

A universal constant for semistable limit cycles

JOAN C. ARTÉS¹, JAUME LLIBRE¹ and MARCO ANTONIO TEIXEIRA²

¹Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
²Departamento de Matemática, Universidade Estadual de Campinas,

13083-859, Campinas, SP, Brazil

E-mails: artes@mat.uab.cat / jllibre@mat.uab.cat / teixeira@ime.unicamp.br

Abstract. We consider one-parameter families of 2-dimensional vector fields X_{μ} having in a convenient region *R* a semistable limit cycle of multiplicity 2m when $\mu = 0$, no limit cycles if $\mu \leq 0$, and two limit cycles one stable and the other unstable if $\mu \gtrsim 0$.

We show, analytically for some particular families and numerically for others, that associated to the semistable limit cycle and for positive integers *n* sufficiently large there is a power law in the parameter μ of the form $\mu_n \approx Cn^{\alpha} < 0$ with $C, \alpha \in \mathbb{R}$, such that the orbit of X_{μ_n} through a point of $p \in R$ reaches the position of the semistable limit cycle of X_0 after given *n* turns.

The exponent α of this power law depends only on the multiplicity of the semistable limit cycle, and is independent of the initial point $p \in R$ and of the family X_{μ} . In fact $\alpha = -2m/(2m-1)$. Moreover the constant *C* is independent of the initial point $p \in R$, but it depends on the family X_{μ} and on the multiplicity 2m of the limit cycle Γ .

Mathematical subject classification: 58F14, 58F21, 58F30.

Key words: semistable limit cycle, semistable fixed point, universal constant, power law.

[#]CAM-233/10. Received: 06/VII/10. Accepted: 18/XI/10.

^{*}The first two authors are partially supported by a MEC/FEDER grant BFM2008-03437, and a CIRIT grant number 2009SGR 410. The third author is partially supported by a grant FAPESP-2007/06896-5. All authors are also supported by the joint project CAPES-MECD grant HBP-2009-0025-PC.