)/8) (where ξ = θ−1(0) ≈ −1.24914) (if

η > 0, θ = 0);

• s(2), nd, sn(2); (
0
2)SN, N f : Example ⇒ ((3.3) : c = (3− ξ)(ξ − 1)/8, e = 1, h = (ξ − 1)(ξ2 −

2ξ − 7)/16, m = −(ξ − 1)2/8, u = (ξ2 − 1)/8) (where ξ = η−1(0) ≈ −1.25774) (if η = 0).

β) The case F2 = 0. Since E1 6= 0 considering (3.12) we get c(6c + u) = 0 and then we

obtain either c = −u/6 or c = 0.

In the first case we have

µ0 = (u − 6)2u3/144, τ4 = (u − 6)u2(25u − 42)/324

and clearly due to µ0 6= 0 the condition τ4 = 0 gives u = 42/25. So we obtain a system

without parameters for which we detect η < 0, θ < 0 and F3F4 6= 0.

Thus we get the unique configuration

• s(3), nd, sn(2); N∞, c©, c©: Example ⇒ ((3.3) : c = −7/25, e = 1, h = −7/250, m =

−49/50, u = 42/25).

In the second case when c = 0 calculations yield

µ0 = u3, θ = 8(u − 1)u3, θ2 = (u − 1)u2/4, η = W4 = F3 = 0

and there will be 3 configurations at infinity, depending on the value of the invariant poly-

nomial θ. On the other hand on the phase plane besides a one-direction node we have an

integrable saddle (see [28, Main Theorem, the statement (b)]). Thus we arrive at the following

configurations

• $, nd, sn(2); (
0
2)SN, N∞: Example ⇒ ((3.3) : c = 0, e = 1, h = −1/4, m = −1/4, u = 1/2)

(if θ < 0);

• $, nd, sn(2); (
0
2)SN, N f : Example ⇒ ((3.3) : c = 0, e = 1, h = −1, m = −1, u = 2) (if

θ > 0);

• $, nd, sn(2); (
0
2)SN, N∗: Example ⇒ ((3.3) : c = 0, e = 1, h = −1/2, m = −1/2, u = 1) (if

θ = 0).

2) The case U3 = 0. Then the node M3(1, 0) is a star node. Considering the corresponding

matrix from (3.4) we obtain e = 0, h = −cu/2 and m = −c/2 and c 6= 0, otherwise we get

degenerate systems. So we may assume c = 1 (due to time rescaling) and we arrive at the

family of systems

ẋ = x + uy − x2 − uxy − uy2, ẏ = −xy, (3.14)



54 J.C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe

for which we calculate

η = F1 = F4 = θ2 = 0, µ0 = u, M̃ = −8u2y2

T4 = 2u(u − 1), θ = 8u(u − 1), F2 = u2(u − 1)(9 + 2u)/2,

and therefore the conditions T4 = 0 and θ = 0 (respectively µ = 0 and M̃ = 0) are equivalent.

Moreover, the condition θ = 0 implies F2 = 0.

Thus considering these implications, by Lemma 3.1 we could only have the following three

configurations:

• s, n∗, sn(2); (
0
2)SN, N∞: Example ⇒ ((3.14): u = 1/2 (if θ < 0);

• s, n∗, sn(2); (
0
2)SN, N f : Example ⇒ ((3.14): u = 2 (if θ > 0);

• $, n∗, sn(2); (
0
2)SN, N∗: Example ⇒ ((3.14): u = 1 (if θ = 0).

The subcase E1 = 0 In this case ρ1 = 0 and besides the two elemental singularities we

have a cusp. Moreover, since µ0 > 0 from (3.5) if follows ∆3∆4 < 0, i.e. the two elemental

singularities are a saddle and an anti-saddle. The condition E1 = 0 gives c = −eu and then

e 6= 0, otherwise we get degenerate systems. So systems (3.3) become

ẋ = −ux − u2y + ux2 + 2hxy + u2y2, ẏ = x + uy − x2 + 2mxy − uy2, (3.15)

for which calculations yield

µ0 = 4u(h + mu)2, T4 = T3 = 0, T2 = µ0ρ3ρ4, T1 = µ0(ρ3 + ρ4),

W4 = W3 = 0, W2 = µ2
0τ3τ4, W1 = µ2

0(τ3 + τ4),

θ = 64(h + mu)
[
(h + u)2 − u(m − u)2

]
,

η = −4
(
N 2

2 −N1N3

)
/3, M̃ = 8(N1x2 − 2N2xy −N3y2),

(3.16)

where

ρ3 = 2(m + u), ρ4 = 2(h − u), τ3 = 4(m2 + u2)− 8h, τ4 = 4(h2 + u2) + 8mu2,

N1 = (2m − u)2 − 6h − 3u, N2 = 2hm − hu + mu + 4u2, N3 = (2h + u)2 + 6mu2 − 3u3.

Lemma 3.9. If for a system (3.15) the condition µ0 > 0 holds then the condition W2 ≤ 0 implies

θ > 0.

Proof: Assume that the condition W2 ≤ 0 holds. This implies τ3τ4 ≤ 0 and we may assume

τ3 ≤ 0, i.e. the singular point M3(1, 0) is either a focus or a node, and then for the saddle

we have τ4 > 0. We set a new parameter v as follows: τ3 = −v2 ≤ 0 and we get h =

(4m2 + 4u2 + v2)/8. Calculations yield

θ = 2
[
(4(m + u)2 + v2)](τ4 + uv2), µ0 = u[(4(m + u)2 + v2)]2/16.

Hence due to the condition µ0 > 0 and τ4 > 0 we obtain θ > 0 for any value of the parameter

v. This completes the proof of the lemma.

Lemma 3.10. If for a system (3.15) the condition µ0 > 0 holds then the condition M̃ = 0 implies

W2 > 0 and T2 6= 0.
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Proof: According to (3.16) the condition M̃ = 0 implies N1 = N2 = N3 = 0. The equality

N1 = 0 gives h =
[
(2m − u)2 − 3u

]
/6 and then we obtain N2 =

[
(2m − u)3 + 27u2

]
= 0 and

since u 6= 0 (due to µ0 6= 0) we set two new parameters w as follows: v = 2m − u 6= 0 (i.e.

m = (u + v)/2) and u = vw. Then we get N2 = v2(v + 27w2)/6 = 0 which yields v = −27w2.

So we obtain m = −27w2(1 + w)/2, u = −27w3 and h = 27w3(1 + 9w)/2 and for these values

of the parameters of systems (3.15) we get M̃ = 0 and

W2 = −327w27(1 + 3w)16(12w − 5)(15w − 4), T2 = 316w14(1 + 3w)8, µ0 = −39w9(1 + 3w)6.

Clearly due to µ0 > 0 we have W2 > 0 and T2 6= 0 and hence the lemma is proved.

The possibility W2 < 0 In this case the anti-saddle is a focus and the existence of weak

singularities depends on the invariant polynomial T2.

1) The case T2 6= 0. Then ρ3ρ4 6= 0 and the saddle as well as the focus are strong ones.

Therefore considering Lemmas 3.9, 3.10 and 3.1 we could only obtain the following 3 config-

urations:

• s, f , ĉp(2); N f , c©, c©: Example ⇒ ((3.15): h = 2, m = 0, u = 1) (if η < 0);

• s, f , ĉp(2); S, N∞, N f : Example ⇒ ((3.15): h = 4, m = −5/2, u = 1) (if η > 0);

• s, f , ĉp(2); (
0
2)SN, N f : Example ⇒ ((3.15): h = (5 + 4ξ2)/8, m = ξ, u = 1) (where ξ =

η−1(0) ≈ −1.474363) (if η = 0).

2) The case T2 = 0. In this case we have at least one weak singularity.

a) The subcase T1 6= 0. So by (3.16) only one singularity is weak and its type is governed by

the invariant polynomial H.

a1) The possibility H < 0. According to [28, Main Theorem, the statement (d)] we have a

weak focus of order one and we obtain the following 3 configurations

• s, f (1), ĉp(2); N f , c©, c©: Example ⇒ ((3.15): h = 1, m = −2, u = 1) (if , η < 0);

• s, f (1), ĉp(2); S, N∞, N f : Example ⇒ ((3.15): h = 1/12, m = −13/12, u = 1/12) (if

η > 0);

• s, f (1), ĉp(2); (
0
2)SN, N f : Example ⇒ ((3.15): h = (1 + 8ξ2)/8, m = −ξ, u = ξ) (where

ξ = η−1(0) ≈ 1.762699) (if η = 0).

a2) The possibility H > 0. Then by[28] the weak singularity is a saddle of order one and we

arrive at the following 3 configurations

• s(1), f , ĉp(2); N f , c©, c©: Example ⇒ ((3.15): h = 1, m = 0, u = 1) (if η < 0);

• s(1), f , ĉp(2); S, N∞, N f : Example ⇒ ((3.15): h = 567/400, m = −6/5, u = 6/5) (if

η > 0);

• s(1), f , ĉp(2); (
0
2)SN, N f : Example ⇒ ((S3) : b = 27/4, c = −3/2, d = −3/4, e = 3, f =

3/2, g = 5/4, h = 1) (if η = 0).

b) The subcase T1 = 0. Then ρ3 = ρ4 = 0 and this implies h = 0 and m = −u. In this case

for systems (3.15) we calculate

σ =
∂P

∂x
+

∂Q

∂y
= 0, η = −108(u − 1)2u3, µ0 = 4(u − 1)2u3.

So we get Hamiltonian systems which besides a cusp have a center and an integrable saddle.

Since the condition µ0 > 0 implies η < 0 we obtain the unique configuration

• $, c, ĉp(2); N f , c©, c©: Example ⇒ ((3.15): h = 2, m = −2, u = 2).
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The possibility W2 > 0 In this case the anti-saddle is a generic node and we consider

two cases: T2 6= 0 and T2 = 0.

1) The case T2 6= 0. The saddle is strong.

a) The subcase η < 0. According to Lemmas 3.1 and 3.5 (the statement (iii)) there can only

be 3 configurations:

• s, n, ĉp(2); N∞, c©, c©: Example ⇒ ((3.15): h = −1, m = 1, u = 2) (if θ < 0);

• s, n, ĉp(2); N f , c©, c©: Example ⇒ ((3.15): h = −1, m = 0, u = 1) (if θ > 0);

• s, n, ĉp(2); Nd, c©, c©: Example ⇒ ((3.15): h = 2(
√

2 − 1), m = 0, u = 2) (if θ = 0).

b) The subcase η > 0. According to Lemmas 3.1 and 3.5 (the statement (iii)) there can only

be 6 configurations:

• s, n, ĉp(2); S, N∞, N∞: Example ⇒ ((3.15): h = −11/6, m = 5/3, u = 7/4) (if θ < 0, θ1 <

0);

• s, n, ĉp(2); S, N f , N f : Example ⇒ ((3.15): h = 0, m = 3, u = 1) (if θ < 0, θ1 > 0);

• s, n, ĉp(2); S, N∞, N f : Example ⇒ ((3.15): h = 2, m = 3, u = 1) (if θ > 0);

• s, n, ĉp(2); S, N∞, Nd: Example ⇒ ((3.15): h = (10
√

13 − 13)/4, m = −7/4, u = 13/4) (if

θ = 0, θ1 < 0);

• s, n, ĉp(2); S, N f , Nd: Example ⇒ ((3.15): h = 0, m = 2, u = 1) (if θ = 0, θ1 > 0);

• s, n, ĉp(2); S, Nd, Nd: Example ⇒ ((3.15): h = −2, m = 2, u = 2) (if θ = θ1 = 0).

c) The subcase η = 0. In this case systems (3.3) possess at infinity either one double and one

simple real singular points (if M̃ 6= 0) or one triple real singularity (if M̃ = 0). So by Lemmas

3.1 and Lemma 3.5 (the statement (iii)) we have the following 3 configurations:

• s, n, ĉp(2); (
0
2)SN, N∞: Example ⇒ ((S3) : b = −1, c = −2, d = 4, e = −1, f = 2, g =

−3, h = 1) (if θ < 0);

• s, n, ĉp(2); (
0
2)SN, N f : Example ⇒ ((S3) : b = −4, c = 1, d = 1, e = −1, f = −1, g =

−3, h = 1) (if θ > 0);

• s, n, ĉp(2); (
0
2)SN, Nd: Example ⇒ ((S3) : b = −1/3, c = −2, d = 4/3, e = −3, f = 2, g =

−1/3, h = 1) (if θ = 0)

if M̃ 6= 0 and one configuration

• s, n, ĉp(2); (
0
3)N: Example ⇒ ((3.15): h = 108, m = 0, u = 27)

if M̃ = 0.

2) The case T2 = 0. Then the saddle is weak and and we claim that in this case:

(i) the weak saddle could only be of order one and the condition M̃ 6= 0 holds;

(ii) the conditions θ = θ1 = 0 and µ0 6= 0 are incompatible.

Indeed, the condition T2 = 0 implies ρ3ρ4 = 0 and we may consider that ρ3 = 0, i.e. for

systems (3.15) we have m = −u. Then we calculate

µ0 = 4u(h − u2)2, F1 = 4(h − u)u(h − u2),

θ = 64(h − u2)
[
(h + u)2 − 4u3

]
, Coefficient[M̃, xy] = −48(h − u)u

and since µ0 6= 0 the condition F1 = 0 as well as the condition M̃ = 0, implies h = u and then

W2 = −1024(−1 + u)6u9
< 0 due to µ0 > 0, i.e. the claim (i) is proved.
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Assume now that θ = 0. Since u 6= 0 we set a new parameter v as follows: h + u = 2uv

and then the condition θ = 0 gives u = v2. In this case we calculate

θ = 0, µ0 = 4(v − 1)4v6, θ1 = 512(v − 1)3v7

and since the condition µ0 6= 0 implies θ1 6= 0 the claim (ii) is proved.

a) The subcase η < 0. According to Lemmas 3.1 and 3.5 (the statement (iii)) there can only

be 3 configurations:

• s(1), n, ĉp(2); N∞, c©, c©: Example ⇒ ((3.15): h = 2, m = −5/6, u = 2) (if θ < 0);

• s(1), n, ĉp(2); N f , c©, c©: Example ⇒ ((3.15): h = 2, m = 1, u = 2) (if θ > 0);

• s(1), n, ĉp(2); Nd, c©, c©: Example ⇒ ((3.15): h = 4, m = 0, u = 4) (if θ = 0).

b) The subcase η > 0. As it was mentioned above in the case θ = 0 we have θ1 6= 0 and

according to Lemmas 3.1 and 3.5 (the statement (iii)) there can be only 5 configurations:

• s(1), n, ĉp(2); S, N∞, N∞: Example ⇒ ((3.15): h = 100, m = 79, u = 100) (if θ < 0, θ1 < 0);

• s(1), n, ĉp(2); S, N f , N f : Example ⇒ ((3.15): h = 1, m = 4, u = 1) (if θ < 0, θ1 > 0);

• s(1), n, ĉp(2); S, N∞, N f : Example ⇒ ((3.15): h = 2, m = 4, u = 2) (if θ > 0);

• s(1), n, ĉp(2); S, N∞, Nd: Example ⇒ ((3.15): h = 100, m = 80, u = 100) (if θ = 0, θ1 < 0);

• s(1), n, ĉp(2); S, N f , Nd: Example ⇒ ((3.15): h = 1/4, m = −3/4, u = 1/4) (if θ = 0, θ1 >

0).

c) The subcase η = 0. Since M̃ 6= 0 in this case systems (3.3) possess at infinity one double

and one simple real singular points. So by Lemmas 3.1 and Lemma 3.5 (the statement (iii)) we

have the following 3 configurations:

• s(1), n, ĉp(2); (
0
2)SN, N∞: Example ⇒ ((S3) : b = −9/2, c = 1, d = 1/2, e = −2, f =

−1, g = −11/2, h = 4) (if θ < 0);

• s(1), n, ĉp(2); (
0
2)SN, N f : Example ⇒ ((S3) : b = −9/2, c = 1, d = 1/2, e = −2, f =

−1, g = −5/2, h = 1) (if θ > 0);

• s(1), n, ĉp(2); (
0
2)SN, Nd: Example ⇒ ((S3) : b = −3/2, c = 1/3, d = 1/6, e = −2/3, f =

−1/3, g = −3/2, h = 1) (if θ = 0).

The possibility W2 = 0 We have a node with coinciding eigenvalues and we observe

that it could not be a star node because the corresponding linear matrices for the elemental

singularities are

M3 =

(
u 2h − u2

−1 2m + u

)
, M4 =

(
2h − u u2

1 + 2m −u

)
,

with u 6= 0.

1) The case T2 6= 0.

So according to Lemmas 3.10, 3.9 and 3.1 there can only be 3 configurations:

• s, nd, ĉp(2); N f , c©, c©: Example ⇒ ((3.15): h = 1/2, m = 0, u = 1) (if η < 0);

• s, nd, ĉp(2); S, N∞, N f : Example ⇒ ((3.15): h = 5/2, m = −2, u = 1) (if η > 0);

• s, nd, ĉp(2); (
0
2)SN, N f : Example ⇒ ((S3) : b = 4, c = −1, d = −1, e = 1, f = 1, g =

3/4, h = 5/4) (if η = 0).

2) The case T2 = 0.

So according to Lemmas 3.10, 3.9 and 3.1 there can only be 3 configurations:

• s(1), nd, ĉp(2); N f , c©, c©: Example ⇒ ((3.15): h = −1, m = −1, u = 1) (if η < 0);
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• s(1), nd, ĉp(2); S, N∞, N f : Example ⇒ ((3.15): h = 4/5, m = −2
√

6/5, u = 4/5) (if η > 0);

• s(1), nd, ĉp(2); (
0
2)SN, N f : Example ⇒ ((3.15): h = 81/125, m = −117/125, u = 81/125)

(if η = 0).

Thus we have examined all the possibilities for the family of systems possessing three dis-

tinct finite singularities of total multiplicity 4 and we proved the existence of 296 geometrically

distinct configurations.
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